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a b s t r a c t

The reconfiguration graph Ck(G) for the k-colourings of a graph
G has a vertex for each proper k-colouring of G, and two vertices
of Ck(G) are adjacent precisely when those k-colourings differ
on a single vertex of G. Much work has focused on bounding
the maximum value of diamCk(G) over all n-vertex graphs G.
We consider the analogous problems for list colourings and for
correspondence colourings. We conjecture that if L is a list-
assignment for a graph G with |L(v)| ≥ d(v)+ 2 for all v ∈ V (G),
then diamCL(G) ≤ n(G) + µ(G). We also conjecture that if (L,H)
is a correspondence cover for a graph G with |L(v)| ≥ d(v) + 2
for all v ∈ V (G), then diamC(L,H)(G) ≤ n(G) + τ (G). (Here µ(G)
and τ (G) denote the matching number and vertex cover number
of G.) For every graph G, we give constructions showing that
both conjectures are best possible, which also hints towards an
exact form of Cereceda’s Conjecture for regular graphs. Our first
main result proves the upper bounds (for the list and corre-
spondence versions, respectively) diamCL(G) ≤ n(G)+ 2µ(G) and
diamC(L,H)(G) ≤ n(G)+2τ (G). Our second main result proves that
both conjectured bounds hold, whenever all v satisfy |L(v)| ≥

2d(v) + 1. We conclude by proving one or both conjectures
for various classes of graphs such as complete bipartite graphs,
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subcubic graphs, cactuses, and graphs with bounded maximum
average degree. The full paper can also be found at arxiv.org/ab
s/2204.07928.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper we study questions of transforming one proper colouring of a graph G into
another, by a sequence of recolouring steps. Each step recolours a single vertex, and we require
that each resulting intermediate colouring is also proper. Our work fits into the broader context
of reconfiguration, in which some object (in our case a proper colouring) is transformed into
another object of the same type, via a sequence of small changes, and we require that after each
change we again have an object of the prescribed type (for us a proper colouring). It is natural to
pose reconfiguration questions for a wide range of objects: proper colourings, independent sets,
dominating sets, maximum matchings, spanning trees, and solutions to 3-SAT, to name a few. For
each type of object, we must define allowable changes between successive objects in the sequence
(in our case, recolouring a single vertex). Typically, we ask four types of questions. (1) Given objects
α and β , is there a reconfiguration sequence from α to β? (2) If the first question is answered yes,
what is the length of a shortest such sequence? (3) Is the first question answered yes for every pair
of objects α and β? (4) If yes, what is the maximum value of dist(α, β) over all α and β? For an
introduction to reconfiguration, we recommend surveys by van den Heuvel [1] and Nishimura [2].
Most of our definitions and notation are standard, but for completeness we include many of them
at the start of Section 2.

For a graph G and a positive integer k, the k-colouring reconfiguration graph of G, denoted Ck(G),
has as its vertices all proper k-colourings of G and two vertices of Ck(G) are adjacent if their
corresponding colourings differ on exactly one vertex of G. Our goal here is to study the diameter
of this reconfiguration graph, denoted diam Ck(G). In general, Ck(G) may be disconnected, in which
case its diameter is infinite. For example C2(C2s) consists of two isolated vertices (here C2s is a cycle
f length 2s). More strongly, for each integer k ≥ 2 there exist k-regular graphs G such that Ck+1(G)
as isolated vertices. The simplest example is the clique Kk+1, but this is also true for every k-regular
raph with a (k+ 1)-colouring α such that all k+ 1 colours appear on each closed neighbourhood;

such colourings are called frozen.
To avoid a colouring α being frozen, some vertex v must have some colour unused by α on its

losed neighbourhood, N[v]. And to avoid Ck(G) being disconnected, every induced subgraph H must
ontain such a vertex v with some colour unused by α on N[v]∩V (H). Thus, it is natural to consider
he degeneracy of G, denoted degen(G).

Our examples of frozen colourings above show that, if we aim to have Ck(G) connected, then in
eneral it is not enough to require k ≥ degen(G) + 1. However, an easy inductive argument shows
hat a slightly stronger condition is sufficient: If k ≥ degen(G)+ 2, then Ck(G) is connected. (Earlier,
errum [3] proved that k ≥ ∆(G) + 2 suffices, but the arguments are similar.) This inductive proof
nly yields that diam Ck(G) ≤ 2|V (G)|. But Cereceda [4, Conjecture 5.21] conjectured something much
tronger.

ereceda’s Conjecture. For an n-vertex graph G with k ≥ degen(G) + 2, the diameter of Ck(G) is
O(n2).

Bousquet and Heinrich [5] proved that diam Ck(G) = Od(ndegen(G)+1), which is the current best
nown bound. When k ≥ ∆(G) + 2, Cereceda [4, Proposition 5.23] proved that diam Ck(G) =

(n∆) = O(n2). In particular, Cereceda’s conjecture is true for regular graphs. But, as we show
ere, if k ≥ ∆(G)+ 2, then in fact we have the stronger bound diam Ck(G) ≤ 2n, and we conjecture
iam C (G) ≤ ⌊3n/2⌋.
k
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A folklorish result observes that diam Ck(G) = O(n) when k is large relative to ∆(G) (for example,
ee [6, Section 3.1]). But until now, it seems that no one has investigated exact values of the diameter
say, when k ≥ ∆(G)). This is the main goal of our paper. Before stating our two main conjectures,
nd our results supporting them, we present an easy lower bound on Ck(G) in terms of the matching
umber µ(G).

roposition 1. For a graph G, if k ≥ 2∆(G), then diam Ck(G) ≥ n(G) + µ(G).

roof. Let M be a maximum matching in G. Form Ĝ from G as follows. If vw, xy ∈ M and wx ∈ E(G),
hen add vy to Ĝ. Note that ∆(̂G) ≤ 2∆(G) − 1. So χ (̂G) ≤ 2∆(G). Let α be a 2∆(G)-colouring of
. Form β from α by swapping colours on endpoints of each edge in M and, for each v ∈ V (G)
ot saturated by M , picking β(v) outside of {α(v)} ∪

⋃
w∈N(v) β(w). To recolour G from α to β ,

very vertex must be recoloured. Further, for each edge e ∈ M , the first endpoint v of e to be
ecoloured must initially receive a colour other than β(v), so must be recoloured at least twice.
hus, diam Ck(G) ≥ n(G) + µ(G), as desired. □

At the end of Section 2, we mention various special cases in which the hypothesis of Proposition 1
an be weakened. We pose it as an open question whether the bound in Proposition 1 holds for all
≥ ∆(G) + 2.
We study this reconfiguration problem in the more general contexts of list colouring and

orrespondence colouring, both of which we define in Section 2. These more general contexts offer
he added advantage of enabling us to naturally prescribe fewer allowed colours for vertices of
ower degree. Analogous to Ck(G), for a graph G and a list-assignment L or correspondence cover
L,H) for G, we define the L-reconfiguration graph CL(G) or (L,H)-reconfiguration graph C(L,H)(G) of
. Generalising our constructions of frozen k-colourings above, it is easy to show that CL(G) and
(L,H)(G) can contain frozen L-colourings (and thus be disconnected) if we require only that all
∈ V (G) satisfy |L(v)| = d(v) + 1. Thus, we adopt a slightly stronger hypothesis: all v ∈ V (G)

atisfy |L(v)| ≥ d(v) + 2. Now we can state our two main conjectures.

onjecture 1 (List Colouring Reconfiguration Conjecture). For a graph G, if L is a list-assignment such
hat |L(v)| ≥ d(v) + 2 for every v ∈ V (G), then diam CL(G) ≤ n(G) + µ(G).

onjecture 2 (Correspondence Colouring Reconfiguration Conjecture). For a graph G, if (L,H) is a
orrespondence cover such that |L(v)| ≥ d(v)+2 for every v ∈ V (G), then diam C(L,H)(G) ≤ n(G)+τ (G).

Here τ (G) denotes the vertex cover number of G. For brevity, we often call these conjectures the
ist Conjecture and the Correspondence Conjecture. Our aim in this paper is to provide significant
vidence for both conjectures. Due to Proposition 1, the List Conjecture is best possible, when the
ists are large enough. We will soon give easy constructions showing that both conjectures are best
ossible whenever all v satisfy |L(v)| ≥ d(v) + 2. But we defer these constructions until Section 2,
here we formally define list and correspondence colourings.

roposition 2. For every graph G (i) there exists a list-assignment L such that |L(v)| = d(v) + 2 for
ll v for which diam CL(G) = n(G) + µ(G) and (ii) there exists a correspondence cover (L,H) such that
L(v)| = d(v) + 2 for all v for which diam C(L,H)(G) = n(G) + τ (G).

For both the List Conjecture and the Correspondence Conjecture, it is trivial to construct exam-
les that need at least n(G) recolourings. We simply require that α(v) ̸= β(v) for all n(G) vertices v.
o we view these conjectured upper bounds as consisting of a ‘‘trivial’’ portion, n(G) recolourings,
nd a ‘‘non-trivial’’ portion, µ(G) or τ (G) recolourings. We give two partial results towards each
onjecture. Our first result proves both conjectures up to a factor of 2 on the non-trivial portions
f these upper bounds.

heorem 1. (i) For every graph G and list-assignment L with |L(v)| ≥ d(v)+2 for all v ∈ V (G) we have
iam CL(G) ≤ n(G)+2µ(G). (ii) For every graph G and correspondence cover (L,H) with |L(v)| ≥ d(v)+2
or all v ∈ V (G) we have diam C (G) ≤ n(G) + 2τ (G).
(L,H)

3
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Bousquet, Feuilloley, Heinrich, and Rabie [7, following Question 1.3] asked about the diameter
f Ck(G) when k = ∆(G) + 2. In this case, a result of Bonamy and Bousquet [8, Theorem 1] implies,

for an n-vertex graph G and k = ∆(G) + 2, that diam Ck(G) = O(∆(G)n). The authors of [7] asked
hether it is possible to remove this dependency on ∆(G). We answer their question affirmatively.
lways µ(G) ≤ n(G)/2, so Theorem 1(i) implies that diam Ck(G) ≤ 2n(G) when k = ∆(G) + 2.
To complement Theorem 1, we prove both conjectured upper bounds when |L(v)| is sufficiently

arge.

heorem 2. (i) For every graph G and list-assignment L with |L(v)| ≥ 2d(v)+1 for all v ∈ V (G) we have
iam CL(G) ≤ n(G)+µ(G). (ii) For every graph G and correspondence cover (L,H) with |L(v)| ≥ 2d(v)+1
or all v ∈ V (G) we have diam C(L,H)(G) ≤ n(G) + τ (G).

In Section 2 we present definitions and notation, as well as some easy lower bounds on diameters
f reconfiguration graphs. In Section 3 we prove the list colouring portions of Theorems 1 and 2; and
n Section 4 we prove the correspondence colouring portions. In Section 5 we prove more precise
esults when G is a tree (in this case the correspondence problem is identical to the list problem).

In Sections 6 and 7, we conclude by proving one or both conjectures exactly for various
raph classes, such as complete bipartite graphs, subcubic graphs, cactuses, and graphs with low
aximum average degree. These graphs are all sparse or have low chromatic number. On the other
nd of the sparsity spectrum, the List Conjecture is also true for all complete graphs, due to an
rgument of Bonamy and Bousquet [8, Lemma 5].

. Definitions, notation, and easy lower bounds

For a graph G = (V , E), we denote its order by n(G). A matching is a set of vertex disjoint edges in
. A matching M of G is perfect if it saturates every vertex of G, and M is near-perfect if it saturates
very vertex of G but one. A vertex cover S is a vertex subset such that every edge of G has at least
ne endpoint in S. The matching number µ(G) of G is the size of a largest matching. The vertex
over number τ (G) of G is the size of a smallest vertex cover. (Recall that if G is bipartite, then
(G) = τ (G).)
The distance dist(v, w) between two vertices v, w ∈ V (G) is the length of a shortest path

n G between v and w. The eccentricity of a vertex v, denoted ecc(v), is maxw∈V dist(v, w). The
iameter diam(G) of G is maxv,w∈V dist(v, w), which is equal to maxv∈V ecc(v), while the radius
ad(G) of G is minv∈V ecc(v). A diameter can also refer to a shortest path between v and w for
hich dist(v, w) = diam(G). A graph G is k-degenerate if every non-empty subgraph H contains a
ertex v such that dH (v) ≤ k. The degeneracy of G is the minimum k such that G is k-degenerate.
A directed graph or digraph D = (V , A) is analogous to a graph, except that each edge is directed.

he directed edges in A are ordered pairs of vertices, and are called arcs.

efinition 3. For a digraph D, the vertex cover number τ (D) and matching number µ(D) are
efined to be τ (HD) and µ(HD), where HD is the undirected graph with vertex set V (D) whose edges
orrespond to the bidirected edges in D.

Colourings are mappings from V to N, and we denote them by greek letters such as α, β , and γ . A
olouring α of G is proper if for every edge vw ∈ E(G) we have α(v) ̸= α(w). Let [k] := {1, 2, . . . , k}.
k-colouring is a colouring using at most k colours, which are generally from the set [k]. The

hromatic number χ (G) of G is the smallest k such that G has a proper k-colouring.
A list-assignment L, for a graph G, assigns to each v ∈ V (G) a set L(v) of natural numbers (‘‘list’’

f allowable colours). A proper L-colouring is a proper colouring α : V (G) → N such that α(v) ∈ L(v)
or every v ∈ V (G). The list chromatic number (or choice number) χℓ(G) is the least k such that G
dmits a proper L-colouring whenever every v ∈ V (G) satisfies |L(v)| ≥ k.
A correspondence cover (L,H) for a graph G assigns to each vertex v ∈ V (G) a set L(v) of colours

(v, 1), . . . , (v, f (v))} and to each edge vw ∈ E(G) a matching between L(v) and L(w). (In this
aper, we typically consider either f (v) = d(v) + 2 or f (v) = 2d(v) + 1 for all v ∈ V (G).) Given
correspondence cover (L,H), an (L,H)-colouring of G is a function α such that α ∈ L(v) for all
4
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v and whenever vw ∈ E(G) the edge α(v)α(w) is not an edge of the matching assigned to vw.
ere H denotes the union of the matchings assigned to all edges of G. (It is easy to check that
orrespondence colouring generalises list colouring.)
The reconfiguration graph Ck(G) has as its vertices the proper k-colourings of G, and two k-

olourings α and β are adjacent in Ck(G) if they differ on exactly one vertex of G. In particular,
f k < χ (G), then Ck(G) has no vertices. (The reconfiguration graph was first defined in [9], where
t was called the k-colour graph.) The distance between k-colourings α and β is at most j if we
an form β , starting from α, by recolouring at most j vertices, one at a time, so that after each
ecolouring the current k-colouring of G is proper. Similarly, for a graph G and list-assignment L,
he reconfiguration graph CL(G), or reconfiguration graph of the L-colourings of G, is the graph whose
ertices are the proper L-colourings of G. Again, two L-colourings α and β are adjacent in CL(G) if
hey differ on exactly one vertex. This extension was first defined in [10]. For a correspondence cover
L,H), the reconfiguration graph C(L,H)(G) is defined analogously; its vertices are the correspondence
olourings of G and two vertices of C(L,H)(G) are adjacent precisely when their colourings differ on
xactly one vertex of G. We will also use the associated colour-shift digraph for a graph G and two
roper colourings, which is defined as follows.

efinition 4. Let G = (V , E) be a graph and α and β be two proper colourings of G. We define an
ssociated colour-shift digraph Dα,β = (V , A) where −→vw ∈ A if and only if vw ∈ E and β(v) = α(w).

.1. Improved lower bounds

In this subsection we prove lower bounds which show that our upper bounds in the rest of the
aper are sharp or nearly sharp. These will not be explicitly needed elsewhere, so the impatient
eader should feel free to skip to Section 3, where we prove Theorems 1(i) and 2(i).

bservation 5. If G is a graph with list colourings α and β , then dist(α, β) ≥ µ(Dα,β ) +

v∈V 1α(v)̸=β(v).

roof. Whenever α(v) ̸= β(v), vertex v must be recoloured. Further, if v and w are neighbours for
hich α(v) = β(w) and α(w) = β(v), then we cannot recolour both v and w only once, since after
very recolouring step the resulting colouring must be proper. So at least

∑
v∈V 1α(v)̸=β(v) vertices

ust be recoloured, and at least µ(Dα,β ) vertices must be recoloured at least twice. □

Does the lower bound in Observation 5 always hold with equality? Our next example shows that
t does not; see Fig. 1. Specifically, this example exhibits, for the 4-cycle, colourings α and β such
hat µ(Dα,β ) < µ(G) but still dist(α, β) = n(G) + µ(G).

xample 6. Let G = C4 and denote V (G) by [4]. If α(i) = i and β(i) ≡ i+ 1 (mod 4) and the colour
et is precisely [4], then transforming α to β uses at least 6 recolourings, i.e. dist(α, β) = 6. Part of
his reconfiguration graph is shown in Fig. 1.

roof. Starting from α, each vertex i has a single colour with which it can be recoloured. But each
ossible recolouring creates a colouring α′ for which Observation 5 gives dist(α′, β) ≥ 5. □

Next we present the (previously promised) proof of Example 6. For easy reference, we restate it.

roposition 2. For every graph G (i) there exists a list-assignment L such that |L(v)| = d(v)+2 for
ll v for which diam CL(G) = n(G) + µ(G) and (ii) there exists a correspondence cover (L,H) such
hat |L(v)| = d(v) + 2 for all v for which diam C(L,H)(G) = n(G) + τ (G).

roof. For a graph G, fix a maximum matching M . Assign to each vertex v a list of d(v)+ 2 colours
uch that |L(v) ∩ L(w)| = 2 if vw ∈ M and otherwise |L(v) ∩ L(w)| = 0. Pick α and β such that for

ach vw ∈ M , we have α(v) = β(w) and α(w) = β(v), and for each v ∈ V (G) we have α(v) ̸= β(v).

5
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Fig. 1. Part of the reconfiguration graph C4(C4).

he lower bound holds by Observation 5. The upper bound is trivial, since L(x) ∩ L(y) = ∅ for all
y ∈ E(G) \ M . This proves (i).
Let (L,H) be a correspondence cover of G such that L(v) = {(v, 1) . . . (v, d(v) + 2)} for every

∈ V (G). For every vw ∈ E(G), let the matching (from H) consist of the two edges (v, 1)(w, 2) and
v, 2)(w, 1); otherwise, (v, i) and (w, j) are unmatched. Let α(v) := (v, 1) and β(v) := (v, 2) for all
∈ V (G). Starting from α, we can recolour a vertex v with β(v) only if all neighbours of v have

lready been recoloured. Thus, the set of vertices recoloured only once must be an independent set;
quivalently, the set of vertices recoloured at least twice must be a vertex cover. So we must use at
east n(G)+ τ (G) recolourings, which proves the lower bound. For the upper bound, fix a minimum
ertex cover S. First recolour each v ∈ S with (v, 3); afterward, recolour each vertex with (v, 2), first
he vertices in V (G)\S and then those in S. So n(G) + τ (G) recolourings suffice. This proves (ii). □

It is helpful to note that the proof of Example 6 actually works (for both list colouring and
orrespondence colouring) whenever all v satisfy |L(v)| ≥ 3.
Clearly, the graph Ĝ constructed in Proposition 1 depends on our choice of a perfect matching M .

t is interesting to note that some choices of M work quite well, while others work rather poorly.

xample 7. Fig. 2 shows a graph G built from two cliques Kp and a complete bipartite graph Kp,p,
ith parts U and W , by adding a perfect matching M between one copy of Kp and the vertices of
and a perfect matching between W and the other copy of Kp. Now χ (̂G) = 2p if we choose our

erfect matching to be M . If p is even, then we can instead choose a perfect matching M ′ that is
he disjoint union of perfect matchings in the two copies of Kp and in the Kp,p so that the resulting
instead satisfies χ (̂G) = p + 2.

Although Example 7 implies that our choice of M can effect χ (̂G) dramatically, for many graphs,
ny choice of M is fine. To conclude this section, we present various cases in which (for all choices
f M) we can weaken the hypothesis of Proposition 1.

roposition 3. For a graph G and positive integer k we have

diam Ck(G) ≥ n(G) + µ(G)

henever (a) χ (̂G) ≤ k − 1 or (b) χ (̂G) ≤ k and k ≥ ∆(G) + 2, where Ĝ is as in Proposition 1. In
articular, this is true in the following cases.

(1) 1 + χ (G)(χ (G) − 1) ≤ k (in particular, if G is bipartite and k ≥ 3).
(2) ∆(G) = 3 and k ≥ ∆(G) + 2 = 5.
6
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Fig. 2. A graph G (shown on both left and right) consisting of a complete bipartite graph Kp,p in the centre, two copies
f Kp on the sides, and a matching from each copy of Kp to one part of Kp,p . The left and right figures specify different
erfect matchings M (in bold). On the left, χ (̂G) ≥ ω(̂G) = |V (Kp,p)| = 2p = 2∆(G) − 2. On the right, ω(̂G) = ω(G) = p,
nd in fact χ (̂G) ≤ p+ 2 = ∆(G)+ 1. (We use colours 1, . . . , p on each clique and colours p+ 1 and p+ 2 in the centre.)

(3) χ (G) ≤ 3 and k ≥ ∆(G) + 2 (in particular, if G is outerplanar and k ≥ ∆(G) + 2).
(4) k ≥ ∆(G)+3 and G is triangle-free, if Reed’s Conjecture2 holds for every graph Ĝ with ω(̂G) ≤ 5.
(5) k ≥ ∆(G) + 2 and ∆(G) > f (ω(G)) for some function f .

Proof. Recall the definition of Ĝ from Proposition 1. Let M be a maximum matching in G. Form
G from G as follows. If vw, xy ∈ M and wx ∈ E(G), then add vy to Ĝ. To prove each case of the
proposition, we construct the graph Ĝ, let α be a χ (̂G)-colouring of Ĝ (which is also a χ (̂G)-colouring
of G), and form a k-colouring β from α by swapping the colours on the endpoints of each edge e
n the specified maximum matching M; for each v not saturated by M , we choose β(v) to avoid
α(v) ∪

⋃
x∈N(v) β(x). The latter is possible because we assumed that k is bounded from below by

χ (̂G) + 1 or by ∆(G) + 2. By Observation 5, we have dist(α, β) ≥ µ(Dα,β ) +
∑

v∈V 1α(v)̸=β(v) =

µ(G)+ n(G). Note that ∆(̂G) ≤ 2∆(G)− 1. So χ (̂G) ≤ 1+∆(̂G) ≤ 2∆(G). Now we show that in each
case listed above we have χ (̂G) ≤ k or (in the first case) χ (̂G) ≤ k − 1.

(1) Fix a χ (G)-colouring α of G. We assume that M is a perfect matching; if not, then we add a
pendent edge at each vertex that is unsaturated by M and add all these new edges to M . To
colour Ĝ, we give each vertex v the colour (i, j), where α(v) = i, α(w) = j, and vw ∈ M . It is
easy to check that the resulting colouring of Ĝ is proper.

(2) Suppose that ∆(G) = 3. As noted above, we have ∆(̂G) ≤ 2∆(G) − 1 = 5. If ∆(̂G) ≤ 4,
then χ (̂G) ≤ 5 as desired. So assume instead that ∆(̂G) = 5. By Brooks’ Theorem it suffices
to show that no component of Ĝ is K6. Suppose, to the contrary, that there exists S ⊆ V (G)
such that Ĝ[S] = K6. It is easy to check that G[S] must be 3-regular, and every vertex of
S must be saturated by M . Observe that if two edges of M , say v1v2, v3v4 lie on a 4-cycle
in G, then dĜ(vi) ≤ 4, for each i ∈ {1, 2, 3, 4}. Now we need only to check that such a
configuration occurs for every 3-regular graph G on 6 vertices and every perfect matching
M . This is straightforward to verify: G − M is either a 6-cycle or two 3-cycles; in the first
case, M can be added in two (non-isomorphic) ways and in the second, M can be added in
only one way.

(3) If ∆(G) ≥ 4, then we are done by condition (1). If ∆(G) = 3, then we are done by condition
(2). If ∆(G) = 2, then we are done by Proposition 1. And if ∆(G) ≤ 1, then we are done
trivially.

(4) We show that if G is triangle-free, then ω(̂G) ≤ 5. Suppose, to the contrary, that ω(̂G) ≥ 6.
Consider S ⊆ V (G) such that Ĝ[S] = K6, and colour each edge of Ĝ[S] with 1 if it appears in

2 Recall that Reed conjectured that χ (G) ≤ ⌈(∆(G) + 1 + ω(G))/2⌉ for every graph G.
7



S. Cambie, W. Cames van Batenburg and D.W. Cranston European Journal of Combinatorics 115 (2024) 103798

Q

d
c

G and with 2 otherwise. Since G is triangle-free, Ĝ[S] has no triangle coloured 1. Let R(t, t)
denote the diagonal Ramsey number for cliques of order t . Since R(3, 3) = 6, we must have
a triangle in Ĝ[S] that is coloured 2; denote its vertices by v, w, x. Let vv′, ww′, xx′ denote
the edges of M incident with v, w, x. Since vw, vx, wx ∈ E (̂G) \ E(G), we conclude that
v′w′, v′x′, w′x′

∈ E(G). This contradicts that G is triangle-free. Hence, ω(̂G) ≤ 5, as claimed.
Finally, by Reed’s Conjecture, χ (̂G) ≤

⌈
(∆(̂G) + ω(̂G) + 1)/2

⌉
≤ ⌈(2∆(G) − 1 + 5 + 1)/2⌉ ≤

∆(G) + 3 ≤ k.
(5) Let t be a positive integer and consider any graph G with ω(G) = t . Note that Ĝ can be

decomposed into two (edge-disjoint) copies of G; here Ĝ is formed from the two copies of G
by identifying, for each edge vw ∈ M , the instance of v in one copy of G with the instance of
w in the other copy. This implies that ω(̂G) < R(t+1, t+1). We also know that ∆(̂G) ≤ 2∆(G).
Now by e.g. [11, Theorem 2] we have

χ (̂G) ≤ 200R(t + 1, t + 1)
2∆(G) ln ln(2∆(G))

ln(2∆(G))
.

This is smaller than ∆(G) + 2 whenever ∆(G) is sufficiently large. □

We also consider the graph G̃ formed from G by contracting each edge of a maximum matching
M .

Proposition 4. For a graph G and positive integer k we have

diam Ck(G) ≥ n(G) + µ(G)

whenever k ≥ 2χ (G̃) for some maximum matching of G. In particular, this is

(1) true a.a.s. for Gn,p, for fixed p ∈ (0, 1), and k ≥ ∆(Gn,p) + 2.
(2) true if G is Kt+1-minor free and k ≥ 2t, provided Hadwiger’s Conjecture3 holds for Kt+1-minor

free graphs. The latter is true for t ≤ 5.

Proof. Let α̃ be a χ (G̃)-colouring of G̃. We construct a 2χ (G̃)-colouring α of G such that if v ∈ V (G̃)
and v arises from contracting edge wx ∈ M and α̃(v) = i, then {α(w), α(x)} = {2i− 1, 2i}; if v does
not arise from contracting an edge, then we choose α(v) = 2α̃(v) = 2i. Form β from α by swapping
the colours on the endpoints of each edge of M and letting β(v) := α(v) − 1 = 2i − 1 for each
v ∈ V (G)\M .

Hence diam Ck(G) ≥ dist(α, β) ≥ n(G) + µ(G) by Observation 5. We now prove that in the two
mentioned cases, we (a.a.s.) have k ≥ 2χ (G̃), regardless of the maximum matching of G we choose
to form G̃.

(1) Let G := Gn,p. By [12], the Hadwiger number h (or contraction clique number) of G for fixed
p ∈ (0, 1) is Θ

(
n

√
ln n

)
a.a.s., so G is Kh+1-minor free. Note that G̃ is also Kh+1-minor free. By

recent progress towards Hadwiger’s conjecture, culminating in [13], this implies that (still
a.a.s.) χ (G̃) = O(h ln ln h) = O

(
n ln ln n
√
ln n

)
. So χ (G̃) is a.a.s. smaller than ∆(Gn,p) + 2, which is

np(1 + o(1)) = Θ(n).
(2) Note that G̃ is also Kt+1-minor free. So, by assumption, χ (G̃) ≤ t . □

uestion 1. Is it true, for every graph G and every k ≥ ∆(G) + 2, that diam Ck(G) ≥ n(G) + µ(G)?

If the answer to this question is yes, then the List Conjecture (if true) would imply that
iam Ck(G) = n(G) + µ(G) for every graph G and every k ≥ ∆(G) + 2. In particular, this would
onstitute a precise version for Cereceda’s Conjecture in the case of regular graphs.

3 Recall that Hadwiger conjectured that χ (G) ≤ t for every graph G with no K -minor.
t+1

8
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3. Proving the main results for lists

In this section, we prove the list colouring portions of our main results: Theorems 1(i) and 2(i).
ecall that a graph G is factor-critical if |V (G)| is odd and G − v has a perfect matching for
ach v ∈ V (G). Gallai showed that if every vertex is unsaturated by some maximum matching,

i.e., µ(G − v) = µ(G) for every vertex v, then G is factor-critical. So, in each proof we begin with
a lemma to handle factor-critical graphs, and thereafter proceed to the general case. The following
lemma serves as the base case in an inductive proof of Theorem 1(i). (We will only need it when G
is factor-critical, but we prove it for all G.)

Lemma 8. Let G be graph and let L be a list-assignment for G such that |L(v)| ≥ d(v) + 2 for all
∈ V (G). If α and β are L-colourings of G, then we can recolour G from α to β in at most 2n(G) − 1

teps.

roof. We use induction on |β(V (G))|. The case |β(V (G))| = 1, is trivial, since then G is an
ndependent set; starting from α, we can recolour each vertex v to β(v). We use at most n(G)
ecolouring steps, which suffices since n(G) ≤ 2n(G) − 1.

Now assume |β(V (G))| ≥ 2. For each colour c , let α−1(c) := {v ∈ V (G) s.t. α(v) = c} and
−1(c) := {v ∈ V (G) s.t. β(v) = c}. Since

∑
c∈α(V (G)) |α

−1(c)| = n(G) =
∑

c∈β(V (G)) |β
−1(c)|, there

xists c such that |α−1(c)| ≤ |β−1(c)|. Starting from α, for each v ∈ α−1(c), recolour v to avoid
olour c . Now for each v ∈ β−1(c), recolour v with c. After at most 2|β−1(c)| steps, we have |β−1(c)|
ore vertices that are coloured to agree with β . Now we delete these |β−1(c)| vertices, and delete

he colour c from L(v) whenever v had some neighbours in β−1(c), and finish by induction. □

orollary 9. For every graph G and every k ≥ ∆(G) + 2, the diameter of Ck(G) is at most 2n(G) − 1.

Now we prove Theorem 1(i). For easy reference, we restate it below.

heorem 10. Let G be an n-vertex graph and L be a list-assignment with |L(v)| ≥ d(v) + 2 for all
∈ V (G). If α and β are L-colourings of G, then we can recolour G from α to β in at most n(G)+2µ(G)

teps.

roof. We use induction on n(G). We assume G is connected; otherwise, we handle each component
eparately. (This suffices because, for a graph G with components G1, . . . ,Gs, we have n(G) =

s
i=1 n(Gi) and µ(G) =

∑s
i=1 µ(Gi).) If µ(G − v) = µ(G) for all v ∈ V (G), then G is factor-critical.

his is an easy result of Gallai, but also follows from Theorem 12(2). Now n(G)+2µ(G) = 2n(G)−1,
o we are done by Lemma 8.
Assume instead that some vertex v is saturated by every maximum matching. Note that 2d(v) <

|L(v)|. By Pigeonhole there exists c ∈ L(v) such that |β−1(c) ∩ N(v)| + |α−1(c) ∩ N(v)| ≤ 1. (We
andle the case when equality holds, since the other case is easier.) Assume there exists w ∈ N(v)
uch that α(w) = c and c /∈ ∪x∈N(v)\{w}{α(x), β(x)}. (If instead β(w) = c , then we swap the roles of
and β .) Form α̃ from α by recolouring w from L(w) \ (α(N(w)) ∪ {c}) and recolouring v with c.

et G′
:= G − v. Let L′(x) := L(x) − c for all x ∈ N(v) and L′(x) := L(x) for all other x ∈ V (G′). Denote

he restrictions to G′ of α̃ and β by α̃′ and β ′. By induction, we can recolour G′ from α̃′ to β ′ in at
ost n(G′) + 2µ(G′) steps. After this, we can finish by recolouring v with β(v). Thus, distL(α, β) ≤

+ distL′ (α̃′, β ′)+ 1 ≤ 2+ n(G′)+ 2µ(G′)+ 1 = 2+ n(G)− 1+ 2(µ(G)− 1)+ 1 = n(G)+ 2µ(G). □

To prove Theorem 2(i), we will use the following lemma to handle the case when G is factor-
ritical.

emma 11. Let G be a graph and let L be a list-assignment for G such that |L(v)| ≥ 2d(v) + 1 for all
∈ V (G). If α and β are L-colourings of G, then we can recolour G from α to β in at most

⌊ 3n(G)
2

⌋
steps.

roof. Let α and β be arbitrary L-colourings of G. (Recall that all colours are positive integers.) Let V1
and V be the subsets of V (G), respectively, for which α(v) > β(v) and α(v) < β(v). Let n := |V |
2 1 1

9
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and n2 := |V2|. Since n1 + n2 ≤ n(G), we assume by symmetry that n1 ≤
n(G)
2 ; otherwise, we

nterchange α and β . We show how to recolour G from α to β using at most n(G)+n1 ≤ n(G)+
⌊ n(G)

2

⌋
teps.
First, iteratively for every v ∈ V1 we recolour v from L(v) \ ∪w∈N(v){β(w), γ (w)}, where γ

s the current colouring of G. By definition this recolouring is proper (we actually do not need
o recolour v if γ (v) ̸= β(w) for all w ∈ N(v)). Next, iteratively for j from max{∪v∈V L(v)} to
in{∪v∈V L(v)}, we recolour with j all vertices v ∈ V (G) for which β(v) = j. In these steps, we
nly have proper colourings, as we will now show. Consider a neighbour w of v. If w has already
een recoloured with some γ (w), then γ (w) ̸= β(v), by construction. If w has not been recoloured,
hen α(w) ≤ β(w) < β(v). □

The following classical result is helpful in our proof of Theorem 2(i).

heorem 12 (Edmonds–Gallai Decomposition Theorem). For a graph G, let

V1(G) := {v ∈ V (G) such that some maximum matching avoids v},
V2(G) := {v ∈ V (G) such that v has a neighbour in V1(G), but v /∈ V1(G)},
V3(G) := V (G) \ (V1(G) ∪ V2(G)).

Now the following statements hold.4

(1) The subgraph induced by V3(G) has a perfect matching.
(2) The components of the subgraph induced by V1(G) are factor-critical.
(3) If M is any maximum matching, then M contains a perfect matching of each component of V3(G),

and M contains a near-perfect matching of each component of V1(G), and M matches all vertices
of V2(G) with vertices in distinct components of V1(G).

(4) µ(G) =
1
2 (|V (G)| − c(V1(G)) + |V2(G)|), where c(V1(G)) denotes the number of components of

the graph spanned by V1(G).

Now we prove Theorem 2(i). For easy reference, we restate it below.

heorem 13. Let G be a graph and L be a list-assignment for G with |L(v)| ≥ 2d(v)+1 for all v ∈ V (G).
f α and β are L-colourings of G, then we can recolour G from α to β in at most n(G) + µ(G) steps.

roof. We refer to V1(G), V2(G), and V3(G), as defined in Theorem 12. Starting from α, recolour each
ertex v ∈ V2(G) to avoid each colour used currently on N(v) and also to avoid each colour used
n N(v) in β; call the resulting colouring α̃(G). Let G′

:= G − V2(G). For each v ∈ V (G′), let L′(v) :=

(v) \ (∪w∈N(v)∩V2(G)α̃(w)). Note that |L′(v)| ≥ 2dG′ (v)+ 1. Thus, for each component H of G′, we can
ecolour H from α to β in at most ⌊3n(H)/2⌋ steps, by Lemma 11. Finally, we recolour each vertex of
2(G) to its colouring β . Let comp(G′) denote the set of components of G′. The number of recolouring
teps used is at most 2|V2(G)|+

∑
H∈comp(G′)⌊3n(H)/2⌋ = 2|V2(G)|+ 3

2 (|V (G)|−|V2(G)|)− 1
2 c(V1(G)) =

V (G)| + 1
2 (|V (G)| − c(V1(G))+ |V2(G)|) = |V (G)| + µ(G). The final equality uses Theorem 12(4). The

first equality uses that the vertices of a component H ∈ comp(G′) are contained either in V1(G) or
in V3(G). If V (H) ⊆ V3(G) then n(H) is even by Theorem 12(3). On the other hand, if V (H) ⊆ V1(G)
then n(H) is odd by Theorem 12(2). □

By the comment after Example 6, Theorem 13 is sharp. For (non-list) colouring, we get the
following.

Corollary 14. For every graph G and every k ≥ 2∆(G) + 1, we have diam Ck(G) = n(G) + µ(G).

roof. The upper and lower bounds follow, respectively, from Theorem 13 and Proposition 1. □

4 We prefer the names V1(G), V2(G), V3(G) over the standard terminology D(G), A(G), and C(G), since the latter terms
conflict with our use of D = (V , A) for a digraph D with vertex set V and arc set A.
10
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4. Proving the main results for correspondences

In this section, we prove the correspondence colouring portions of our main results: Theo-
ems 1(ii) and 2(ii).

heorem 15. Let G be a graph and (L,H) be a correspondence cover with |L(v)| ≥ 2d(v) + 1 for
ll v ∈ V (G). If α and β are (L,H)-colourings of G, then G can be recoloured from α to β in at most
(G) + τ (G) steps.

roof. Let S be a minimum vertex cover. For every vertex v ∈ S, we recolour v with a colour
hat, for every w ∈ N(v), conflicts (under cover (L,H)) with neither the current colour γ (w) nor
he final colour β(w). This is possible because |L(v)| ≥ 2d(v) + 1. Now we recolour every vertex
∈ V (G)\S with β(v) and then do this also for every vertex in S. Note that we use at most n(G)+τ (G)
ecolourings. □

heorem 16. Let G be a graph and (L,H) be a correspondence cover for G such that |L(v)| ≥ d(v)+ 2
or all v ∈ V (G). If α and β are (L,H)-colourings of G, then we can recolour G from α to β in at most
(G) + 2τ (G) steps.

roof. We use induction on τ (G). If τ (G) = 0, i.e., G is an independent set, then we simply recolour
very vertex v to β(v). So assume the theorem is true for all graphs G′ with 0 ≤ τ (G′) < τ (G).
Let S be a minimum vertex cover of G and pick v ∈ S. Consider the union over all w ∈ N(v) of the

dges in H from α(w) and β(w) to L(v). By Pigeonhole, since 2d(v) < 2|L(v)|, some colour c ∈ L(v)
as at most one incident edge in this union. (We handle the case when c has exactly one incident
dge, since the other case is easier.) Assume there exists w0 ∈ N(v) such that α(w0) is matched to
and no other α(w) or β(w) is matched to c. (If instead β(w0) is matched to c , then we swap the
oles of α and β .) Form α̃ from α by first recolouring w0 with a colour different from α(w0), that
till gives a proper (L,H)-colouring, and afterward recolouring v with c . Let G′

:= G − v. For every
∈ N(v), remove from L(w) the colour c ′ matched with c; call the resulting correspondence cover

L′,H ′). Denote the restrictions to G′ of α̃ and β by α̃′ and β ′. By induction, since τ (G′) < τ (G),
e can recolour G′ from α̃′ to β ′ in at most n(G′) + 2τ (G′) steps. After this, we can finish by
ecolouring v with β(v). Thus, dist(L,H)(α, β) ≤ 2 + dist(L′,H ′)(α̃′, β ′) + 1 ≤ 2 + n(G′) + 2τ (G′) + 1 =

+ n(G) − 1 + 2(τ (G) − 1) + 1 = n(G) + 2τ (G). This proves the theorem. □

. Distances in reconfiguration graphs of trees

For each tree T , it is straightforward to check that reconfiguration of correspondence colouring
s no harder than reconfiguration of list colouring. Given a tree T and a correspondence cover (L,H),
t is easy to construct a list-assignment L′ for T such that L′-colourings of T are in bijection with
L,H)-colourings of T . We can do this by induction on n(G), by deleting a leaf v and extending the
ist-assignment L′, given by hypothesis, for T − v. So, for simplicity, we phrase all results in this
ection only in terms of list colourings.

heorem 17. Fix a tree T and a list-assignment L with |L(v)| ≥ d(v) + 2 for every v ∈ V (T ). If α and
are proper L-colourings of T , then the distance between α and β in the reconfiguration graph CL(T )

s equal to µ(Dα,β ) +
∑

v∈V 1α(v)̸=β(v).

roof. The lower bound holds by Observation 5. Now we prove that this lower bound is also an
pper bound.
We use induction on n(T ). The base case, n(T ) = 1, is trivial. Assume the theorem is true

henever T has order at most s − 1. We will prove it for an arbitrary tree T on s vertices. If
(v) = β(v) for some v ∈ V (T ), then we use induction on the components of T − v, with α(v)

emoved from the lists of the neighbours of v.

11
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Suppose instead there are neighbours v and w for which −→vw ̸∈ A(Dα,β ). Now T − vw has two
omponents; so let Cv and Cw be the components, respectively, containing v and w. By deleting
(w) from L(v), we can first recolour Cv . Afterward, we delete β(v) from L(w) and recolour Cw .
y using the induction hypothesis (twice), we get the desired upper bound, since µ(Dα,β ) =

µ(Dα,β [Cv]) + µ(Dα,β [Cw]).
In the remaining case, we have two colour classes, say with colours 1 and 2, which need to

be swapped. We pick a smallest vertex cover S, which has size τ (Dα,β ) = µ(Dα,β ). Iteratively, we
ecolour every vertex v in S with a colour different from 1, 2, and all colours used to recolour
eighbours of v in S. Note that v has at most d(v) − 1 neighbours in S, since otherwise S would
ot be a minimal vertex cover. Since |L(v)| ≥ d(v) + 2, we can recolour as desired. Next, for each
∈ V (T ) \ S, we recolour w with β(w). Finally, we recolour each v ∈ S with β(v). This proves the

nduction step, which finishes the proof. □

orollary 18. If T is a tree and L is a list-assignment with |L(v)| ≥ d(v) + 2 for every v ∈ V (T ), then

diam CL(T ) ≤ n(T ) + µ(T ) ≤ ⌊3n(T )/2⌋.

roof. Theorem 17 implies that diam CL(T ) ≤ n(T ) + µ(T ), and the bound µ(T ) ≤ ⌊
n(T )
2 ⌋ holds

trivially, since each edge of a matching saturates two vertices. □

Recall that [k] denotes {1, . . . , k}. Thus, we write [k]-colouring to mean a k-colouring from the
colours [k].

Proposition 5. For every tree T and k ≥ ∆(T ) + 2, we have

diam Ck(T ) = n(T ) + µ(T ) and rad Ck(T ) ≥ n(T ) +

⌈
µ(T )
2

⌉
.

Proof. The inequality diam Ck(T ) ≤ n(T ) + µ(T ) holds by Corollary 18; and this inequality actually
olds with equality, since the two [2]-colourings of T are at distance exactly n(T ) + µ(T ). That
s, diam Ck(T ) = n(T ) + µ(T ). Now we consider rad Ck(T ). If we contract all edges of a maximum
atching M in T , the result is also a tree, T ′. When we 2-colour T ′, one colour is used on at least half
f the contracted edges. Denote the set of these contracted edges by E ′. Note that E ′ is an induced

matching in T . Fix an arbitrary proper k-colouring α of T . Now we construct a proper k-colouring
β of T by swapping the colours on the endpoints of each edge vw ∈ E ′, i.e., let β(v) := α(w) and
β(w) := α(v) for every edge vw ∈ E ′. For every vertex v not belonging to an edge in E ′, choose
a colour in [k] different from the colours already assigned (in β) to neighbours of v and different
from α(v). Now dist(α, β) ≥ n(T ) + |E ′

| ≥ n(T ) +
⌈

µ(T )
2

⌉
by Theorem 17. □

We construct trees T for which certain colourings are more ‘‘central’’ in the reconfiguration graph
han others. That is, we construct trees T for which rad Ck(T ) ̸= diam Ck(T ). We also study the
aximum possible diameter and minimum possible radius of reconfiguration graphs of trees of
iven order, and the maximum possible difference of these quantities.

roposition 6. For every k ≥ 4, the path Pn satisfies

diam Ck(Pn) =

⌊
3n
2

⌋
and rad Ck(Pn) =

⌈
4n − 1

3

⌉
.

urthermore, there exist n-vertex trees T , with maximum degree 3, such that for every k ≥ 5 we have

diam Ck(T ) =

⌊
3n
2

⌋
and rad Ck(T ) =

⌈
5n − 1

4

⌉
.

ll such T maximise, over all n-vertex trees, the difference diam C (T ) − rad C (T ).
k k

12
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Fig. 3. The comb graph T16 with colouring α. The shaded region denotes four edges no two of which, for any colouring
, yield disjoint bidirected edges of Dα,β .

Proof. Consider Pn with vertex set {v1, v2, . . . , vn}. Fix k ≥ 4, and let α and β be the colourings
ith ranges [3] and [2], respectively, such that

α(vi) ≡ i (mod 3) and β(vi) ≡ i (mod 2) ∀i ∈ [n].

Note that ecc(β) = ⌊
3n
2 ⌋ by Theorem 17, since switching colours 1 and 2 in β requires

⌊ 3n
2

⌋
ecolouring steps. Furthermore, Corollary 18 implies that diam Ck(Pn) = ecc(β) = ⌊

3n
2 ⌋. On the other

and, for every proper colouring γ , we know that Dα,γ cannot have a pair of bidirected edges of
he form vivi+1 and vi+2vi+3, since α(vi) = α(vi+3). So µ(Dα,γ ) ≤ ⌈

n−1
3 ⌉; hence, ecc(α) ≤ n+ ⌈

n−1
3 ⌉,

hich implies that rad Ck(Pn) ≤ ⌈
4n−1

3 ⌉.
Next we prove the lower bound on rad Ck(Pn). For every colouring α of Pn, we can choose at

least ⌈
n−1
3 ⌉ disjoint edges such that swapping the colours in α on the endpoints of each edge (and

ossibly recolouring vertices not in any of these edges) yields another proper colouring. To see this,
irst select edge v1v2. Whenever vivi+1 has been selected, there exists j ∈ {i + 3, i + 4} for which
(vi) ̸= α(vj). Now add edge vj−1vj to the set of selected edges. When our selection ends, the set
′ contains at least ⌈

n−1
3 ⌉ edges. We can now construct a [k]-colouring β where β(w) = α(v) and

(v) = α(w) for every edge vw ∈ E ′, and β(v) ̸= α(v) for every v ∈ V (Pn). Theorem 17 gives
ist(α, β) ≥ n + ⌈

n−1
3 ⌉.

Now let Tn be the n-vertex comb graph; see Fig. 3. Here Tn is formed from a path v1v2 . . . vt ,
here t = ⌈

n
2⌉, by adding, for each vi (except vt when n is odd), an additional neighbour wi. Since

(Tn) =
⌊ n

2

⌋
, by Proposition 5 the diameter of Ck(Tn) is ⌊

3n
2 ⌋. Let α be the colouring shown and

escribed in Fig. 3.
For any proper colouring β of Tn, note that µ(Dα,β ) ≤

⌈ n−1
4

⌉
. This holds because, for each

odd i, the subgraph Dα,β [{vi, vi+1, vi+2, wi, wi+1}] contains no two disjoint bidirected edges. Thus,
ecc(α) ≤

⌈ 5n−1
4

⌉
, by Theorem 17. Since µ(Tn) =

⌊ n
2

⌋
, Proposition 5 implies that rad Ck(Tn) =

+⌈⌊n/2⌋ /2⌉ =
⌈ 5n−1

4

⌉
. Thus, diam Ck(Tn)− rad Ck(Tn) =

⌊ 3n
2

⌋
−

⌈ 5n−1
4

⌉
=

⌊ n
4

⌋
. For every n-vertex

ree T , Proposition 5 implies that diam Ck(T )−rad Ck(T ) ≤ (n+µ(T ))−(n+
⌈

µ(T )
2

⌉
) =

⌊
µ(T )
2

⌋
≤

⌊ n
4

⌋
.

hus, Tn maximises this difference. □

For list colourings, the difference diam CL(T ) − rad CL(T ) can be even larger.

roposition 7. For every tree T , there exists a list-assignment L, with |L(v)| ≥ d(v)+2 for all v ∈ V (T ),
uch that diam CL(G) = n(T )+µ(T ) and rad CL(G) = n(T ). These values are, respectively, the maximum
and minimum possible over all such list-assignments L.
13
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Proof. Choose a maximum matching M of T and fix L such that

|L(v) ∩ L(w)| =

{
0, when vw ̸∈ M
2, when vw ∈ M.

et α and β be L-colourings such that, for every edge vw ∈ M , we have α(v) = β(w) and
(w) = β(v). For every vertex v not saturated by M , we pick α(v) and β(v) to be arbitrary
istinct colours in L(v). By Theorem 17, we have dist(α, β) = n(T ) + µ(T ). Corollary 18 implies
hat diam CL(T ) = n(T ) + µ(T ). Further, this diameter is the maximum possible over all such
ist-assignments L.

To show that rad CL(T ) ≤ n(T ), we construct an L-colouring γ such that dist(γ , δ) ≤ n(T ) for
very L-colouring δ. Since |L(v) \

(
∪w∈N(v)L(w)

)
| ≥ 3 − 2 = 1 for every vertex v, we can form an

-colouring γ such that every v ∈ V (T ) satisfies γ (v) /∈ ∪w∈N(v)L(w). For every proper colouring δ,
y our construction of γ , we can recolour δ into γ greedily; hence, dist(δ, γ ) ≤ n(T ).
Now we show that rad CL(T ) ≥ n(T ). For every L-colouring γ , there exists an L-colouring δ such

hat δ(v) ̸= γ (v) for all v. To see this, let L′(v) := L(v)\γ (v). Since |L′(v)| ≥ d(v)+1 for all v, we form
by colouring G greedily (in any order) from L′. Clearly, dist(γ , δ) ≥ n(G). Thus, rad CL(T ) = n(T ). In
act, this lower bound does not depend on the specific choice of L, but only uses that |L(v)| ≥ d(v)+2
or all v. Thus, this radius is the minimum over all such list-assignments L. □

. Proving the list conjecture for complete bipartite graphs and cactuses

A cactus is a connected graph in which each edge lies on at most one cycle. In this section, we
rove the List Conjecture for all complete bipartite graphs and for all cactuses. Both proofs are by
nduction, and rely on the following helpful lemma.

emma 19. Fix a positive integer b. Let G = (V , E) be a graph for which there exists a list-
ssignment L and two proper L-colourings α, β such that |L(v)| ≥ d(v) + b for every v ∈ V (G), and
istL(α, β) > n(G) + µ(G), but, for every proper induced subgraph of G, no such list-assignment exists.
ow for every partition V (G) = V1 ∪ V2 into two non-empty subsets of vertices, Dα,β has at least one
rc from V1 to V2 and at least one arc from V2 to V1, i.e., Dα,β is strongly connected.

roof. Assume the lemma is false; by symmetry, assume Dα,β has no arcs from V1 to V2. Let
1 := G[V1] and G2 := G[V2]. Let γ be the L-colouring where γ (v) := β(v) when v ∈ V1 and
(v) := α(v) when v ∈ V2.
For every v ∈ V1, let L′(v) := L(v)\{α(w) | w ∈ N(v) ∩ V2}. Note that |L′(v)| ≥ dG1 (v) + b. Also

ote that still γ (v) ∈ L′(v) for every v ∈ V1; this is where we use that there is no arc from V1 to
2. Since G1 is a proper induced subgraph of G, by hypothesis diam CL′ (G1) ≤ n(G1) + µ(G1); thus
istL(α, γ ) ≤ n(G1)+µ(G1). Now for every v ∈ V2, let L′(v) := L(v)\{β(w) | w ∈ N(v)∩V1}. Similarly
o before, |L′(v)| ≥ dG2 (v)+ b, so diam CL′ (G2) ≤ n(G2)+µ(G2); thus distL(γ , β) ≤ n(G2)+µ(G2). By
he bounds above and the triangle inequality, we have

distL(α, β) ≤ distL(α, γ ) + distL(γ , β)
≤ n(G1) + µ(G1) + n(G2) + µ(G2)
≤ n(G) + µ(G).

he last step uses that the union of a matching in G1 and a matching in G2 is a matching in G. So G
s not a counterexample, and the lemma is true. □

It is helpful to note that an analogous statement holds for correspondence colouring. In fact, its
roof is nearly identical to that given above. We use this observation in our proof of Theorem 27.
Using Lemma 19, we prove that the List Conjecture holds for all complete bipartite graphs.
heorem 20. The List Conjecture is true for all complete bipartite graphs.

14
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Proof. Suppose the theorem is false and choose a counterexample Kp,q minimising p + q. By
ymmetry, we assume that p ≤ q. Denote the parts of G by U and W , with |U | = p and |W | = q.
By Lemma 19, we have α(U) ⊆ β(W ) and α(W ) ⊆ β(U). By swapping the roles of α and β ,

e also have β(U) ⊆ α(W ) and β(W ) ⊆ α(U); thus, α(U) = β(W ) and α(W ) = β(U). Note that
(U) ∩ β(U) = α(U) ∩ α(W ) = ∅, because the graph is complete bipartite.
Case 1: |W | ≥ |α(U )|+|β(U )|−1. For each u ∈ U , we have |L(u)| ≥ |W |+2 ≥ |α(U)|+|β(U)|+1 =

β(W )| + |α(W )| + 1. First recolour each u ∈ U from L(u) \ (α(W ) ∪ β(W )). Now recolour each
∈ W with β(w). Finally, recolour each u ∈ U with β(u). The number of steps that we use is at
ost 2|U | + |W | = n(G) + µ(G).
Case 2: |W | ≤ |α(U )| + |β(U )| − 2. If |W | ≥ 2|α(U)| and |W | ≥ 2|β(U)|, then 2|W | ≥

|α(U)| + 2|β(U)|, which contradicts the case. So assume, by symmetry, that |W | ≤ 2|β(U)| − 1; if
ot, then simply interchange the roles of α and β . Now, by Pigeonhole, there exists c ∈ β(U) such
hat |α−1(c)| = |α−1(c) ∩ W | ≤ 1. So, recolour w ∈ α−1(c), if such w exists, to avoid α(U) ∪ {c},
nd then recolour every u ∈ β−1(c) with c . Now we delete every u such that β(u) = c , we delete c
rom L(w) for every w ∈ W , and we finish on the resulting smaller graph G2 (with an assignment
f smaller lists) by the minimality of G. In total, the number of recolouring steps we use is at most
α−1(c)|+ |β−1(c)|+ |V (G2)|+µ(G2) ≤ |α−1(c)|+ |β−1(c)|+ (n(G)−|β−1(c)|)+ (µ(G)−|β−1(c)|) ≤

(G) + µ(G). □

Using Lemma 19, we prove that the List Conjecture holds for all cycles.

emma 21. Let G be a cycle v1v2 · · · vn and L be a list-assignment such that, for all vi, we have
L(vi)| ≥ 4. If α and β are proper L-colourings of G, then we can recolour G from α to β in at most
3n/2⌋ steps.

roof. By Lemma 19, with b = 2, if dist(α, β) > ⌊3n/2⌋, then Dα,β is strongly connected. This
mplies that Dα,β contains a directed cycle Cn as a subdigraph. (If Dα,β contains a bidirected path P ,
hen |α(V (P)) ∪ β(V (P))| = 2. So, if P is spanning, then its order must be even, to avoid a conflict
etween the colours of its endpoints. But then Dα,β contains an additional arc, so Dα,β contains a
irected cycle, as claimed.)
If Dα,β is a bidirected cycle, then n must be even, as in the previous paragraph, and 3n

2 recolouring
teps suffice. Suppose instead that Dα,β is precisely a directed cyle. When n = 3, we recolour one
ertex v in a colour absent from α(V (G)) ∪ β(V (G)), recolour the other two vertices in order (to
atch β), and finally recolour v with β(v). When n ≥ 4, we recolour one vertex v in a colour
bsent from α(v) ∪ α(N(v)). Now we can recolour correctly (in order) all vertices of G except for v

nd one of its neighbours. Correctly colouring these final two vertices takes at most 3 recolouring
teps. Now we are done, since 1 + (n − 2) + 3 ≤ ⌊3n/2⌋.
In the remaining case, we have n ≥ 4 and some directed edge is adjacent to a bidirected edge.
ithout loss of generality, we assume −−→v1v2,

−−→v2v3,
−−→v2v1 ∈ A(Dα,β ) but −−→v3v2 /∈ A(Dα,β ). Recolour v1

ith a colour c different from α(v1), α(v2), and α(vn). Now delete c from L(v2) and L(vn), and let
′
:= G − v1. By Theorem 17, we can recolour G′ from α to β (both restricted to G′) using at most

n − 1) +
⌊ n−2

2

⌋
recolouring steps. Here we use that −−→v3v2 is not an arc, so µ(Dα,β [V (G′)]) ≤

⌊ n−2
2

⌋
.

Finally, we recolour v1 with β(v1). □

Using Lemmas 19 and 21, we can prove that the List Conjecture is true for every cactus.

Theorem 22. The List Conjecture is true for every cactus.

Proof. Instead assume the theorem is false. Let G be a counterexample minimising n(G) and let
α and β be L-colourings with dist(α, β) > n(G) + µ(G). Every proper induced subgraph H of G is
disjoint union of cactuses, say H1, . . . ,Hr ; since n(H) =

∑r
i=1 n(Hi) and µ(H) =

∑r
i=1 µ(Hi), the

ist Conjecture must hold for H , by the minimality of G. Lemma 19 implies that Dα,β is strongly
onnected. And Lemma 21 implies that G is not a cycle. The following claim restricts the structure

f G, α, and β .
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Claim 23. If v ∈ V (G) and µ(G−v) = µ(G)−1, then L(v) ⊆ ∪w∈N(v){α(w), β(w)}. In particular, each
lock of G containing v gives rise to exactly two arcs in Dα,β incident to v, and v has no adjacent leaf
n G.

roof. Instead assume there exists c ∈ L(v)\∪w∈N(v){α(w), β(w)}. Recolour v with c , let G′
:= G−v,

et L′(w) := L(w) \ {c} for all w ∈ N(v), and otherwise let L′(w) := L(w). Denote by α′ and β ′ the
estrictions to G′ of α and β . Since G is minimal, we can recolour G′ from α′ to β ′, using L′, in at
ost n(G′) + µ(G′) = n(G) − 1 + µ(G) − 1 recolouring steps. We finish by recolouring v with β(v).
his proves the first statement.
Since Dα,β is strongly connected, each block B of G containing v gives rise to at least two arcs

n Dα,β incident to v, one in each direction. Since G is a cactus, each such B contains at most 2
eighbours of v. So at least half of the neighbours of v are coloured β(v) by α, and also at least half
f the neighbours of v are coloured α(v) by β . Therefore |∪w∈N(v){α(w), β(w)}| ≤ 2 · (d(v)/2+ 1) =

(v) + 2. If any such B is either K2 or gives rise to at least three arcs in Dα,β incident with v, then
∪w∈N(v){α(w), β(w)}| ≤ d(v) + 1 < |L(v)|, which contradicts the first statement. This proves the
econd statement. ⋄

It is easy to check that every neighbour v of a leaf w in G satisfies µ(G − v) = µ(G) − 1. Thus,
laim 23 implies that G has no leaf vertex. This implies that all endblocks of G are cycles. Let Cs be
n endblock. Denote its vertices by w1, . . . , ws, such that ws is the unique cut-vertex in the block.

laim 24. The endblock Cs is not an even cycle.

roof. Assume instead that Cs is an even cycle. It is easy to check that µ(G − wi) = µ(G) − 1
henever i is even. That is, every maximum matching saturates wi whenever i is even. By Claim 23,
very wi is incident in Dα,β to exactly two arcs arising from Cs. Since Dα,β is strongly connected,
his implies that Dα,β [V (Cs)] is a directed cycle; by symmetry, we assume that it is oriented as
−→
sw1,

−−−→w1w2, . . . ,
−−−−→ws−1ws.

We first recolour ws with a colour absent from α(N[ws]) =
(
∪x∈N(ws)α(x)

)
∪ β(ws−1). Now

e recolour each wi to β(wi), with i decreasing from s − 1 to 2. Let G′
:= G − {w1, . . . , ws−1},

et L′(ws) := L(ws) \ {α(w1), β(ws−1)}, and otherwise let L′(v) := L(v). Since G is minimal, we
an recolour G′ from its current colouring to β (restricted to G′) using at most n(G′) + µ(G′) ≤

n(G)− (s−1))+ (µ(G)− s
2 +1) steps. Finally, recolour w1 to β(w1). The total number of recolouring

teps is at most 1+ (s− 2)+ (n(G)− (s− 1)+µ(G)− s
2 + 1)+ 1 = n(G)+µ(G)+ 2−

s
2 . Since s ≥ 4,

his is at most n(G) + µ(G). ⋄

laim 25. The endblock Cs is not an odd cycle.

roof. Assume instead that Cs is an odd cycle. If Dα,β [Cs − ws] contains fewer than
⌊ s

2

⌋
disjoint

igons (for example, this is true when s = 3), then we can easily finish, as follows. We recolour
s in a colour different from α(N(ws)) ∪ β({w1, ws−1}). This is possible because β(ws) is used by
on at least two neighbours of ws, since Dα,β is strongly connected. By Theorem 17, we recolour

s − ws to β in at most (s − 1) +
⌊ s

2

⌋
− 1 steps, and we then recolour G\(Cs − ws) to β in at most

(G) − (s − 1) + µ(G) −
⌊ s

2

⌋
steps. Thus, we recolour G from α to β in at most n(G) + µ(G) steps.

Now we consider the other case, when wiwi+1 is a digon of Dα,β for every odd i with i < s. Since
α,β [Cs] is strongly connected, we assume Dα,β contains arc wiwi+1 for every 0 ≤ i ≤ s− 1. Similar
o the proof of Lemma 21, here Dα,β [Cs] cannot contain a spanning bidirected path, since s is odd.
his implies, for some even j, that Dα,β does not contain wj+1wj. Now we will recolour some set
f wi’s to reach a new colouring α̃, such that Dα̃,β [Cs] is either acyclic or contains a single directed
ycle, ws−2ws−1. From α̃, we can recolour G \ (Cs − ws) by the minimality of G, and afterward finish
n Cs − ws. The details follow.
First suppose that β(ws) = α(ws−1). For every i such that either (a) i < j and i is odd or (b) i > j

nd i is even, recolour wi with a colour different from those in {α(wi−1), α(wi), α(wi+1)}. Here we
ake the indices modulo s, i.e., w = w . If β(w ) ̸= α(w ), then we recolour the same set of w ’s,
0 s s s−1 i

16



S. Cambie, W. Cames van Batenburg and D.W. Cranston European Journal of Combinatorics 115 (2024) 103798

r
t
r
i

2

7
m

s
t
C
i

O

T
h

P
a
c
F

v
b

a
d
t

c
p
C
d
G

(
2
v
F

except for ws−1. Let G′
:= G−{w1, . . . , ws−1}. By the minimality of G, we can recolour G′ in at most

n(G′) + µ(G′) = (n(G) − (s − 1)) + (µ(G) −
⌊ s

2

⌋
) steps. In the case that β(ws) ̸= α(ws−1), we now

ecolour ws−1 with a colour different from those in {α(ws−2), α(ws−1), β(ws)}. For every odd i such
hat j + 1 ≤ i ≤ s − 2, we recolour wi with β(wi). Next, for every even i such that 2 ≤ i ≤ j, we
ecolour wi with β(wi). Finally, the remaining vertices in Cs can also be recoloured with their colour
n β . This process uses at most n(G) + µ(G) steps. ⋄

Recall that every endblock of G is a cycle, as observed following Claim 23. Thus, Claims 24 and
5 yield a contradiction, which proves the theorem. □

. Proving the correspondence conjecture for cactuses, subcubic graphs, and graphs with low
aximum average degree

The maximum average degree of a graph G, denoted mad(G), is the maximum, taken over all
ubgraphs H , of the average degree of H . That is, mad(G) := maxH⊆G 2|E(H)|/|V (H)|. Let d1(v) denote
he number of neighbours w of v such that d(w) = 1. In this section we prove the Correspondence
onjecture for all subcubic graphs, cactuses, and graphs G with mad(G) < 2.4. To do so, we often
mplicitly use the following observation. We omit its proof, which is easy.

bservation 26. If G is a graph with a minimum vertex cover S and v ∈ S, then τ (G− v) = τ (G)− 1.

heorem 27. Let G be a graph and (L,H) a correspondence cover for G such that, for all v ∈ V (G) we
ave |L(v)| ≥ d(v) + 2. Now diam C(L,H)(G) ≤ n(G) + τ (G) if at least one of the following holds.

(a) ∆(G) ≤ 3.
(b) G is a cactus.
(c) mad(G) < 2.4.

roof. Fix G satisfying (a), (b), or (c) and (L,H) as in the theorem. Fix arbitrary (L,H)-colourings α
nd β . Our proof is by a double induction: primarily on τ (G) and secondarily on |V (G)|. The base
ase, τ (G) = 0, is trivial, since G is an independent set and we can greedily recolour G from α to β .
or the induction step, assume τ (G) ≥ 1.
We first show that G contains either (i) a vertex v such that d(v) ≤ 3 and v lies in some minimum

ertex cover or (ii) a vertex v such that d(v) ≥ 4 and d(v)−d1(v) ≤ 2. Next we show how to proceed
y induction in each of cases (i) and (ii).
If G satisfies (a), then clearly G contains an instance of (i). Suppose G satisfies (b), and consider

n endblock B of G. If B is a cycle, then B contains adjacent non-cut vertices, v and w; note that
(v) = d(w) = 2. Further, every vertex cover of G contains v or w, so G contains (i). Assume instead
hat every endblock of G is an edge.

Form a graph J with a vertex for every block in G, where two vertices of J are adjacent if their
orresponding blocks share a vertex in G. Now the endpoints of a diameter in J correspond with
endent edges in G. For the leaf v corresponding to such a pendent edge, call its neighbour w.
learly w lies in some minimum vertex cover of G. If d(w) ≤ 3, then G contains (i). Otherwise,
(w) − d1(w) ≤ 2, since by the choice of w at most one block incident to w is not an endblock; so
contains (ii). This concludes the case that G satisfies (b).
Assume instead that G satisfies (c). Suppose, to reach a contradiction, that G contains neither

i) nor (ii). Form G′ from G by deleting all vertices with degree at most 1. We will show that
|E(G′)|/|V (G′)| ≥ 2.4, a contradiction. Note that G′ has minimum degree (at least) 2. If an arbitrary
ertex v satisfies dG′ (v) = 2, then dG(v) = 2, since otherwise v is an instance of (i) or (ii) in G.
urther, if dG′ (v) = 2, then d(w) ≥ 3 for all vw ∈ E(G′), since otherwise v or w is an instance

of (i) in G. Now we will reach a contradiction with discharging. Give each vertex v in G′ charge
ch(v) := dG′ (v). We use a single discharging rule: Each 2-vertex in G′ takes 0.2 from each neighbour.
Now each 2-vertex v in G′ finishes with charge ch∗(v) = 2 + 2(0.2) = 2.4. And each vertex v with
dG′ (v) ≥ 3 finishes with charge ch∗(v) ≥ dG′ (v)−0.2dG′ (v) = 0.8dG′ (v) ≥ 2.4. This yields the desired
contradiction, which proves that G contains either (i) or (ii) if mad(G) < 2.4.
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Now we prove the induction step in the cases that G contains (i) or (ii).
Suppose G contains (i). Suppose at most one neighbour, say w, of v has α(w) matched with

(v). Now recolour w with a colour not matched to α(x), for every x ∈ N(w), and not matched to
β(v). Next, recolour v with β(v), and proceed on G − v by induction (with the colour matched to
β(v) deleted from the lists of all vertices in N(v)). So instead assume there exist at least two such
neighbours, say w1 and w2. By interchanging the roles of α and β (and repeating this argument),
we see that also there exist two neighbours, say x1 and x2, such that β(x1) and β(x2) are matched
to α(v). The total number of colours in L(v) matched to α(w) or β(w) for some w ∈ N(v) is at most
2d(v) − 2 < d(v) + 2, since d(v) ≤ 3. Hence, there exists c ∈ L(v) that is not matched to α(w) or
β(w) for all w ∈ N(v). Recolour v with c. Proceed on G − v by induction, with that colour that c is
matched to deleted from the list L(w) for each w ∈ N(v). After finishing on G − v, recolour v with
β(v). The number of steps we use is at most 1 + n(G − v) + τ (G − v) + 1 = n(G) + τ (G).

Suppose instead G contains (ii). The proof is almost the same as for (i). If there exists w ∈ N(v)
uch that d(w) = 1 and α(v) is not matched to β(w), then simply recolour w with β(w), and proceed
y induction; here we use the secondary induction hypothesis, since possibly τ (G − w) = τ (G). So
ssume that no such w exists. By interchanging the roles of α and β , we also assume that β(v) is

matched to α(w) for each w ∈ N(v) with d(w) = 1. Further, if v has a non-leaf neighbour w, then
at least one such neighbour has α(v) matched to β(w) and at least one (possibly the same one) has
α(w) matched to β(v). (This follows from the correspondence colouring analog of Lemma 19.) But
now there exists (v, i) ∈ L(v) such that for all w ∈ N(v), colour (v, i) is not matched to either α(w)
or β(w). Recolour v to (v, i), and let G′

:= G− v. Form (L′,H) from (L,H) by deleting from L(w), for
very w ∈ N(v), the colour matched with (v, i). By induction, we can recolour G′ from α to β (both

restricted to G′) using at most n(G′)+ τ (G′) = n(G)+ τ (G)−2 steps. Finally, recolour v to β(v). This
uses at most n(G) + τ (G) steps, which finishes the proof. □

Corollary 28. The List Conjecture holds for all bipartite graphs G with ∆(G) ≤ 3.

Proof. When G is bipartite, recall that τ (G) = µ(G). □

8. Concluding remarks

In this paper, we give evidence for both the List Conjecture and the Correspondence Conjecture.
We also give evidence for an affirmative answer to Question 1. The List Conjecture and Question 1
would together determine the precise diameter for C∆(G)+2(G) and, as such, a precise bound when
Cereceda’s Conjecture is restricted to regular graphs. So we explicitly conjecture the following.

Conjecture 3 (Regular Cereceda’s Conjecture). For a d-regular graph G, if k = d+2, then diam Ck(G) =

n(G) + µ(G).

In Theorem 10 we prove, when |L(v)| ≥ d(v) + 2 for all v ∈ V (G), that diam CL(G) ≤ n(G) +

2µ(G) ≤ 2n(G). In a similar vein, it would be interesting to show that diam CL(G) is linear when
|L(v)| ≥ ⌈mad(G) + 2⌉. The following conjecture can be viewed as a ‘‘balanced’’ version of the List
Conjecture.

Conjecture 4 (Mad Colouring Reconfiguration Conjecture). For a graph G with mad(G) = d, if L is a
list-assignment such that |L(v)| ≥ ⌈d + 2⌉ for every v ∈ V (G), then diam CL(G) = Od(n).

Feghali [14] proved that if ϵ > 0 and k ≥ d+1+ϵ, then diam Ck(G) = Od(n(2 ln n)d). Conjecture 4
ims to prove a similar result for list colouring, with one more colour available for each vertex,
nd with a somewhat stronger bound on diameter. All planar graphs G have mad(G) < 6, and all
riangle-free planar graphs G have mad(G) < 4, so we note that Conjecture 4 would imply stronger
orms of [15, Conjecture 22]. If G is regular, then mad(G) = degen(G), so Conjecture 4 is true by
Theorem 10. Conjecture 4 is also related to5 a conjecture of Bartier et al. [16, Conjecture 1.6] that
graphs G with degen(G) = d satisfy diam Cd+3(G) = Od(n).

5 If mad(G) is not an integer, then degen(G) + 3 ≤ ⌈mad(G) + 2⌉. But if G has a regular subgraph of degree mad(G),
then this inequality fails.
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We do not know if Conjecture 4 might be true with a linear bound of the form O(n) instead
f Od(n). But we do note, for this version of the conjecture and every constant c , that no bound
f the form n(G) + cµ(G) can hold. This is shown by the star K1,3c+3 = ({u} ∪ {w1, . . . , w3c+3}, E)

and the colourings α, β with α(u) = 1, β(u) = 4, β(wi) = 1 and α(wi) = 1 + ⌈i/(c + 1)⌉. Here
⌈mad(G) + 2⌉ = 4 and dist(α, β) > n + c.

For a correspondence cover (L,H) such that |L(v)| = d(v) + 2 for all v ∈ V (G), in Theorem 1(ii)
e proved that diam C(L,H)(G) ≤ n(G) + 2τ (G). We view this as modest evidence that Cereceda’s
onjecture might remain true in the more general context of correspondence colourings.

.1. Open problems

The three focuses of this paper are the List Conjecture, the Correspondence Conjecture, and (to
lesser extent) Question 1. All of these remain open. However, each of them seems rather hard.
o, to motivate further research, below we identify some specific classes of graphs for which we
elieve that each conjecture may be approachable. We begin with some graph classes for which it
ould be particularly interesting to make further progress on the List Conjecture.

(1) Complete r-partite graphs for each r ≥ 3. (We know the List Conjecture is true for both
complete graphs and complete bipartite graphs, so this is a natural common generalisation.)

(2) Bipartite graphs, not necessarily complete.
(3) Outerplanar graphs and, more generally, planar graphs.
(4) Subcubic graphs. (We already proved the Correspondence Conjecture for this class; nonethe-

less, the List Conjecture remains open.)

Conversely, the Correspondence Conjecture remains open for the following basic graph classes.

(1) Complete graphs. (The argument of Bonamy and Bousquet for complete graphs directly yields
the List Conjecture, but does not yield the Correspondence Conjecture.)

(2) Complete bipartite graphs.
(3) Bipartite graphs, not necessarily complete. (This would imply the List Conjecture for the same

class.)
(4) Outerplanar graphs and, more generally, planar graphs.

Finally, we stress that it will be interesting to improve on Theorems 1 and 2. For example, find
he smallest ϵ such that for every graph G and list-assignment L with |L(v)| ≥ d(v) + 2 for all
∈ V (G), we have diam CL(G) ≤ n(G) + (1 + ϵ)µ(G). We proved ϵ = 1 suffices, while ϵ = 0 would

esolve the List Conjecture.
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