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a b s t r a c t

The family of Jordan–Moore–Gibson–Thompson (JMGT) equations arises in
nonlinear acoustics when a relaxed version of the heat flux law is employed within
the system of governing equations of sound motion. Motivated by the propagation
of sound waves in complex media with anomalous diffusion, we consider here
a generalized class of such equations involving two (weakly) singular memory
kernels in the principal and non-leading terms. To relate them to the second-order
wave equations, we investigate their vanishing relaxation time behavior. The key
component of this singular limit analysis are the uniform bounds for the solutions
of these nonlinear equations of fractional type with respect to the relaxation time.
Their availability turns out to depend not only on the regularity and coercivity
properties of the two kernels, but also on their behavior relative to each other and
the type of nonlinearity present in the equations.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The family of Jordan–Moore–Gibson–Thompson (JMGT) equations [1] arises in nonlinear acoustics when
the classical Fourier heat flux law is replaced by the Maxwell–Cattaneo law [2] within the system of governing
equations of sound propagation. The latter introduces thermal relaxation with the parameter τ > 0 thereby
voiding the so-called paradox of infinite speed of propagation. The resulting acoustic equations are then
hird-order in time:

τuttt + a(u, ut)utt − c2b(u, ut)∆u− τc2∆u− δ∆ut + N (ut,∇u,∇ut) = 0. (JMGT)

The function u stands for either the acoustic pressure or acoustic velocity potential. The functions a, b,
nd N dictate the type of nonlinearity present in the equation; we will discuss them in depth together with

∗ Corresponding author.
E-mail addresses: barbara.kaltenbacher@aau.at (B. Kaltenbacher), vanja.nikolic@ru.nl (V. Nikolić).
ttps://doi.org/10.1016/j.nonrwa.2023.103991
468-1218/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.nonrwa.2023.103991
https://www.elsevier.com/locate/nonrwa
http://www.elsevier.com/locate/nonrwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nonrwa.2023.103991&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:barbara.kaltenbacher@aau.at
mailto:vanja.nikolic@ru.nl
https://doi.org/10.1016/j.nonrwa.2023.103991
http://creativecommons.org/licenses/by/4.0/


B. Kaltenbacher and V. Nikolić Nonlinear Analysis: Real World Applications 76 (2024) 103991
modeling in Section 2. The JMGT equations and their linearizations (known as Moore–Gibson–Thompson
(MGT) equation) have been extensively studied in the recent mathematical literature; we refer to, e.g., [3–
7] for a selection of the results on their well-posedness, regularity of solutions, and long-term behavior.
Also the stability of (J)MGT equations with additional memory terms has been extensively researched; see,
e.g., [8–11] and the references provided therein.

Recently nonlocal generalizations of these equations of higher order have been put forward in [12] based on
using the Compte–Metzler fractional interpolations [13] of the Fourier and Maxwell–Cattaneo flux laws valid
in media with anomalous diffusion, such as biological tissues. This type of modeling has significantly gained
in importance with the rise of ultrasound imaging applications [14]. Motivated by such sound propagation,
we consider here the following family of nonlocal generalizations of the (JMGT) equation, given by

τaK1 ∗ uttt + autt − c2b∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt + N = 0, (1.1)

where ∗ denotes the Laplace convolution in time. The power a is dependent on the kernel K1 and included
to ensure dimensional homogeneity. When K1 is the Dirac delta distribution δ0 (with a = 1) and K2 = 1,
(1.1) formally reduces to the (JMGT) equation, up to modifying the right-hand side. However, the presence
of the two kernels allows us to treat a much richer family of equations here than the (JMGT) equation.
For example, (1.1) with suitable Abel kernels covers the time-fractional equations introduced and analyzed
in [12] under the name fractional Jordan–Moore–Gibson–Thompson (fJMGT) equations that correspond to
the four fractional flux laws of Compte and Metzler [13]; we refer to upcoming Section 2 for details.

As the relaxation parameter τ > 0 is typically small, it is of high interest to determine the behavior of
solutions to (1.1) as it vanishes. This is the main goal of the present work. Such analysis will, first of all,
result in sufficient conditions for stability of solutions with respect to τ , which might be needed, for example,
in numerical simulations. Secondly, it will provide an additional (mathematical) justification of these models
as it will relate them to their limiting (established) counterparts. While we verify the conditions needed in
our analysis for the kernels from [13], since this work has strongly motivated our studies, we also point to
the wide range of possibilities opened up by the general framework (1.1). In particular, our mathematical
analysis can serve as a theoretical foundation for developing – by a proper choice of K1, K2 – models with
desirable properties such as finite speed of propagation.

By formally setting the relaxation parameter to zero, one arrives at equations with the leading term of
second order:

autt − c2b∆u− δK2 ∗ ∆utt + N = 0.

Our singular limit analysis is based on proving well-posedness of (1.1), which we consider with homogeneous
Dirichlet data on bounded domains and three initial conditions, uniformly in τ . As one might expect, whether
one can obtain the uniform bounds on the solutions is heavily influenced by the properties of the two kernels
and their interplay with the nonlinearities present in the equations (that is, the properties of the functions
a, b, and N ). This will necessarily lead to delicate case distinctions. More precisely, we will consider two
sets of assumptions on the kernels and then develop the corresponding theories; the details can be found in
Sections 3 and 4, respectively. The first set of assumptions will allow for a more standard testing strategy,
using (−∆)νutt with ν ∈ {0, 1, 2} as test functions; the second set of assumptions will involve K1 ∗ (−∆)νutt

as a test function.
The analysis will cover the following fractional JMGT equations introduced in [12] as special cases:

ταDα
t utt + autt − c2b(u, ut)∆u− ταc2Dα

t ∆u− δD1−α
t ∆ut + N = 0, (fJMGT I)

τuttt + autt − c2b∆u− τc2∆u− δD1−α
t ∆ut + N = 0, (fJMGT III)

α α 2 α 2 α (fJMGT)
τ Dt utt + autt − c b∆u− τ c Dt ∆u− δ∆ut + N = 0,
2
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Table 1
Main results of this work for the nonlinear JMGT and fJMGT equations.

Equation τ-uniform well-posedness or existence τ weak limits

(JMGT) Theorems 3.1 and 3.3 Theorems 3.2 and 3.4
(fJMGT I) with α < 1/2, utt|t=0 = 0, Theorem 4.1 with α ≥ 1/2, a ≡ 1, utt|t=0 = 0,

Theorem 4.2 (existence, Westervelt–Blackstock nonlinearities)
Theorem 4.3

(fJMGT III) with α > 1/2, Theorems 3.1 and 3.3 Theorems 3.2 and 3.4
(fJMGT) with α ≥ 1/2, a ≡ 1, utt|t=0 = 0, Theorem 4.2 (existence,

Westervelt–Blackstock nonlinearities)
Theorem 4.3

under various (different) restrictions in terms of the order of differentiation α and the involved nonlinearities
where we distinguish the so-called Westervelt–Blackstock and Kuznetsov–Blackstock type). Here numbers
and III indicate that the equations stem from the Compte–Metzler fractional flux laws introduced under

he same numbers in [13]; the last one is unnumbered in [13].
In terms of closely related works, we point out the singular limit analysis of third-order Eqs. (JMGT) on

ounded domains in [15–17]. In particular, our analysis follows in the spirit of [16] by employing an energy
ethod on a linearized problem in combination with a fixed-point strategy. We also point out two works
hich consider (1.1) in simplified settings that allow for optimizing the theory. The first one is [18] with a

ailored treatment of (1.1) in the case K2 = 1 (leading to the (fJMGT) equation) which allows for a different
testing strategy compared to ours here and less restrictive assumptions on K1. The second is [19] which
nvestigates linear versions of (1.1) allowing for a broader family of kernels and the treatment of equations
ased on the second Compte–Metzler law, among others.

We organize the rest of the exposition as follows. Section 2 first gives the necessary background details
n the modeling. We then split the analysis into two parts, corresponding to two sets of assumptions on
he kernels. Section 3 considers kernels and equations amenable to testing with (−∆)νutt with ν ∈ {1, 2};
his is, for example, the fJMGT III equation. Section 4 considers kernels and equations amenable to testing
ith utt but also −∆K1 ∗utt; this will be the case for the fJMGT I equation, for instance. We summarize in
able 1 the uniform well-posedness and existence results of this work for the fractional JMGT equations as
articular cases.

. Acoustic equations based on nonlocal flux laws

In this section, we discuss acoustic modeling to motivate the wave equations considered in this work in
he context of nonlinear sound propagation in tissue-like media. For a deeper insight into nonlinear acoustic
odeling, we refer the interested readers to [20–23] and the references contained therein.

.1. A generalized nonlocal heat flux law of the Maxwell–Cattaneo type

Classical acoustic equations that describe nonlinear sound motion in thermoviscous fluids are derived as
pproximations of the Navier–Stokes–Fourier system based on the following Fourier heat flux law:

q = −κ∇θ; (2.1)

ee, for example [21,22,24]. Here q is the heat flux, θ the absolute temperature, and κ > 0 denotes the
hermal conductivity.

The acoustic equations studied in this work are based on employing a nonlocal generalization of (2.1) of
he Maxwell–Cattaneo type which incorporates thermal relaxation as follows:

q(t) + τa

∫ t

K1(t− s)qt(s) ds = −τ b
θκ

∫ t

K2(t− s)∇θt(s) ds. (2.2)

0 0

3
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Table 2
Kernels for the Compte–Metzler fractional laws.

Flux law K1 K2 a b

GFE I g1−α gα α 1 − α

GFE III δ0 gα 1 1 − α

GFE g1−α 1 α –

Here τ > 0 stands for the thermal relaxation time and the constant τθ as well as the powers a and b are
there to ensure the dimensional homogeneity of the equation. The introduced memory kernels K1 and K2
are assumed to be independent of τ .

This relation generalizes many flux laws in the literature. Fourier law (2.1) follows by setting τ = 0,
K2 = 1, and τ b

θ = 1, where we assume that q(0) = 0 and ∇θ(0) = 0. The well-known Maxwell–Cattaneo
law [2]:

q + τqt = −κ∇θ

ollows by setting a = 1, K1 = δ0 (the Dirac delta distribution), τ b
θ = 1, and K2 = 1. Importantly, (2.2)

nifies (and generalizes) the Compte–Metzler fractional laws [13]:

(GFE I) (1 + ταDα
t )q(t) = −κτ1−α

θ D1−α
t ∇θ;

(GFE II) (1 + ταDα
t )q(t) = −κτα−1

θ Dα−1
t ∇θ;

(GFE III) (1 + τ∂t)q(t) = −κτ1−α
θ D1−α

t ∇θ;
(GFE) (1 + ταDα

t )q(t) = −κ∇θ.

lthough in [13] the fractional derivative is understood in the Riemann–Liouville sense, in this work Dη
t

enotes the Caputo–Djrbashian fractional derivative:

Dη
tw(t) = 1

Γ (1 − η)

∫ t

0
(t− s)−ηD⌈η⌉

t w(s) ds, −1 < η < 1;

see, for example, [25, §1] and [26, §2.4.1] for the definition. Here ⌈η⌉ is the integer obtained by rounding
up η and D⌈η⌉

t is the zeroth or first derivative operator. We may do this exchange at this point since it is
assumed that q(0) = 0 and ∇θ(0) = 0.

Looking at the Compte–Metzler laws, we can see that GFE II has a different form compared to others
since Dα−1

t is an integral operator rather than a derivative for α ∈ (0, 1). It thus does not fit properly into
the framework of (2.2) and we do not consider it going forward. We refer to [19] for the treatment of acoustic
waves based on this law in a linear setting.

Before proceeding we collect in Table 2 the kernels K1 and K2 for the three Compte–Metzler laws relevant
for this work (and the powers a and b) which allow writing them in form of (2.2). Here we use the short-hand
notation for the Abel kernel:

gα(t) := 1
Γ (α) t

α−1.

Note that the GFE laws have possible non-physical shortcomings, which are discussed in detail in [13]. The
fractional heat equations resulting from the Compte–Metzler laws have been numerically compared in [27].
It was determined that they can all lead to negative absolute temperatures, however the heat equation based
on using law GFE I avoids this non-physical behavior in numerical experiments for α ∈ (1/2, 1) close enough
o 1/2.

emark 1 (On the Gurtin–Pipkin Approach). An alternative approach of generalizing the heat flux laws is
iven by the Gurtin–Pipkin flux law [28]:

q(t) = −κ
∫ t

Kτ (t− s)∇θ(s) ds.

0

4
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t

The resulting acoustic equations are then second order in time with damping of fractional type but the kernel
Kτ may depend on τ ; we refer to [29,30] for their derivation and limiting analysis.

.2. Acoustic modeling with the generalized heat flux law

By closely following the steps of the derivation in [12] only now with generalized heat flux law instead of
he fractional ones, the following nonlinear acoustic wave equation can be derived:

τaK1 ∗ ψttt + a(ψt)ψtt − c2b(ψt)∆ψ − τac2∆K1 ∗ ψt − τ b
θ δK2 ∗ ∆ψtt

+N (∇ψ,∇ψt) = 0,
(2.3)

where either
a = 1, b(ψt) = 1 − 2k̃ψt, N (∇ψ,∇ψt) = ℓ̃∂t(|∇ψ|)2 = 2ℓ̃∇ψ · ∇ψt (2.4)

or
a(ψt) = 1 + 2k̃ψt, b = 1, N (∇ψ,∇ψt) = ℓ̃∂t(|∇ψ|)2 = 2ℓ̃∇ψ · ∇ψt. (2.5)

In (2.3), ψ = ψ(x, t) denotes the acoustic velocity potential. It is connected to the acoustic pressure p via
the relation

p = ϱψt, (2.6)

where ϱ is the medium mass density. The damping coefficient δ is usually referred to as sound diffusivity [31].
In (2.4), k̃ and ℓ are nonlinearity coefficients, which are assumed to be real numbers. Eq. (2.3) can be
understood as a generalization of the time-fractional models considered in [12], with kernels K1 and K2
generalizing those in Table 2.

In the limiting case τ = δ = 0, having nonlinearities (2.4) corresponds to the classical Blackstock
equation [24] in nonlinear acoustics:

ψtt − c2(1 − 2k̃ψt)∆ψ + 2ℓ̃∇ψ · ∇ψt = 0,

and (2.5) to the Kuznetsov equation [32]:

(1 + 2k̃ψt)ψtt − c2∆ψ + 2ℓ̃∇ψ · ∇ψt = 0.

For the Kuznetsov equation above, it is usual to employ the approximation

|∇ψ|2 ≈ c−2ψ2
t ,

when cumulative nonlinear effects dominate the local ones, and in this manner simplify it by the Westervelt
equation [33]. Using this approximation in (2.3) results in

τaK1 ∗ ψttt + a(ψt)ψtt − c2b(ψt)∆ψ − τac2K1 ∗ ∆ψt − τ b
θ δK2 ∗ ∆ψtt = 0 (2.7)

where now either
a = 1, b(ψt) = 1 − 2kψt, N ≡ 0

or
a(ψt) = 1 + 2kψt, b = 1, N ≡ 0

with k = k̃ + c−2ℓ̃.
It is also common to express the Westervelt equation in terms of the acoustic pressure p. Formally taking

the time derivative of (2.7) and employing the pressure-potential relation (2.6) as well as the approximation
−2
∆ψ ≈ c ψtt justified by Blackstock’s scheme [20,31] that allows to use a lower order approximation within

5
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a higher order term (here it is a first linear approximation used in a quadratic term) leads to the pressure
form

τaK1 ∗ (ptt − c2∆p)t + a( p
ρ )ptt − c2b( p

ρ )∆p− τ b
θ δK2 ∗ ∆ptt+ 1

ϱ (a′( p
ϱ ) − b′( p

ϱ ))p2
t

= f
(2.8)

ith the right-hand side

f(t) = −τaK1(t)ptt(0) + τac2K1(t)∆p(0) + τ b
θ δK2(t)∆pt(0).

o be able to treat all these different acoustic equations, we unify them into one model.

quations considered in this work. We assume throughout that Ω ⊂ Rd with d ∈ {1, 2, 3} is a bounded and
ufficiently smooth domain. T > 0 denotes the final propagation time. Motivated by the modeling discussed
bove, we study the following general equation:

τaK1 ∗ uttt + aψtt − c2b∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt + N = f, (2.9)

oupled with initial data
(u, ut, utt)|t=0 = (u0, u1, u2), (2.10)

and homogeneous Dirichlet boundary conditions

u|∂Ω = 0. (2.11)

We distinguish the following two cases that require different regularity assumptions on the initial data:

• Equations of Westervelt–Blackstock-type with

a = a(u) = 1 + 2k1u, b = 1 − 2k2u, N = N (ut) = 2k3u
2
t ;

• Equations of Kuznetsov–Blackstock type with

a = a(ut) = 1 + 2k1ut, b = b(ut) = 1 − 2k2ut, N = N (∇u,∇ut) = 2k3∇u · ∇ut,

where we assume k1,2,3 ∈ R. Note that to relax the notation we have merged the constant τ b
θ δ into the

coefficient δ > 0 in (2.9), which therefore no longer has the usual dimension of sound diffusivity. To be able
to take limits as τ ↘ 0 we will rely on the damping term containing K2 and therefore assume δ > 0 to be
fixed. As we are interested in the vanishing behavior τ ↘ 0, we assume throughout that τ ∈ (0, τ̄ ] for some
fixed τ̄ > 0.

The Westervelt–Blackstock-type equation incorporates the nonlinearities that arise in pressure form
(2.8). We point out that this pressure form is more general than the equation considered in [12,18] where
b ≡ 1 and which was termed of Westervelt-type. Here we also allow for b = b(u) and thus call it of
Westervelt–Blackstock type.

The Kuznetsov–Blackstock-type equation encompasses (2.4), (2.5), and (2.7). It involves ut instead of u
in the nonlinearities tied to the leading and second terms in the limiting equation (τ = 0) and also contains
a quadratic gradient term. For this reason, it requires stronger regularity assumptions on the data in the
well-posedness analysis compared to the Westervelt–Blackstock case.

2.3. General strategy in the singular limit analysis

Our strategy in the singular limit analysis is based on first deriving τ -uniform bounds for a linearization
of (2.9) with a source term, given by

a 2 a 2
τ K1 ∗ uttt + a(x, t)utt − c b(x, t)∆u− τ c K1 ∗ ∆ut − δK2 ∗ ∆utt = f(x, t), (2.12)
6
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and later using a suitable fixed-point theorem on the mapping

T : u∗ ↦→ u

to transfer the result to the nonlinear problem. To this end, the two types of nonlinearities will necessitate
different assumptions on the smoothness of data and coefficients a and b (and in some cases prevent certain
rguments):

• Westervelt–Blackstock type with

a = 1 + 2k1u
∗, b = 1 − 2k2u

∗, f = −2k3(u∗
t )2;

• Kuznetsov–Blackstock-type with

a = 1 + 2k1u
∗
t , b = 1 − 2k2u

∗
t , f = −2k3∇u∗ · ∇u∗

t ,

The fixed-point of the mapping u∗ = u will give us the solution of the nonlinear problem. The key component
of this analysis are the uniform bounds for the solutions of (2.12) with respect to τ . To obtain them, we will
employ the following two testing strategies:

• Section 3: Testing with −∆utt and ∆2utt;
• Section 4: Testing with utt and −∆K1 ∗ utt,

which can be rigorously justified through a Faedo–Galerkin procedure; cf. Appendix A. To make the testing
procedure work we will introduce two sets of regularity and coercivity assumptions on the kernels in the
corresponding sections. As a consequence, among the equations obtained from the Compte–Metzler laws,
the first testing strategy will work for the (fJMGT III) equation. The second testing strategy will turn out
to work for proving uniform solvability of the (fJMGT) and (fJMGT I) equations but if α > 1/2, we will
have the restriction of Westervelt–Blackstock type on the allowed nonlinearities.

2.4. Notation

Below we often use the notation x ≲ y for x ≤ C y with a constant C > 0 that does not depend on the
thermal relaxation time τ . We use ≲T to emphasize that C = C(T ) tends to ∞ as T → ∞.

We use (·, ·)L2 to denote the scalar product on L2(Ω) and ∼ to denote equivalence of norms. We often
omit the spatial and temporal domain when writing norms; for example, ∥ · ∥Lp(Lq) denotes the norm on the
Bochner space Lp(0, T ;Lq(Ω)). We use ∥ · ∥L

p
t (Lq) to denote the norm on Lp(0, t;Lq(Ω)) for t ∈ (0, T ).

.5. Regularity of the kernels

As already mentioned above, several coercivity assumptions will have to be made on the kernels below.
owever, concerning their regularity, throughout this paper we will only assume that

K1, K2 ∈ {δ0} ∪ L1(0, T ). (2.13)

n fact, the analysis below would also apply to measures K1∗, K2∗ ∈ M(0, t) = Cb([0, T ])∗, however, at the
ost of somewhat increased technicality. We will be reminded of this possibility when using the following
orm below:

∥K1∥M(0,T ) =
{

1 if K1 = δ0,
1
∥K1∥L1(0,T ) if K1 ∈ L (0, T ).

7



B. Kaltenbacher and V. Nikolić Nonlinear Analysis: Real World Applications 76 (2024) 103991

w

w
1

2.6. Auxiliary theoretical results

We recall from [19] a result that will allow us to extract appropriately converging subsequences later on
in the existence proofs; see, for example, Proposition 3.1.

Lemma 2.1 (Sequential Compactness with the Caputo–Djrbashian Derivative, See [19]). Let 1 ≤ p ≤ ∞,
and let K ∈ L1(0, T ) be such that there exists K̃ ∈ Lp′(0, T ) for which K̃ ∗ K = 1 with p′ = p

p−1 . Consider the
space

Xp
K = {u ∈ Lp(0, T ) | K ∗ ut ∈ Lp(0, T )}, (2.14)

with the norm
∥ · ∥X

p
K

=
(
∥u∥p

Lp + ∥(K ∗ ut)∥p
Lp

)1/p
,

and the usual modification for p = ∞. The following statements hold true:

• The space Xp
K is reflexive for 1 < p < ∞ and separable for 1 ≤ p < ∞.

• The unit ball Bp
X of Xp

K is weakly sequentially compact for 1 < p < ∞, and B∞
X is weak-∗ sequentially

compact.
• The space Xp

K continuously embeds into C[0, T ].

We also state and prove a result which will be helpful in verifying a coercivity assumption on the two
kernels in Section 3.

Lemma 2.2. Given t > 0, let y ∈ W 1,1(0, t) with y′ ∈ H−α/2(0, t) for α ∈ (0, 1). Then

∥y − y(0)∥L∞(0,t) ≲ ∥y − y(0)∥H1−α/2(0,t) ∼ ∥Iα/2
t y′∥L2(0,t) ∼ ∥y′∥H−α/2(0,t).

Proof. We introduce the time-flip operator as

wt(s) = w(t− s).

By [25, Theorem 2.2, Corollary 2.1], we have

∥wt∥Hα/2(0,t) ∼ ∥(Iα/2
t )−1wt∥L2(0,t),

here
Iη
t y(t) = 1

Γ (η)

∫ t

0
(t− s)η−1y(s) ds, η > 0.

Additionally employing the identity ⟨at, b⟩L2(0,t) = (a ∗ b)(t) = (b ∗ a)(t), leads to

∥y′∥H−α/2(0,t) = sup
w∈C∞

0 (0,t)

|⟨y′, w⟩L2(0,t)|
∥w∥Hα/2(0,t)

= sup
w∈C∞

0 (0,t)

|⟨y′t, wt⟩L2(0,t)|
∥wt∥Hα/2(0,t)

∼ sup
w̃∈C∞

0 (0,t)

|⟨y′t, Iα/2
t w̃⟩L2(0,t)|

∥w̃∥L2(0,t)
= sup

w̃∈C∞
0 (0,t)

|(y′ ∗ gα/2 ∗ w̃)(t)|
∥w̃∥Hα/2(0,t)

= sup
w̃∈C∞

0 (0,t)

|⟨Iα/2
t y′, w̃

t⟩L2(0,t)|
∥w̃∥L2(0,t)

= ∥Iα/2y′∥L2(0,t),

here we have set w̃ = (Iα/2
t )−1wt and used ∥w̃t∥L2(0,t) = ∥w̃∥L2(0,t). Now due to Sobolev’s embedding and

− α
2 >

1
2 , as well as [25, Theorems 2.4, 2.5, p. 22], we have

∥y − y(0)∥L∞(0,t) ≲ ∥y − y(0)∥H1−α/2(0,t) ∼ ∥Iα/2
t y′∥L2(0,t) ∼ ∥y′∥H−α/2(0,t),

as claimed. □
8
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3. Testing with canonical test functions

In this section, we perform the analysis of Eqs. (2.9) amenable to testing with (−∆)νutt where ν ≥ 0.
hese are the canonical test functions for the third-order (Jordan–)Moore–Gibson–Thompson equations
nd thus make an obvious choice for an attempt at a uniform analysis here. Unsurprisingly, among the
quations based on the Compte–Metzler laws, this testing will suffice for the acoustic Eq. (fJMGT III) with
he integer-order leading term, obtained using the third Compte–Metzler law.

ssumptions on the two kernels in this section. Recall that throughout the paper, we assume the regularity of
he two kernels given in (2.13). In this section we make the following additional assumption on the resolvent
f the leading kernel:

there exists K̃1 ∈ L2(0, T ), such that K1 ∗ K̃1 = 1. (A1)

n case of the Abel kernel, this is equivalent to asking that the fractional order of differentiation α is larger
han 1/2. We next need the coercivity assumptions; one on the leading kernel and one on the two kernels
ombined. We assume that there exist constants C, c, C > 0, independent of τ , such that∫ t′

0
(K1 ∗ y′) (t) y(t) dt ≥ −C|y(0)|2, y ∈ X2

K1(0, t′), (A2)

and for all τ ≥ 0∫ t′

0

(
τac2K1 ∗ y + δK2 ∗ y′) (t)y′(t) dt ≥ c∥y∥2

L∞(0,t′) − C|y(0)|2, y ∈ W 1,1(0, t′); (A3)

ecall that the space X2
K1

(0, t′) is defined in (2.14) with p = 2.
These assumptions are suited to the analysis of Eq. (1.1) that relies on an energy method based on testing

with (−∆)νutt for ν ≥ 0. In this case, the leading term τaK1 ∗uttt will invoke assumption (A2), whereas the
combination of the other two nonlocal terms, −τac2K1 ∗ ∆ut − δK2 ∗ ∆utt will invoke (A3). Note that we
ssume (A3) to hold also for τ = 0, thereby having the coercivity of the kernel K2 alone as well.

ow to verify the coercivity assumptions

Assumption (A2) clearly holds for K1 = δ0. For kernels in Lp(0, T ), sufficient conditions under which (A2)
olds for y ∈ W 1,1(0, t′) can be found, for example, in Lemma 5.1 in [29]; see also [34, Lemma B.1] and [35,
emma 3.1]. These are as follows:

K1∈ L1(0, T ), (∀ε > 0) K1 ∈ W 1,1(ε, T ),
K1 ≥ 0 on (0, T ), K′

1|[ε,T ] ≤ 0 a.e.
(3.1)

y a density argument, (A2) then also holds for any y ∈ X2
K1

(0, t′) under assumptions (3.1).
Assumption (A3) is fulfilled for K1 = δ0 and K2 = 1; that is, for the third-order (JMGT) equation.
For other kernels, one can verify (A3) by applying the Fourier analysis technique from [36, Lemma 2.3]

to the combined kernel
K̃ := τac21 ∗ K1 + δK2,

see Table 3, where F denotes the Fourier transform, ℜ the real part, and f
t the extension of a function f

y zero outside R \ (0, t).
Among the fractional Compte–Metzler laws, the combined uniform lower bound (A3) only holds for the

ernels in the GFE III law. Indeed, in case of the equation obtained using the third Compte–Metzler law:

2 2
τuttt + autt − c b∆u− τc ∆ut − δK2 ∗ ∆utt + N = 0
9
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Table 3
Real part of Fourier transforms of the Compte–Metzler laws.

Flux law (ℜF(τac21 ∗ K1 + δK2)
∞

)(ıω)

GFE I τac2 cos((2 − α)π/2)ωα−2 + δ cos(απ/2)ω−α

GFE III δ cos(απ/2)ω−α

GFE τac2 cos((2 − α)π/2)ωα−2

we have K1 = δ0 and a = 1. Then for δ > 0, condition (A3) holds (uniformly with respect to α ∈ [0, 1]) due
to the estimate∫ t′

0
(τac2y + δgα ∗ y′)(t)y′(t) dt ≥ 1

2τ
ac2(y(t′)2 − y(0)2) + δ cos(απ/2)∥y′∥2

H−α/2(0,t′)

≥ δ cos(απ/2)∥y′∥2
H−α/2(0,t′)

nd Lemma 2.2, which provides a lower bound for ∥y′∥2
H−α/2(0,t′).

.1. Well-posedness of a linearized Westervelt–Blackstock problem

Under assumptions (2.13) and (A1)–(A3) on the two kernels, we next discuss the well-posedness of (2.9)
ith Westervelt–Blackstock nonlinearities, uniformly in τ . Recall that this means we consider equation

τaK1 ∗ uttt + autt − c2b∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt = f, (2.9)

where we have in mind

• a = 1 + 2k1u, b = 1 − 2k2u, and f = −2k3u
2
t

and that, among the discussed equations, the assumptions on the kernels in this section are verified by the
third-order (JMGT) and (fJMGT III) equations.

As announced, we first analyze a linearization where a = a(x, t) and b = b(x, t). We assume that these
coefficients are sufficiently regular in the following sense:

a ∈
{
a ∈ C([0, T ];L∞(Ω)) : ∇a ∈ L∞(0, T ;L4(Ω))

}
,

b ∈W 1,1(0, T ;L∞(Ω)) ↪→ C([0, T ];L∞(Ω)).
(3.2)

Furthermore, the coefficient a should not degenerate: we assume that there exist a, a > 0, independent of τ ,
uch that

a < a(x, t) < a a.e. in Ω × (0, T ). (3.3)

o state the well-posedness result, we introduce the solution space

X WB = {u ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) :ut ∈ L∞(0, T ;H2(Ω) ∩H1

0 (Ω)),
utt ∈ L2(0, T ;H1

0 (Ω))}.

ote that if u ∈ X WB, we have the following (weak) continuity in time

u ∈ X WB =⇒ u ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)), ut ∈ Cw(0, T ;H2(Ω) ∩H1

0 (Ω));

ee [37, Ch. 2, Lemma 3.3].

roposition 3.1. Let T > 0 and τ ∈ (0, τ̄ ]. Let assumptions (2.13), (A1)–(A3) on the kernels hold. Let
he coefficients a and b satisfy regularity assumption (3.2). Assume that a does not degenerate so that (3.3)
olds. Let f ∈ W 1,1(0, T ;L2(Ω)) and ( 2 1 ) ( 2 1 ) 1
(u, ut, utt)|t=0 = (u0, u1, u2) ∈ H (Ω) ∩H0 (Ω) × H (Ω) ∩H0 (Ω) ×H0 (Ω).

10
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t

I

Then there exists m > 0, independent of τ , such that if

∥∇a∥L∞(L4) ≤ m,

hen there is a solution
u ∈ X WB, τaK1 ∗ uttt ∈ L2(0, T ;H−1(Ω))

of the initial boundary-value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τaK1 ∗ uttt + a(x, t)utt − c2b(x, t)∆u− τac2K1 ∗ ∆ut

− δK2 ∗ ∆utt = f(x, t) in Ω × (0, T ),
u|∂Ω = 0,
(u, ut, utt)|t=0 = (u0, u1, u2).

(3.4)

The solution satisfies the following estimate:

∥u∥2
X WB ≲T ∥u0∥2

H2 + ∥u1∥2
H2 + τa∥u2∥2

H1 + ∥f∥2
W 1,1(L2),

where the hidden constant does not depend on τ . If additionally b ∈ W 1,1(0, T ;W 1,4(Ω)), the solution is
unique.

Proof. We conduct the proof by using a standard Faedo–Galerkin procedure where we first construct an
approximate solution u(n) ∈ W 2,∞(0, T ;Vn) with Vn being a finite-dimensional subspace of H2(Ω) ∩H1

0 (Ω);
the details can be found in Appendix A.

The next step in the proof is to obtain a bound that is uniform in n (and also τ , having in mind the later
singular limit analysis). By testing the semi-discrete problem with −∆u

(n)
tt and using the assumptions we

have made on the kernels, we find that∫ t

0
∥
√
a∇u(n)

tt ∥2
L2 ds+ c∥∆u(n)

t ∥2
L∞(L2)

≲
∫ t

0

{
−(u(n)

tt ∇a,∇u(n)
tt )L2 − c2(b∆u,∆u(n)

tt )L2 + (f,−∆u
(n)
tt )L2

}
ds+ τa∥∇u(n)

2 ∥2
L2

+ ∥∆u(n)
1 ∥2

L2 .

ntegrating by parts in time in the c2 and f terms on the right-hand side yields∫ t

0
∥
√
a∇u(n)

tt ∥2
L2 ds+ c∥∆u(n)

t ∥2
L∞(L2)

≲ −
∫ t

0
(u(n)

tt ∇a,∇u(n)
tt )L2 ds+ c2

(
−b∆u(n)(s),∆u(n)

t (s)
)

L2

⏐⏐⏐t

0
+ (f(s),−∆u

(n)
t (s))L2

⏐⏐⏐t

0

+
∫ t

0

{
c2(b∆u(n)

t + bt∆u
(n),∆u

(n)
t )L2 + (ft,∆u

(n)
t )L2

}
ds

+ τa∥∇u(n)
2 ∥2

L2 + ∥∆u(n)
1 ∥2

L2 .

From here using Hölder’s inequality and the embedding H1(Ω) ↪→ L4(Ω), we have

a

∫ t

0
∥∇u(n)

tt ∥2
L2 ds+ c∥∆u(n)

t ∥2
L∞(L2)

≲ ∥∇a∥L∞(L4)∥∇u(n)
tt ∥2

L2(L2) + b
2∥∆u(n)∥2

L∞(L2) + ε∥∆u(n)
t ∥2

L∞(L2)

+ ∥b(0)∥2
L∞∥∆u(n)

0 ∥2
L2 + ∥∆u(n)

1 ∥2
L2 + ∥f∥2

W 1,1(L2)

+ b∥∆u(n)∥2 + ∥b ∥2 ∥∆u(n)∥2 + τa∥∇u(n)∥2 .

(3.5)
t L2(L2) t L1(L∞) L∞(L2) 2 L2

11
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a

A

We can further bound ∥∆u(n)∥L∞(L2) by using the estimate

∥∆u(n)∥L∞(L2) ≤
√
T∥∆u(n)

t ∥L2(L2) + ∥∆u(n)
0 ∥L2 .

f C is the hidden constant in (3.5), then provided we take a small enough so that

∥∇a∥L∞(L4) ≤ 1
2Ca,

nd also choose ε > 0 small enough, we have via Grönwall’s inequality∫ t

0
∥∇u(n)

tt ∥2
L2 ds+ ∥∆u(n)

t ∥2
L∞(L2) + ∥∆u(n)∥2

L∞(L2)

≲T ∥∆u(n)
0 ∥2

L2 + ∥∆u(n)
1 ∥2

L2 + τa∥∇u(n)
2 ∥2

L2 + ∥f∥2
W 1,1(L2),

(3.6)

where the hidden constant has the form

C = C1 exp
(
C2T (1 + ∥bt∥2

L1(L∞))
)
.

dditionally, from the PDE and Young’s convolution inequality, we have

τa∥K1 ∗ u(n)
ttt ∥L2(H−1)

≲ a∥u(n)
tt ∥L2(L2) + b∥∆u(n)∥L2(L2) + τa∥K1∥M∥∆u(n)

t ∥L2(L2)

+ ∥K2∥M∥∇u(n)
tt ∥L2(L2) + ∥f∥L2(H−1),

(3.7)

which, taken together with (3.6), provides us with a uniform bound on τa∥K1 ∗ u(n)
ttt ∥L2(H−1) as well. Since

we have assumed that K̃1 ∈ L2(0, T ), then from the bound on

τaK1 ∗ u(n)
ttt := f̃ (n)

in L2(0, T ;H−1(Ω)), we also obtain a uniform bound on

τa∥u(n)
tt ∥L∞(H−1) = τa∥u(n)

2 + K̃1 ∗ f̃ (n)∥L∞(H−1)

≲ ∥u(n)
2 ∥H−1 + ∥K̃1∥L2∥f̃ (n)∥L2(H−1).

(3.8)

From the above analysis, we conclude that there is a subsequence (not relabeled), such that

u(n) −⇀ u weakly-⋆ in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),

u
(n)
t −⇀ ut weakly-⋆ in L∞(0, T ;H2(Ω) ∩H1

0 (Ω)),
u

(n)
tt −⇀ utt weakly in L2(0, T ;H1

0 (Ω)),

(3.9)

as n → ∞. From (3.9), by [38, Theorem 3.1.1], there is a subsequence (again not relabeled), such that

u(n) −→ u strongly in L2(0, T ;H1
0 (Ω)),

u
(n)
t −→ ut strongly in L2(0, T ;H1

0 (Ω)).
(3.10)

Furthermore, by Young’s convolution inequality

∥K1 ∗ ∆u
(n)
t ∥L∞(L2) ≤ ∥K1∥M∥∆u(n)

t ∥L∞(L2),

∥K2 ∗ ∆u
(n)
tt ∥L2(H−1) ≤ ∥K2∥M∥∆u(n)

tt ∥L2(H−1),

so we conclude that (up to a subsequence)

K1 ∗ ∆u
(n)
t −⇀ K1 ∗ ∆ut weakly-⋆ in L∞(0, T ;L2(Ω)),
(n) 2 −1
K2 ∗ ∆utt −⇀ K2 ∗ ∆utt weakly in L (0, T ;H (Ω)).

12
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W
t

By (3.7) and Lemma 2.1, we also have

τaK1 ∗ u(n)
ttt −⇀ τaK1 ∗ uttt weakly in L2(0, T ;H−1(Ω)). (3.11)

These weak convergence results allow us to pass to the limit in the semi-discrete equation. From (3.10),
and uniqueness of limits, we conclude that (u, ut)|t=0 = (u0, u1). It remains to interpret how u2 is attained.
Following [39, Ch. 7], let v ∈ C1([0, T ];H1

0 (Ω)) with v(T ) = vt(T ) = 0. We have

− τa

∫ T

0

∫
Ω

K1 ∗ uttvt dxds− τa

∫ T

0
(K1utt(0), v)L2 ds

+
∫ T

0
(autt − c2b∆u− τac2K1 ∗ ∆ut, v)L2 ds+

∫ T

0
δ(K2 ∗ ∇utt,∇v)L2 ds =

∫ T

0
(f, v) ds.

For the Galerkin approximation, we similarly have

− τa

∫ T

0

∫
Ω

K1 ∗ u(n)
tt vt dxds− τa

∫ T

0
(K1u

(n)
tt (0), v)L2 ds

+
∫ T

0
(au(n)

tt − c2b∆u(n) − τac2K1 ∗ ∆u
(n)
t , v)L2 ds+

∫ T

0
δ(K2 ∗ ∇u(n)

tt ,∇v)L2 ds

=
∫ T

0
(f, v) ds.

(3.12)

Note that with L∞ regularity in time for u(n)
tt obtained in (3.8), τa(K1 ∗ u(n)

tt )(0) = 0. We also infer that
τa(K1 ∗ utt)(0) = 0 since due to (3.11) and (3.8)

τa∥utt∥L∞(H−1) ≤ τa lim inf
n→∞

∥u(n)
tt ∥L∞(H−1) ≤ C.

The uniform bound on u
(n)
tt taken together with (3.9)–(3.11), allows us to pass to the limit (in possibly a

subsequence) in (3.12). Comparing the resulting identities gives

τa

∫ T

0
(K1utt(0), v)L2 ds = τa

∫ T

0
(K1u2, v)L2 ds,

from which we conclude (since K1 ̸= 0) that utt(0) = u2.

Uniqueness. Uniqueness of solutions in X WB follows by proving that the only solution of the homogeneous
problem with f = 0 and zero data is u = 0. Since −∆utt is not a valid test function in this setting, we can
test this homogeneous problem with utt ∈ L2(0, T ;H1

0 (Ω)) instead. Similarly to before, we have∫ t

0
∥
√
autt∥2

L2 ds+ c∥∇ut∥2
L∞(L2)

≤
∫ t

0

{
−c2(b∇u,∇utt)L2 − c2(u∇b,∇utt)L2

}
ds

= − c2(b(t)∇u(t),∇ut(t))L2 − c2(u(t)∇b(t),∇ut(t))L2

−
∫ t

0

{
−c2(bt∇u+ b∇ut,∇ut)L2 − c2(ut∇b + u∇bt,∇ut)L2

}
ds.

(3.13)

e can further bound the right-hand side using Hölder’s inequality and the additional smoothness assump-
ion on b: ⏐⏐−c2(b(t)∇u(t),∇ut(t))L2 − c2(u(t)∇b(t),∇ut(t))L2

⏐⏐
2
≲ b∥∇u(t)∥L2 + ∥u(t)∥L4∥∇b(t)∥L4∥∇ut(t)∥L2

13
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a.e. in time. Similarly,⏐⏐⏐⏐− ∫ t

0

{
−c2(bt∇u+ b∇ut,∇ut)L2 − c2(ut∇b + u∇bt,∇ut)L2

}
ds

⏐⏐⏐⏐
≲ ∥bt∥L1(L∞)∥∇u∥L∞(L2)∥∇ut∥L∞(L2) + b∥∇ut∥2

L2(L2)

+ ∥∇b∥L2(L4)∥ut∥L2(L4)∥∇ut∥L∞(L2) + ∥∇bt∥L1(L4)∥u∥L∞(L4)∥∇ut∥L∞(L2).

(3.14)

Employing these bounds together with Young’s inequality and the embedding H1(Ω) ↪→ L4(Ω) in (3.13)
leads at first to ∫ t

0
∥
√
autt∥2

L2 ds+ c∥∇ut∥2
L∞

t (L2)

≲ ∥∇u(t)∥2
L2 + ε∥∇b(t)∥2

L4∥∇ut(t)∥2
L2 + ∥∇u∥2

L∞(L2)

+ ε∥bt∥2
L1(L∞)∥∇ut∥2

L∞
t (L2)

+ ∥∇ut∥2
L2

t (L2) + ε∥∇b∥2
L2(L4)∥∇ut∥2

L∞
t (L2)

+ ε∥∇bt∥2
L1(L4)∥∇ut∥2

L∞
t (L2)

or any ε > 0. Note that
∥∇u(t)∥L2 ≤

√
T∥∇ut∥L2

t (L2).

Therefore from (3.14), for small enough ε, by using Grönwall’s inequality and assumed smoothness of a and
, we obtain ∫ t

0
∥utt∥2

L2 ds+ ∥∇ut∥2
L∞

t (L2) ≤ 0,

rom which (combined with the zero initial data) it follows that u = 0. This concludes the proof. □

.2. Uniform well-posedness with Westervelt–Blackstock nonlinearities

To treat Eqs. (2.9) with Westervelt–Blackstock nonlinearities under assumptions (2.13) and (A1)–(A3)
n the two kernels, we next set up a fixed-point mapping T : BWB ∋ u∗ ↦→ u, where u solves (3.4) with

a(u∗) = 1 + 2k1u
∗, b(u∗) = 1 − 2k2u

∗, f = −N (u∗
t ) = −2k3(u∗

t )2,

nd u∗ is taken from the ball

BWB =
{
u∗ ∈ X WB : ∥u∗∥X WB ≤ R, (u∗, u∗

t , u
∗
tt)|t=0 = (u0, u1, u2)}.

he radius R > 0 is independent of τ and will be determined by the upcoming proof.

heorem 3.1. Let T > 0 and τ ∈ (0, τ̄ ]. Let δ > 0 and k1,2,3 ∈ R. Let assumptions (2.13), (A1)–(A3) on
he kernels hold. There exists a size of data r = r(T ) > 0, independent of τ , such that if

∥u0∥2
H2 + ∥u1∥2

H2 + τ̄a∥u2∥2
H1 ≤ r2,

hen there is a unique solution u ∈ BWB of

τaK1 ∗ uttt + (1 + 2k1u)utt − c2(1 − 2k2u)∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt

+ 2k3u
2
t = 0,

(3.15)

ith initial (2.10) and boundary (2.11) conditions. The solution satisfies the following estimate:

∥u∥2
X WB ≲T ∥u0∥2

H2 + ∥u1∥2
H2 + τa∥u2∥2

H1 ,
here the hidden constant does not depend on τ .
14
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Proof. We check that the conditions of the Banach fixed-point theorem are satisfied for the introduced
mapping T . We note that the set BWB is non-empty, as the solution of the linear problem with k1 = k2 =
k3 = 0 belongs to it for small enough (with respect to R) initial data.

To show that T (BWB) ⊂ BWB, take u∗ ∈ BWB ⊂ X WB. Then the smoothness assumptions on a and
b in Proposition 3.1 are fulfilled and the smallness assumption on a is fulfilled by reducing R > 0. The
non-degeneracy condition on a is fulfilled for small enough R. To see this, note that due to the embedding
H2(Ω) ↪→ L∞(Ω), we have

∥2k1u
∗∥L∞(L∞) ≤ C(Ω , T )|k1|∥u∗∥L∞(H2) ≤ C(Ω , T )|k1|R.

Thus R > 0 should be chosen so that

1 − C(Ω , T )|k1|R ≥ a > 0.

urthermore, we have

∥N (u∗
t )∥W 1,1(L2) ≲ ∥u∗

t ∥2
L2(L4) + ∥u∗

t ∥L∞(L4)∥u∗
tt∥L1(L4) ≤ C(Ω , T )R2,

here we have relied on the embedding H1(Ω) ↪→ L4(Ω). By employing Proposition 3.1, we have

∥u∥X WB ≤ C1 exp
(
C2T (1 + ∥bt∥2

L1(L∞))
) (

∥u0∥2
H2 + ∥u1∥2

H2 + τa∥∇u2∥2
L2

+ ∥N (u∗
t )∥2

W 1,1(L2)

)
.

ince
∥bt∥L1(L∞) ≲ ∥u∗

t ∥L1(L∞) ≲ T∥u∗
t ∥L∞(H2) ≲ TR,

e conclude that
∥u∥X WB ≤C1 exp

(
C2T (1 + T 2R2)

)
(r2 + CR4).

Therefore, u ∈ BWB for sufficiently small radius R and data size r.
To prove strict contractivity, let T u∗ = u and T v∗ = v. Denote ϕ = u − v and ϕ∗ = u∗ − v∗. Then ϕ

solves
τaK1 ∗ ϕttt + a(u∗)ϕtt − c2b(u∗)∆ϕ− τac2K1 ∗ ∆ϕt − δK2 ∗ ∆ϕtt

= − 2k1ϕ
∗vtt − 2k2ϕ

∗∆v − 2k3ϕ
∗
t (u∗

t + v∗
t ) := f.

Note that we cannot prove contractivity with respect to the ∥ · ∥X WB norm by exploiting the linear bound
in Proposition 3.1, as the right-hand side of this equation does not belong to W 1,1(0, T ;L2(Ω)) due to the
first term on the right-hand side in the last line (we do not have control over the time derivative of vtt).
Similarly to the proof of uniqueness for the linear problem (see (3.13)), we can test this equation with ϕtt

to obtain ∫ t

0
∥ϕtt∥2

L2 ds+ ∥∇ϕt∥2
L∞(L2)

≲ ∥f∥2
L2(L2) +

⏐⏐−c2(b(u∗)∇ϕ(t),∇ϕt(t))L2 + 2k2c
2(ϕ(t)∇u∗,∇ϕt(t))L2

⏐⏐
+

⏐⏐⏐⏐− ∫ t

0

{
2k2c

2(u∗
t ∇ϕ+ b(u∗)∇ϕt,∇ϕt)L2 + 2k2c

2(ut∇u∗ + ϕ∇u∗
t ,∇ϕt)L2

}
ds

⏐⏐⏐⏐ .
The terms on the right-hand side not containing f can be further estimated as in the proof of uniqueness
for the linear problem. We additionally have

∥f∥L2(L2) ≲ ∥ϕ∗∥L∞(L4)∥vtt∥L2(L4) + ∥ϕ∗∥L∞(L4)∥∆v∥L∞(L2)
∗ ∗ ∗
+ ∥ϕt ∥L2(L4)∥ut + vt ∥L∞(L4).
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Since v ∈ BWB, we have ∥vtt∥L2(H1(Ω)) ≲ ∥v∥X WB ≲ R. We can reason similarly for the ∆v and u∗
t + v∗

t

erms above. Altogether, it follows that∫ t

0
∥ϕtt∥2

L2 ds+ ∥∇ϕ∥2
W 1,∞(L2) ≲ R2

(∫ t

0
∥ϕ∗

tt∥2
L2 ds+ ∥∇ϕ∗∥2

W 1,∞(L2)

)
.

herefore, we can obtain strict contractivity of the mapping T with respect to the norm of W 1,∞(0, T ;
1
0 (Ω)) ∩H2(0, T ;L2(Ω)) by reducing R. The closedness of BWB with respect to this norm can be argued

imilarly to, e.g., [40, Theorem 4.1] to conclude the proof. □

We note that this uniform well-posedness result generalizes [16, Theorem 4.1], where the (fJMGT III)
quation with Westervelt nonlinearities is considered, to Eq. (3.15) with Westervelt–Blackstock nonlinearities
nd general kernels satisfying the assumptions of this section.

.3. Weak singular limit with Westervelt–Blackstock nonlinearities

Equipped with the previous uniform analysis, we are now ready to discuss the limiting behavior of these
quations as τ ↘ 0. Let τ ∈ (0, τ̄ ]. Under the assumptions of Theorem 3.1 with the uniform smallness
ondition

∥uτ
0∥2

H2 + ∥uτ
1∥2

H2 + τ̄a∥uτ
2∥2

H1 ≤ r2,

et uτ be the solution of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τaK1 ∗ uτ

ttt + a(uτ )uτ
tt − c2b(uτ )∆uτ − τac2K1 ∗ ∆uτ

t

− δK2 ∗ ∆uτ
tt + N (uτ

t ) = 0 in Ω × (0, T ),
uτ |∂Ω = 0,
(uτ , uτ

t , u
τ
tt)|t=0 = (uτ

0 , u
τ
1 , u

τ
2).

(3.16)

ased on the previous analysis and the obtained uniform bounds with respect to the thermal relaxation time
, there exists a subsequence, not relabeled, such that

uτ −⇀ u weakly-⋆ in L∞(0, T ;H2(Ω) ∩H1
0 (Ω)),

uτ
t −⇀ ut weakly-⋆ in L∞(0, T ;H2(Ω) ∩H1

0 (Ω)),
uτ

tt −⇀ utt weakly in L2(0, T ;H1
0 (Ω))

(3.17)

s τ ↘ 0. By the Aubin–Lions–Simon lemma (see [41, Corollary 4]), this further implies that

uτ −→ u strongly in C([0, T ];H1
0 (Ω)),

uτ
t −→ ut strongly in C([0, T ];H1

0 (Ω)).
(3.18)

herefore, we know that
uτ

0 = uτ (0) −→ u(0) := u0 strongly in H1
0 (Ω),

uτ
1 = uτ

t (0) −→ ut(0) := u1 strongly in H1
0 (Ω).

(3.19)

On top of this, by (3.17), we have

K2 ∗ ∇uτ
tt −⇀ K2 ∗ ∇utt weakly in L2(0, T ;L2(Ω)). (3.20)

e next prove that u satisfies the limiting problem. Let v ∈ C∞
0 ([0, T ];C∞

0 (Ω)). We have with ū = u− uτ :∫ T

0

∫
Ω

a(u)uttv dxds− c2
∫ T

0

∫
Ω

b(u)∆uv dxds+ δ

∫ T

0

∫
Ω

K2 ∗ ∇utt · ∇v dxds

+
∫ T ∫

N (ut)v dxds = rhs

0 Ω

16
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with the right-hand side

rhs :=
∫ T

0

∫
Ω

a(u)ūttv dxds− c2
∫ T

0

∫
Ω

b(u)∆ūv dxds+ δ

∫ T

0

∫
Ω

K2 ∗ ∇ūtt · ∇v dxds

−
∫ T

0

∫
Ω

τaK1 ∗ uτ
tttv dxds+ τac2

∫ T

0

∫
Ω

K1 ∗ ∆uτ
t v dxds

−
∫ T

0

∫
Ω

(a(uτ ) − a(u))uτ
ttv dxds+ c2

∫ T

0

∫
Ω

(b(uτ ) − b(u))∆uτv dxds

−
∫ T

0

∫
Ω

(N (uτ
t ) − N (ut))v dxds.

We wish to prove that rhs tends to zero as τ ↘ 0. To this end, we rely on the established weak convergence.
We first discuss the terms involving the kernels. Note that∫ T

0

∫
Ω

τaK1 ∗ uτ
tttv dxds

= − τa

∫ T

0

∫
Ω

K1 ∗ uτ
tt vt dxds− τa

∫ T

0

∫
Ω

K1(s)u2 v dxds → 0 as τ ↘ 0.

Above we have relied on the uniform bound on⏐⏐⏐⏐⏐
∫ T

0

∫
Ω

K1 ∗ uτ
tt vt dxds

⏐⏐⏐⏐⏐ ≤ ∥K1∥M∥uτ
tt∥L2(L2)∥vt∥L2(L2).

Similarly, we have

τac2
∫ T

0

∫
Ω

K1 ∗ ∆uτ
t v dxds → 0 as τ ↘ 0.

By the limit in (3.20), it also follows that

δ

∫ T

0

∫
Ω

K2 ∗ ∇ūtt · ∇v dxds → 0 as τ ↘ 0.

By relying on (3.17) and the equivalence of the norms ∥a(u)v∥L2 , ∥v∥L2 , and ∥b(u)v∥L2 (under the
assumptions of Theorem 3.1), we can conclude that

a(u)uτ
tt −⇀ a(u)utt weakly in L2(0, T ;L2(Ω)),

b(u)∆uτ −⇀ b(u)∆u weakly in L2(0, T ;L2(Ω)),

and thus ∫ T

0

∫
Ω

a(u)ūttv dxds− c2
∫ T

0

∫
Ω

b(u)∆ūv dxds → 0 as τ ↘ 0.

Additionally, we have

−
∫ T

0

∫
Ω

(a(uτ ) − a(u))uτ
ttv dxds+ c2

∫ T

0

∫
Ω

(b(uτ ) − b(u))∆uτv dxds

= − 2
∫ T

0

∫
Ω

k1(uτ − u)uτ
ttv dxds− 2c2k2

∫ T

0

∫
Ω

(uτ − u)∆uτv dxds,

which tends to zero as well thanks to (3.17) and (3.18). Finally,∫ T

0

∫
Ω

(N (uτ
t ) − N (ut))v dxds = 2k3

∫ T

0

∫
Ω

ūt(uτ
t + ut)v dxds,
which also tends to zero on account of again (3.17) and the uniform bounds in (3.17).
17
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We have thus proven that there is a subsequence of {uτ }τ∈(0,τ̄ ] that converges to a solution u ∈ X WB of
the following problem: ⎧⎪⎨⎪⎩

(1 + 2k1u)utt − c2(1 − 2k2u)∆u− δK2 ∗ ∆utt + 2k3u
2
t = 0,

u|∂Ω = 0,
(u, ut)|t=0 = (u0, u1).

(3.21)

The initial conditions (u0, u1) are obtained in the limit of (uτ
0 , u

τ
1) as τ ↘ 0 in the sense of (3.19). The

uniqueness of this solution in X WB can be shown by noting that the difference ū = u(1) − u(2) of two
solutions would have to satisfy

(1 + 2k1u
(1))ūtt − c2(1 − 2k2u

(1))∆ū− δK2 ∗ ∆ūtt

= − 2k1ūu
(2)
tt − 2k2c

2ū∆u− 2k3ūt(u(1)
t + u

(2)
t )

with zero initial data and then testing this problem by ūtt, similarly to the proof of contractivity in
Theorem 3.1. Thus by a subsequence-subsequence argument, the whole sequence {uτ }τ∈(0,τ̄ ] converges to u.
Altogether, we arrive at the following result.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold for (3.16). Then the family {uτ }τ∈(0,τ̄ ] of solutions
to (3.16) converges as τ ↘ 0 in the sense of (3.17), (3.18) to the solution u ∈ X WB of (3.21).

Note that as a by-product of this analysis, we obtain the unique solvability of the limiting problem given
in (3.21) for small data in

(
H2(Ω) ∩H1

0 (Ω)
)

×
(
H2(Ω) ∩H1

0 (Ω)
)
.

3.4. Well-posedness of a linearized Kuznetsov–Blackstock problem

We next show how the previous arguments can be adapted to the equations with Kuznetsov–Blackstock
nonlinearities. That is, we consider again the equation

τaK1 ∗ uttt + autt − c2b∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt = f, (2.12)

but now we have in mind that

• a = 1 + 2k1ut, b = 1 − 2k2ut, and f = −2k3∇u · ∇ut.

As mentioned before, we need more regularity of the variable coefficients and data in this setting. In
particular, we need

a ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)), b ∈ H1(0, T ;H2(Ω) ∩H1

0 (Ω)). (3.22)

We still assume that a does not degenerate so that there exist a, a > 0, independent of τ , such that
3.3) holds. Furthermore, we need smallness in the following sense: there exists as small enough m > 0,
ndependent of τ , such that

∥∆a∥L∞(L2) ≤ m. (3.23)

et also f ∈ W 1,1(0, T ;H1(Ω)). Now the τ -independent solution space is

X KB = {u ∈ W 1,∞(0, T ;H3
♢(Ω)) : utt ∈ L2(0, T ;H2(Ω) ∩H1

0 (Ω))}

ith
H3 (Ω) = {u ∈ H3(Ω) : u = ∆u = 0}.
♢ |∂Ω |∂Ω

18
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The analysis of this linearized problem can be conducted as before through a Faedo–Galerkin procedure
based on the smooth eigenfunctions of the Dirichlet–Laplace operator; cf. Appendix A. In this way, we can
rely on ∆u(n) = ∆u

(n)
t = ∆u

(n)
tt = on ∂Ω . In what follows, we only discuss the testing procedure as the other

details follow analogously to the Westervelt–Blackstock case. For ease of notation, we drop the superscript
(n). By testing the (semi-discretized) problem with ∆2utt and employing coercivity assumptions (A2) and
A3) on the kernels, we obtain∫ t

0
∥
√
a∆utt∥2

L2 + c∥∇∆ut∥2
L∞(L2)

≤ − c2(∇[b∆u],∇∆ut)L2

⏐⏐⏐t

0
+ C∥∇∆u1∥2

L2 + Cτa∥∆u2∥2
L2

+
∫ t

0

(
−(utt ∆a + 2∇utt · ∇a,∆utt)L2 + c2(∇[b∆u]t,∇∆ut)L2

)
ds

+
∫ t

0
(f,∆2utt)L2 ds,

(3.24)

here we have used the identity a∆utt −∆[autt] = −utt ∆a− 2∇utt · ∇a, and integrated by parts to obtain∫ t

0
(b∆u,∆2utt)L2 ds =

∫ t

0
(∇[b∆u]t,∇∆ut)L2 ds− (∇[b∆u],∇∆ut)L2

⏐⏐⏐t

0
.

The terms on the right hand side of (3.24) can be further estimated as follows. First, using the embeddings
H1(Ω) ↪→ L4(Ω) and H2(Ω) ↪→ L∞(Ω), we have

−(∇[b(t)∆u(t)],∇∆ut(t))L2 ≤ (∥∇b∆u∥L∞(L2) + ∥b∇∆u∥L∞(L2))∥∇∆ut∥L∞(L2)

≲
(

∥∆b∥L∞(L2) + 1
)

∥∇∆u∥L∞(L2)∥∇∆ut∥L∞(L2),

here we have also used the fact that b − 1 vanishes on the boundary and that ∆(b − 1) = ∆b. We can
mploy

∥∇∆u∥L∞(L2) ≤
√
T∥∇∆ut∥L2(L2) + ∥∇∆u0∥L2

to further bound the u term. We also have∫ t

0
−(utt ∆a + ∇utt · ∇a,∆utt)L2 ds ≤ ∥utt ∆a + ∇utt · ∇a∥L2(L2)∥∆utt∥L2(L2)

≲ ∥∆a∥L∞(L2)∥∆utt∥2
L2(L2) ≲ m∥∆utt∥2

L2(L2).

urthermore, ∫ t

0
(∇[b∆u]t,∇∆ut)L2 ds

≲ ∥∆bt∥L2(L2)∥∇∆u∥L∞(L2)∥∇∆ut∥L2(L2) +
(

∥∆b∥L∞(L2) + 1
)

∥∇∆ut∥2
L2(L2)

≲ ∥∆bt∥L2(L2)(
√
T∥∇∆ut∥L2(L2) + ∥∇∆u0∥L2)∥∇∆ut∥L2(L2)

+
(

∥∆b∥L∞(L2) + 1
)

∥∇∆ut∥2
L2(L2).

e can estimate the term containing f using integration by parts as follows:∫ t

0
(f,∆2utt)L2 ds = (f,∆2ut)L2

⏐⏐⏐t

0
−

∫ t

0
(ft,∆

2ut)L2 ds

= − (∇f,∇∆ut)L2

⏐⏐⏐t

0
+

∫
∂Ω

f∇∆ut · ndΓ
⏐⏐⏐t

0
−

∫ t

0
(∇ft,∇∆ut)L2 ds

+
∫ t

0

∫
∂Ω

ft∇∆ut · ndΓ ds

≲ ∥f∥2 + ε∥∆u ∥2 + ∥∆u ∥2

W 1,1(H1) t L∞(H1) 1 H1

19
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for any ε > 0. Employing the above bounds to further estimate the right-hand side terms in (3.24) and
assuming that ε and ∥∆a∥L∞(L2) are small enough (independently of τ) thus leads to∫ t

0
∥∆utt∥2

L2 + ∥∇∆ut∥2
L∞(L2) ≲T ∥∇∆u0∥2

L2 + ∥∆u1∥2
H1 + τa∥∆u2∥2

L2 + ∥f∥2
W 1,1(H1).

We can further use
∥∇∆u∥L∞(L2) ≤ T∥∇∆ut∥L∞(L2) + ∥∇∆u0∥L2

and
∥∆u∥L∞(L2) ≲T ∥∆utt∥L2(L2) + ∥∆u0∥L2 + ∥∆u1∥L2

to obtain a bound on ∥u∥X KB :

∥u∥X KB ≲T ∥u0∥2
H3 + ∥u1∥2

H3 + τa∥u2∥2
H2 + ∥f∥2

W 1,1(H1), (3.25)

where the hidden constant has the form

C = C1 exp
(

(1 + ∥∆bt∥L2(L2) + ∥∆b∥L∞(L2))C2T
)
.

This bound for the linearized problem forms the foundation for the well-posedness and limiting analysis in
the Kuznetsov–Blackstock case.

3.5. Uniform well-posedness with Kuznetsov–Blackstock-type nonlinearities

The next step is as before to set up a fixed-point mapping T : BKB ∋ u∗ ↦→ u, where u solves the linear
equation in (3.4) with

a(u∗
t ) = 1 + 2k1u

∗
t , b(u∗

t ) = 1 − 2k2u
∗
t , f = −N (∇u∗, u∗

t ) = −2k3∇u∗ · ∇u∗
t ,

and u∗ is taken from the ball

BKB =
{
u∗ ∈ X KB : ∥u∗∥X KB ≤ R, (u∗, u∗

t , u
∗
tt)|t=0 = (u0, u1, u2)}. (3.26)

Theorem 3.3. Let T > 0 and τ ∈ (0, τ̄ ]. Let assumptions (2.13) and (A1)–(A3) on the kernels K1 and K2
hold. Let

(u0, u1, u2) ∈ H3
♢(Ω) ×H3

♢(Ω) ×
(
H2(Ω) ∩H1

0 (Ω)
)
.

There exists r = r(T ) > 0, independent of τ , such that if

∥u0∥2
H3 + ∥u1∥2

H3 + τ̄a∥u2∥2
H2 ≤ r2,

then there is a unique solution u ∈ BKB, such that τaK1 ∗ uttt ∈ L2(0, T ;L2(Ω)), of
τaK1 ∗ uttt + (1 + 2k1ut)utt − c2(1 − 2k2ut)∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt

+2k3∇u · ∇ut = 0
(3.27)

with initial (2.10) and boundary (2.11) data. The solution satisfies

∥u∥2
X KB ≲T ∥u0∥2

H3 + ∥u1∥2
H3 + τa∥u2∥2

H2 ,

where the hidden constant does not depend on τ .

Proof. The proof follows by employing the Banach fixed-point theorem on T , analogously to the proof of
Theorem 3.1. We provide the details in Appendix B. □

This uniform well-posedness result generalizes [16, Theorem 6.1], where the (fJMGT III) equation with
Kuznetsov nonlinearities is considered, to Eq. (3.27) with Kuznetsov–Blackstock nonlinearities and kernels

satisfying the assumptions of this section.
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c

3.6. Weak singular limit with Kuznetsov–Blackstock type nonlinearities

We next discuss the limiting behavior of the equations with Kuznetsov–Blackstock nonlinearities. Let
τ ∈ (0, τ̄ ]. Under the assumptions of Theorem 3.3, with

∥uτ
0∥2

H3 + ∥uτ
1∥2

H3 + τ̄a∥uτ
2∥2

H2 ≤ r2,

onsider ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τaK1 ∗ uτ

ttt + (1 + 2k1u
τ
t )uτ

tt − c2(1 − 2k2u
τ
t )∆uτ − τac2K1 ∗ ∆uτ

t

− δK2 ∗ ∆uτ
tt + 2k3∇uτ · ∇uτ

t = 0,
uτ |∂Ω = 0,
(uτ , uτ

t , u
τ
tt)|t=0 = (uτ

0 , u
τ
1 , u

τ
2).

(3.28)

From the previous analysis we knowc that a unique solution of this problem exists in BKB. Therefore, there
exists a subsequence, not relabeled, such that

uτ −⇀ u weakly-⋆ in L∞(0, T ;H3
♢(Ω)),

uτ
t −⇀ ut weakly-⋆ in L∞(0, T ;H3

♢(Ω)),
uτ

tt −⇀ utt weakly in L2(0, T ;H2(Ω) ∩H1
0 (Ω)).

(3.29)

Similarly to before, using the Aubin–Lions–Simon lemma, this further implies

uτ −→ u strongly in C([0, T ];H2(Ω) ∩H1
0 (Ω)),

uτ
t −→ ut strongly in C([0, T ];H2(Ω) ∩H1

0 (Ω)),
(3.30)

and therefore,
uτ

0 = uτ (0) −→ u(0) := u0 strongly in H2(Ω) ∩H1
0 (Ω),

uτ
1 = uτ

t (0) −→ ut(0) := u1 strongly in H2(Ω) ∩H1
0 (Ω).

(3.31)

It remains to prove that u solves the limiting problem. Let v ∈ C∞
0 ([0, T ];C∞

0 (Ω)). We have∫ T

0

∫
Ω

a(ut)uttv dxds− c2
∫ T

0

∫
Ω

b(ut)∆uv dxds+ δ

∫ T

0

∫
Ω

K2 ∗ ∇utt · ∇v dxds

+
∫ T

0

∫
Ω

N (∇u,∇ut)v dxds = rhs,

where, with ū = u− uτ , the right-hand side is

rhs :=
∫ T

0

∫
Ω

a(ut)ūttv dxds− c2
∫ T

0

∫
Ω

b(ut)∆ūv dxds+ δ

∫ T

0

∫
Ω

K2 ∗ ∇ūtt · ∇v dxds

−
∫ T

0

∫
Ω

τaK1 ∗ uτ
tttv dxds+ τac2

∫ T

0

∫
Ω

K1 ∗ ∆uτ
t v dxds

−
∫ T

0

∫
Ω

(a(uτ
t ) − a(ut))uτ

ttv dxds+ c2
∫ T

0

∫
Ω

(b(uτ
t ) − b(ut))∆uτv dxds−

−
∫ T

0

∫
Ω

(N (∇uτ ,∇uτ
t ) − N (∇u,∇ut))v dxds.

We should prove that rhs tends to zero as τ ↘ 0. We only comment here on how to tackle the a, b and
N terms; the other terms can be treated as in Section 3.3. By relying on the equivalence of the norms
∥a(ut)v∥L2 , ∥v∥L2 , and ∥b(ut)v∥L2 (under the assumptions of Theorem 3.3), we can conclude that∫ T ∫

a(ut)ūttv dxds+ c2
∫ T ∫

b(ut)∆ūv dxds → 0 as τ ↘ 0.

0 Ω 0 Ω
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N
f

We also have

−
∫ T

0

∫
Ω

(a(uτ
t ) − a(ut))uτ

ttv dxds+ c2
∫ T

0

∫
Ω

(b(uτ
t ) − b(ut))∆uτv dxds

= − 2k1

∫ T

0

∫
Ω

ūtu
τ
ttv dxds− 2k2c

2
∫ T

0

∫
Ω

ūt∆u
τv dxds,

which tends to zero as well thanks to (3.29) and (3.30). Finally,∫ T

0

∫
Ω

(N (∇uτ , uτ
t ) − N (∇u,∇ut))v dxds = 2k3

∫ T

0

∫
Ω

(∇ū · ∇uτ
t + ∇u · ∇ūt)v dxds,

which tends to zero on account of again (3.30) and the uniform bounds obtained in Theorem 3.3. Uniqueness
of solutions for the limiting problem follows by testing the equation solved by the difference ū of two solutions
by ūtt, similarly to the proof of contractivity in Theorem 3.3 given in Appendix B. This allows us to employ
a subsequence-subsequence argument on {uτ }τ∈(0,τ̄ ]. Altogether, we arrive at the following result.

Theorem 3.4. Let the assumptions of Theorem 3.3 hold for problem (3.28). Then the family {uτ }τ∈(0,τ̄ ] of
solutions to (3.28) converges in the sense of (3.29), (3.31) as τ ↘ 0 to the solution u ∈ X WB of⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 + 2k1ut)utt − c2(1 − 2k2ut)∆u− δK2 ∗ ∆utt

+ 2k3∇u · ∇ut = 0 in Ω × (0, T ),
u|∂Ω = 0,
(u, ut)|t=0 = (u0, u1).

(3.32)

As a by-product of the previous analysis, we obtain unique solvability of (3.32) for small data in
H3

♢(Ω) ×H3
♢(Ω).

4. Testing with utt and −∆K1 ∗ utt

We have seen in Section 3 that among the Compte–Metzler laws, testing with (−∆)νutt leads to a τ -
uniform bound only in the (fJMGT III) case. Therefore in this section, we will investigate an alternative
way of testing by somewhat weakening the time derivative in the multiplier: instead of −∆utt we will use
−K1 ∗ ∆utt. Complementary to this, we will also test with utt.

This testing strategy turns out to be applicable to all three Compte–Metzler laws of interest, with caveats.
The price to pay is that we have to restrict ourselves to Westervelt–Blackstock nonlinearities, unless dealing
with the (fJMGT I) equation with α ≤ 1/2 (Case I below). In this case we can prove existence of solutions
but not uniqueness.

Besides, when K1 ∈ L1(0, T ), for the analysis in this section to go through we need to rewrite the leading
term in (1.1) and consider

τa(K1 ∗ utt)t + autt − c2b∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt + N = τaK1(t)utt(0),

which will force us to assume u2 = 0 (and thus have that the right-hand side above is zero).

Assumptions on the two kernels in this section. In this section, we assume that

there exists K̃1 ∈ L1(0, T ), such that K1 ∗ K̃1 = 1. (H1)

ote that unlike in Section 3, here the resolvent is only required to be L1 regular. Furthermore, we need the
ollowing coercivity property of the kernel in the leading term:∫ t

(K1 ∗ y)′(s) y(s) ds ≥ −CK1 |y(0)|2, y ∈ X2
K1(0, t), (H2)
0
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for some (possibly large, but possibly also vanishing) constant CK1 . We also assume that∫ t

0
(K1 ∗ y)(s) y(s) ds ≥ Ψ [y](t), y ∈ L2(0, t), (H3)

or some functional Ψ . More precisely, we will assume the energy contribution due to Ψ to be quantified by
n estimate in some Sobolev norm∫ t

0
Ψ [∇utt](s) ds ∼ ∥∇u∥2

W σ,ρ(0,t;L2(Ω)) (H3 Ψ)

or some σ ∈ [0, 2] and ρ ∈ [2,∞]; see Table 4 for the Compte–Metzler laws.
Furthermore, we impose a coercivity condition on K2:∫ t

0
(K2 ∗ y)(s)y(s) ds ≥ 0, y ∈ L2(0, t). (H4)

How the two kernels behave relative to each other will also be important. More precisely, besides the
bove assumptions, the key coercivity property that we assume in this section is the following:∫ t

0
(K2 ∗ y)(s)(K1 ∗ y)(s) ds ≥ Φ[y](t), y ∈ L2(0, t), (H5)

where Φ is a nonnegative functional satisfying

sup
t′∈(0,t)

Φ[y](t′) ≥ c2 max
{

∥K1 ∗ 1 ∗ y∥2
L2(0,t), ∥1 ∗ 1 ∗ y∥2

L2(0,t)

}
, y ∈ L2(0, t) (4.1)

or some (possibly small) c2 > 0. Later on, we will assume the energy contribution due to Φ to be quantified
y an estimate in some Sobolev norm

sup
t′∈(0,t)

Φ[∆utt](t′) ∼ ∥∆u∥2
W s,r(0,t;L2(Ω)), (H5 Φ)

or some s ∈ [0, 2] and r ∈ [2,∞]; see Table 4. Concerning the further behavior of Φ, we distinguish between
wo cases.

ase I : “Kernel K2 is more singular than K1”
This condition constitutes the following: We assume that there exist constants c3 > 0 and a sufficiently

arge C3, such that

sup
t′∈(0,t)

Φ[y](t′) ≥ max
{
c3∥K1 ∗ y∥2

L2(0,t), C3∥1 ∗ 1 ∗ y∥2
L2(0,t)

}
, y ∈ L2(0, t). (H5 I)

ase II : “Kernel K2 is less singular than K1”
This condition should be understood as follows: We assume that

sup
t′∈(0,t)

Φ[y](t′)

≥C3 max
{

∥1 ∗ y∥2
Lp(0,t), ∥1 ∗ 1 ∗ y∥2

L∞(0,t), ∥K1 ∗ 1 ∗ y∥2
L∞(0,t),

}
, y ∈ L2(0, t)

(H5 II)

for some p ∈ [1,∞] and C3 > 0 sufficiently large. Further,

∇a = 0, a = 0, b ∈ Lq̃(0, T ;L∞(Ω)), (H II a, b)
t t 5
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Table 4
Kernels K1(t) = gα1 (t) and K2 = gα2 for different examples of generalized flux laws; values of
relevant quantities in the assumptions on kernels; here ι̃, ˜̃ι > 0 can be arbitrarily small; in
particular, they can be chosen such that q = p′ and thus q̃ = 1 in all cases.

Flux law α1 α2 p p′ q q̃ s r σ ρ

GFE I 1 − α α < ∞ 1 + ι̃ 1
α

− ˜̃ι 1 3
2 2 3+α

2 2
GFE III 0 α ∞ 1 1 1 2 − α

2 2 2 2
GFE 1 − α 1 2

1−α
2

1+α
1
α

− ˜̃ι 1 1 + α
2 2 3+α

2 2

where
either K1 = δ0 and q̃ = p′ = p

p− 1

or K1 ∈ Lq(0, T ), q ≤ p′, q̃ = p′q

p′q + q − p′ = pq

2pq − q − p

(H5 II K1)

with p as in (H5 II).

Assumptions on the variable coefficients. We will need the following smoothness and non-degeneracy
assumptions:

a,
1
a
, b ∈ L∞(0, T ;L∞(Ω)), ∥a − a0∥L∞(L∞) ≤ c4 (4.2)

for some constants a0 > 0 and c4, where the latter will be assumed to be small enough (independently of
τ); cf. (4.7) for Case I. In Case II we will even need a − a0 = 0.

4.1. How to verify assumptions on the kernels

As noted before, assumption (H2) is satisfied for all Compte–Metzler laws considered due to [29, Lemma
5.1]. Conditions (H3) and (H4) hold for the three laws considered in this work due to [36, Lemma 2.3] with
the choice

K1 = gα1 = 1
Γ (α1) t

α1−1, Ψ [y] = cos(α1π/2)∥y∥
H−α1/2(0,t), K2 = gα2

ith α1, α2 ∈ [0, 1]. Also assumption (H5) which relates the two kernels is satisfied for all three
ompte–Metzler laws of interest. More precisely, we have

Φ[y] = c̃(α1, α2) cos((α2 − α1)π/2)∥y∥
H−(α2+α1)/2(0,T ).

Condition (H5 I) means that the damping by K2 is at least as strong (in the sense of higher order of
ifferentiation) as the one by K1. However, among the Compte–Metzler laws it is only satisfied for the GFE
kernel with α ≤ 1

2 .
Condition (H5 II) is satisfied for the GFE I kernel with α ≥ 1

2 , as well as for the GFE III and GFE
ernels. Largeness of the constant C3 in assumptions (H5 I) and (H5 II) can be achieved by using Hölder’s

inequality and making T small enough.
Assumption (H5 II K1) holds for the GFE III kernel and, with any q ∈ [1, 1

1−α ) for the GFE I and GFE
kernels.

The three Compte–Metzler laws and relevant further information are summarized in Table 4, where we
have also listed s, r, σ, and ρ, such that (H5 Φ) holds.

4.2. Well-posedness of the linearized problem

Again, we first present the main ideas of establishing well-posedness of the linearized equation

a 2 a 2
τ (K1 ∗ utt)t + autt − c b∆u− τ c K1 ∗ ∆ut − δK2 ∗ ∆utt = f, (4.3)
24
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in particular, the energy estimates that will be needed for this purpose in each of the above-mentioned Cases
I and II.

Testing with utt. We start with the low-order energy estimate that is the same for both cases, obtained by
testing with utt. To this end, we interpret Eq. (4.3) as

τa(K1 ∗ utt)t + autt − δK2 ∗ ∆utt = r̄

with the right-hand side
r̄ = f + c2b∆u+ τac2K1 ∗ ∆ut

and test it with utt. By assumptions (H2) and (H4), we obtain∫ t

0
|
√
autt|

2
L2 ds ≤

 1√
a
r̄


L2

t (L2)
∥
√
autt∥L2

t (L2) + CK1∥utt(0)∥2
L2 .

he r term can be estimated as follows: 1√
a
r̄


L2

t (L2)
≤

 1√
a


L∞(L∞)

∥r̄∥L2
t (L2)

ith
∥r̄∥L2

t (L2) ≤ ∥f∥L2
t (L2) + c2∥b∥L∞(L∞)∥∆u∥L2

t (L2) + τac2∥K1 ∗ ∆ut∥L2
t (L2)

≤ ∥f∥L2
t (L2) + c2∥b∥L∞(L∞)(t1/2∥∆u(0)∥L2 + t3/2∥∆ut(0)∥L2)

+ c2τat1/2∥K1∥M(0,t)∥∆ut(0)∥L2 + c2(∥b∥L∞(L∞) + τa)/√c2
√

Φ[∆utt],

where we have relied on (4.1). Altogether,

∥utt∥2
L2

t (L2) ≲ ∥f∥2
L2(L2) + Φ[∆utt] + CK1∥utt(0)∥2

L2 + t∥∆u(0)∥2
L2

+ t3∥∆ut(0)∥2
L2 .

(4.4)

e keep track of CK1 here because it comes with high-order initial data but is nonzero only in the exceptional
ase K1 = δ0. Later on we will see that for a different reason we will anyway have to assume utt(0) = 0. The
idden constant in (4.4) is independent of both T and τ .

Testing with −K1 ∗ ∆utt. The higher-order estimate is obtained by rearranging Eq. (4.3) as

τa(K1 ∗ utt)t + a0utt − τac2K1 ∗ ∆ut − δK2 ∗ ∆utt = r̄

for a0 > 0 with now
r̄ = f − (a − a0)utt + c2b∆u

and testing it with
−K1 ∗ ∆utt = −(K1 ∗ ∆ut)t + K1 · ∆ut(0).

Using assumption (H3) with y = ∇utt(x) as well as (H5) with y = −∆utt(x) yields

1
2τ

a
[
∥K1 ∗ ∇utt∥2

L2 + c2∥K1 ∗ ∆ut∥2
L2

]t

0
+ a0

∫ t

0
Ψ [∇utt](s) ds+ δΦ[∆utt](t)

≤ rhs + τac2
∫ t

0

∫
Ω

K1 ∆ut(0)K1 ∗ ∆ut dxds,
(4.5)

here
rhs :=

∫ t ∫
(f − (a − a0)utt + c2b∆u)(−K1 ∗ ∆utt) dxds. (4.6)
0 Ω
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We can estimate the second term on the right in (4.5) using⏐⏐⏐ ∫ t

0

∫
Ω

K1 ∆ut(0)K1 ∗ ∆ut dxds
⏐⏐⏐ ≤ ∥K1∥M(0,t)∥∆ut(0)∥L2∥K1 ∗ ∆ut∥L∞

t (L2).

e distinguish between two cases in the further treatment of the right-hand side.

ase I: Due to (H5 I), assumptions (4.2) on the variable coefficients, and Young’s inequality, as well as the
lementary estimate

∥K1 ∗ ∆ut∥L∞
t (L2) ≤ ∥(K1 ∗ ∆ut)(0)∥L2 +

√
t∥(K1 ∗ ∆ut)t∥L2

t (L2),

ll terms containing u on the right-hand side of (4.5) can be estimated by means of Φ(∆utt) and the already
obtained L2(0, t;L2(Ω)) estimate of utt. Indeed,

rhs + τac2
∫ t

0

∫
Ω

K1 ∆ut(0)K1 ∗ ∆ut dxds

≤ ϵ∥K1 ∗ ∆utt∥2
L2

t (L2) + 1
ϵ

∥f∥2
L2

t (L2) + 1
ϵ

∥a − a0∥2
L∞

t (L∞)∥utt∥2
L2

t (L2)

+ 1
ϵ
c4∥b∥2

L∞
t (L∞)∥∆u∥2

L2
t (L2) + µ∥K1 ∗ ∆ut∥2

L∞
t (L2) + 1

4µτ
2ac4∥K1∥2

M(0,t)∥∆ut(0)∥2
L2

≤
(ϵ+ 2tµ

c3
+
c4∥b∥2

L∞(L∞)

ϵC3

)
Φ(∆utt) + 1

ϵ
∥f∥2

L2
t (L2) + 1

ϵ
∥a − a0∥2

L∞
t (L∞)∥utt∥2

L2
t (L2)

+ 2µ∥(K1 ∗ ∆ut)(0)∥2
L2 + 1

4µτ
2ac4∥K1∥2

M(0,t)∥∆ut(0)∥2
L2

or any µ, ϵ > 0. By first choosing ϵ and µ sufficiently small and then assuming C3 to be sufficiently large
which might necessitate a decrease of T , see the comment on largeness of C3 in Section 4.1), we can achieve

ϵ+ 2tµ
c3

+
c4∥b∥2

L∞(L∞)

ϵC3
≤ δ

2
nd therefore end up with

1
2τ

a
[
∥K1 ∗ ∇utt∥2

L2 + c2∥K1 ∗ ∆ut∥2
L2

]t

0
+ a0

∫ t

0
Ψ [∇utt](s) ds+ δΦ[∆utt](t)

≤C(t)
(

∥f∥2
L2(L2) + ∥a − a0∥2

L∞
t (L∞)∥utt∥2

L2(L2) + ∥(K1 ∗ ∆ut)(0)∥2
L2

+τ2a∥K1∥2
M(0,T )∥∆ut(0)∥2

L2

)
,

where C(t) > 0 might depend on t but not on τ . Combining this bound with estimate (4.4) where C > 0 is
the hidden constant and assuming

C C(t)∥a − a0∥2
L∞

t (L∞) <
δ

8 , (4.7)

we arrive at the τ -uniform estimate

τa
[
∥K1 ∗ ∇utt∥2

L2 + c2∥K1 ∗ ∆ut∥2
L2

]t

0
+ ∥utt∥2

L2
t (L2) +

∫ t

0
Ψ [∇utt](s) ds

+ sup
t′∈(0,t)

Φ[∆utt](t′)

≲T ∥f∥2
L2(L2) + ∥(K1 ∗ ∆ut)(0)∥2

L2 + τ2a∥K1∥2
M(0,t)∥∆ut(0)∥2

L2 + CK1∥utt(0)∥2
L2

+ ∥∆u(0)∥2
L2 + ∥∆ut(0)∥2

L2 .

(4.8)

Recall that we assume δ to be fixed while τ ∈ (0, τ ] might be arbitrarily small.

ase II: Here the a− a0 term in (4.6) cannot be estimated by means of Φ[∆utt] any more due to the factor
∗ ∆u . We therefore have to assume a − a to vanish, that is, a to be constant; cf. (H II a, b).
1 tt 0 5
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The further estimate of
rhs =

∫ t

0

∫
Ω

(f + c2b∆u)(−K1 ∗ ∆utt) dxds

becomes somewhat complicated since now Φ[∆utt] cannot dominate the L2(0, t;L2(Ω)) norm of the
ultiplier K1 ∗∆utt. We estimate h := f + c2b∆u using the integration by parts and transposition identities

involving kernels∫ T

0
yt(T − t)w(t) dt =

∫ T

0
y(T − t)wt(t) dt− w(T )y(0) + w(0)y(T ), y, w ∈ W 1,1(0, T )∫ T

0
(K1 ∗ y)(T − t)w(t) dt =

∫ T

0
(K1 ∗ w)(t)y(T − t) dt, y, w ∈ L1(0, T ),

(4.9)

s well as the timeflip operator defined by ht(s) = h(t− s), and the identity

(at, b)L2(0,t) = (a ∗ b)(t) = (b ∗ a)(t).

n this manner, we obtain the following identities:∫ t

0

∫
Ω

h(s) (K1 ∗ ∆utt)(s) dxds

=
∫ t

0

∫
Ω

h
t(t− s) ((K1 ∗ ∆ut)t(s) − K1(s)∆ut(0)) dxds

=
∫
Ω

(
∆ut ∗ K1 ∗ (ht)t

)
(t) +

[
h

t(t− s) (K1 ∗ ∆ut)(s)
]t

s=0
−

∫ t

0
h

t(t− s)K1(s)∆ut(0) dxds

nd thus ∫ t

0

∫
Ω

h(s) (K1 ∗ ∆utt)(s) dxds

=
∫ t

0

∫
Ω

∆ut(s) (K1 ∗ (ht)t)(t− s) dxds

+
∫
Ω

(
h(t)(K1 ∗ ∆ut)(t) − h(0)(K1 ∗ ∆ut)(0) − ∆ut(0)

∫ t

0
K1(s)h(s) ds

)
dx.

From here we have ⏐⏐⏐ ∫ t

0

∫
Ω

h(s) (K1 ∗ ∆utt)(s) dxds
⏐⏐⏐

≤ ∥∆ut∥L
p
t (L2)∥K1 ∗ (ht)t∥

L
p′
t (L2)

+ ∥h∥L∞
t (L2)∥K1 ∗ ∆ut∥L∞

t (L2)

+ ∥h(0)∥L2∥(K1 ∗ ∆ut)(0)∥L2 + ∥∆ut(0)∥L2∥h∥L∞
t (L2)∥K1∥M(0,t)

or p ∈ [1,∞] as in (H5 II) and p′ = p
p−1 . Further, by Young’s convolution inequality

∥K1 ∗ (b∆ut)t∥
L

p′
t (L2)

≤ ∥K1∥Lq(0,t)∥bt∆u+ b∆ut∥L
q̃
t (L2)

≤ ∥K1∥Lq(0,t)

(
∥bt∥L

q̃
t (L∞)∥∆u∥L∞

t (L2) + ∥b∥L∞
t (L∞)∥∆ut∥L

q̃
t (L2)

)
,

(4.10)

where q̃ = p′q
p′q+q−p′ so that 1 + 1

p′ = 1
q + 1

q̃ and q ≤ p′ as in (H3). Note that estimate (4.10) is the general
ernel substitute for the Kato–Ponce inequality used in [12] to analyze the fJMGT equations. In case K1 = δ0,

q
′
4.10) remains valid with ∥K1∥L (0,t) replaced by one and q̃ = p .
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Estimating further by means of assumption (H5 II) (which again might require a decrease of T to achieve
C3 to be large enough) yields the τ -uniform estimate:

τa
[
∥K1 ∗ ∇utt∥2

L2 + c2∥K1 ∗ ∆ut∥2
L2

]t

0
+ ∥utt∥2

L2
t (L2) +

∫ t

0
Ψ [∇utt](s) ds

+ sup
t′∈(0,t)

Φ[∆utt](t′)

≲T ∥f∥2
L∞(L2) + ∥ft∥2

L
q̃
t (L2)

+ ∥∆ut(0)∥2
L2 + ∥∆u(0)∥2

L2 + CK1∥utt(0)∥2
L2 ,

(4.11)

again assuming δ to be fixed while τ ∈ (0, τ ] might be arbitrarily small. As a consequence, the natural
solution space here is

X τ = { u ∈W s,r(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩Wσ,ρ(0, T ;H1

0 (Ω)) :
utt ∈ L2(0, T ;L2(Ω)), ut, ∆u ∈ X∞

K1(0, T ;L2(Ω)) }
(4.12)

nd the τ -uniform solution space is

X = {u ∈ W s,r(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩Wσ,ρ(0, T ;H1

0 (Ω)) :
utt ∈ L2(0, T ;L2(Ω))},

here the space X∞
K1

(0, t′) is defined in (2.14).
As previously mentioned, since we have used (K1 ∗ utt)t in place of K1 ∗ uttt in the derivation of both

nergy estimates (4.8) and (4.11) above, we have to add K1(s) · utt(0) to the right-hand side. Consequently
e would have to assume K1 ∈ L2(0, T ) in Case I and even K1 ∈ L∞(0, T ) ∩W 1,q̃(0, T ) in Case II. To avoid

his, we impose the condition u2 = 0 in the upcoming analysis.

roposition 4.1. Let T > 0 and τ ∈ (0, τ̄ ] for some fixed τ̄ > 0. Let assumptions (2.13) and (H1)–(H5 Φ)
n the kernels hold, as well as

u0, u1 ∈ H2(Ω) ∩H1
0 (Ω), u2 = 0

nd the additional following assumptions on the kernels, coefficients a, b, and the right-hand side:

(I) (H5 I), (4.7), f ∈ L2(0, T ;L2(Ω)), or
(II) (H5 II), (H5 II a, b), (H5 II K1), f ∈ L∞(0, T ;L2(Ω)) ∩W 1,q̃(0, T ;L2(Ω))

ith q̃ as in (H5 II K1). Then there exists a unique solution u ∈ X τ ⊆ X of the initial boundary-value problem⎧⎪⎨⎪⎩
τa(K1 ∗ utt)t + a(x, t)utt − c2b(x, t)∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt = f(x, t),
u|∂Ω = 0,
(u, ut, utt)|t=0 = (u0, u1, u2).

(4.13)

he solution satisfies the following τ -uniform estimate:

∥u∥2
X ≲T

{
∥f∥2

L2(L2) + ∥∆u(0)∥2
L2 + ∥∆ut(0)∥2

L2 + τ2a∥K1∥2
M(0,T )∥∆ut(0)∥2

L2 (I),
∥f∥2

L∞(L2) + ∥ft∥2
Lq̃(L2) + ∥∆u(0)∥2

L2 + ∥∆ut(0)∥2
L2 (II).

Proof. The proof follows by a Faedo–Galerkin procedure, where Appendix A can be used to establish
well-posedness of the ODEs resulting from Galerkin semidiscretization. The testing strategies shown above
and resulting in (4.8), (4.11) are then applied to the Galerkin solutions in place of u.

Stating the energy estimates in terms of Sobolev norms ∥utt∥, ∥∇u∥W s,r(0,t), and ∥∆u∥W σ,ρ(0,t) (cf.

(H5 Φ)), we can rely on weak−∗ lower continuity of these norms when taking weak limits. Moreover, we use
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Lemma 2.1 with p = ∞ to also take limits in the τa terms of (4.8) and (4.11). This is useful for enabling
he use of ∆ut as a multiplier in the uniqueness proof.

niqueness. Since u ∈ X τ , with X τ defined in (4.12), we can test the time integrated homogeneous PDE
ith vanishing f and initial data (not only its Galerkin semidiscretization) in the way described above (that

s, testing with the time integrated versions −K1 ∗ ∆ut, ut of −K1 ∗ ∆utt, utt) and analogously obtain from
4.8), (4.11) that its solution needs to vanish. □

.3. Uniform well-posedeness with Kuznetsov–Blackstock and Westervelt–Blackstock nonlinearities in Case

To relate the previous analysis to the nonlinear equation, we again consider the fixed-point mapping
: B ∋ u∗ ↦→ u, on the ball

B = {u∗ ∈ X : ∥u∗∥X ≤ R, (u∗, u∗
t , u

∗
tt)|t=0 = (u0, u1, 0)}.

ere u = T u∗ solves (4.3) with

a(u∗, u∗
t ) =

{
1 + 2k1u

∗ (WB),
1 + 2k1u

∗
t (KB),

b(u∗, u∗
t ) =

{
1 − 2k2u

∗ (WB),
1 − 2k2u

∗
t (KB),

(4.14)

nd

f(x, t) = −N (u∗
t ,∇u∗,∇u∗

t ) =
{

−2k3(u∗
t )2 (WB),

−2k3∇u∗ · ∇u∗
t (KB),

(4.15)

here (WB) stands for the Westervelt–Blackstock and (KB) for Kuznetsov–Blackstock nonlinearities.

heorem 4.1. Let T > 0 and τ ∈ (0, τ̄ ]. Let assumptions (2.13) and (H1)–(H5 Φ), (H5 I) on the kernels
1 and K2 hold with s, r, σ, and ρ so that the following continuous embedding holds:

W s,r(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩Wσ,ρ(0, T ;H1(Ω))

↪→

{
L∞(0, T ;L∞(Ω)) ∩W 1,4(0, T ;L4(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) (WB),
W 1,∞(0, T ;L∞(Ω)) ∩H1(0, T ;W 1,4(Ω)) ∩ L2(0, T ;H2(Ω) ∩H1

0 (Ω)) (KB).
(4.16)

here exists a data size r = r(T ) > 0, independent of τ , such that if

∥∆u(0)∥2
L2 + ∥∆ut(0)∥2

L2 + τ2a∥K1∥2
M(0,T )∥∆ut(0)∥2

L2 ≤ r2, (4.17)

hen there is a unique solution u ∈ B of the nonlinear initial boundary-value problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τaK1 ∗ uttt + a(u, ut)utt − c2b(u, ut)∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt

= −N (ut,∇u,∇ut),
u|∂Ω = 0,
(u, ut, utt)|t=0 = (u0, u1, 0).

(4.18)

roof. The proof goes analogously to the one of Theorem 3.3, using the fact that u = T u∗ solves (4.13)
ith a, b, and f as in (4.14) and (4.15) to establish self-mapping and the fact that ϕ = u−v := T (u∗)−T (v∗)

olves (4.13) with

a(u∗, u∗
t ) =

{
1 + 2k1u

∗ (WB),
∗ b(u∗, u∗

t ) =
{

1 − 2k2u
∗ (WB),
∗ (4.19)
1 + 2k1ut (KB), 1 − 2k2ut (KB),
29
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and, with ϕ∗ = u∗ − v∗,

=
{

−2ϕ∗(k1vtt + k2∆v) − 2k3ϕ
∗
t (u∗

t + v∗
t ) (WB),

−2ϕ∗
t (k1vtt + k2∆v) − 2k3∇ϕ∗ · ∇u∗

t − 2k3∇v∗ · ∇ϕ∗
t (KB),

(4.20)

for establishing contractivity. Indeed, the continuous embedding assumption (4.16) together with smallness
of data size r as well as R ensures the required bounds. □

The fact that a Kuznetsov-type nonlinearity is enabled here under only H2 regularity of the initial data
(cf. [42]) is due to the relative strength of the damping term with factor δ in Case I, where kernel K2 is more
singular than K1.

4.4. Uniform existence with Westervelt–Blackstock nonlinearities in Case II

To treat Case II, we restrict our considerations to the Westervelt–Blackstock nonlinearities with k1 = 0;
that is, we analyze the following equation:

τaK1 ∗ uttt + utt − c2(1 − 2k2u)∆u− τac2K1 ∗ ∆ut − δK2 ∗ ∆utt + 2k3u
2
t = 0.

Theorem 4.2. Let T > 0 and τ ∈ (0, τ̄ ]. Let assumptions (2.13) and (H1)–(H5 Φ), (H5 II), (H5 II K1) on
the kernels K1 and K2 hold and let

u0, u1 ∈ H2(Ω) ∩H1
0 (Ω), u2 = 0,

and
W s,r(0, T ;H2(Ω) ∩H1

0 (Ω)) ∩Wσ,ρ(0, T ;H1(Ω)) ↪→ L∞(0, T ;L∞(Ω)). (4.21)

There exists a data size r = r(T ) > 0, independent of τ , such that if (4.17) holds, then there is a solution
u ∈ B of the nonlinear initial boundary-value problem (4.18) in case (WB) with k1 = 0 in (4.14).

Proof. Establishing a self-mapping property of T on a sufficiently small ball works as in the proof of
Theorems 3.3 and 4.1, based on assumption of having the continuous embedding in (4.21), which implies
continuity of the embedding

W s,r(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩Wσ,ρ(0, T ;H1(Ω))

↪→L∞(0, T ;L∞(Ω)) ∩W 1,q̃(0, T ;L∞(Ω)) ∩W 1,∞(0, T ;L4(Ω)) ∩W 1,
2q̃

2−q̃ (0, T ;L∞(Ω)).

However, a corresponding assumption leading to contractivity based on (4.19), (4.20) would be unrealistically
strong; see Remark 2. We therefore (similarly to [16,43]) only prove existence of solutions based on a general
version of Schauder’s fixed-point theorem in locally convex topological spaces (see [44]) and for this purpose
establish weak−∗ continuity of T as follows.

For any sequence (u∗
n)n∈N ⊆ B that weakly−∗ converges to u∗ ∈ B in X , we also have

(T (u∗
n))n∈N ⊆ B.

hus, by compactness of the embedding X → W 1,∞(0, T ;L∞(Ω)), there exists a subsequence (u∗
nℓ

)ℓ∈N such
hat 1 ± k1/2u

∗
nℓ t converges to 1 ± k1/2u

∗
t strongly in L∞(0, T ;L∞(Ω)) and T (u∗

nℓ
) converges weakly* in X

o some u ∈ B, which by definition of B satisfies the initial and homogeneous Dirichlet boundary conditions.
t is readily checked that u also solves the PDE defining T (u∗), which, by uniqueness in Proposition 4.1,
mplies u = T (u∗). A subsequence-subsequence argument yields weak−∗ convergence in X of the whole

∗ ∗
equence (T (un))n∈N to T (u ). □
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As can be read off from Table 4, embedding (4.21) is satisfied for all Compte–Metzler laws. To establish
embedding (4.16) for GFE I, we use interpolation

∥w∥
H

3
2 + α(1−ϵ)

4 (0,T ;H
3+ϵ

2 (Ω))
≲ ∥w∥

1+ϵ
2

H
3
2 (0,T ;H2(Ω)∩H1

0 (Ω))
∥w∥

1−ϵ
2

H
3+α

2 (0,T ;H1(Ω))

ith α > 0 and ϵ ∈ (0, 1).

emark 2 (Uniqueness of Solutions Of (4.18) in Case II). To prove contractivity of T in Case II with
estervelt–Blackstock nonlinearity when k1 ̸= 0 (that is, with a = 1 + 2k1u), we would need

2ϕ∗(k1vtt + k2∆v) − 2(k1 + k2)(u∗
t + v∗

t )ϕ∗
t ∈ L∞(0, T ;L2(Ω)) ∩W 1,q̃(0, T ;L2(Ω)),

thus requiring an estimate on vttt (and thus ψttt in the existence proof). This is clearly beyond the scope of
the available energy estimates. Time differentiation of the PDE and further testing might enable this at the
cost of stronger conditions on the initial data.

Likewise, Kuznetsov-type nonlinearities (a = 1 + 2k1ut) in Case II would require utt ∈ Lq̃(0, T ;L∞(Ω))
as needed for bt ∈ Lq̃(0, T ;L∞(Ω)) in estimate (4.10)), which seems to be out of reach for most Compte–

Metzler laws. The (fJMGT) equation based on the GFE law, where K2 = 1, allows for an alternative testing
strategy that makes it possible to incorporate also Kuznetsov-type nonlinearities under stronger assumptions
on the regularity of data; we refer to [18] for details and the corresponding analysis.

Note that the results obtained for the (fJMGT III) equation here are weaker than in the previous
Section 3.

4.5. Weak singular limits

We next discuss the weak limiting behavior of these nonlocal equations in both cases. Let τ ∈ (0, τ̄ ].
Under the assumptions of Theorems 4.1 and 4.2 with uniformly bounded data

∥∆uτ (0)∥2
L2 + ∥∆uτ

t (0)∥2
L2 + τ2a∥K1∥2

M(0,T )∥∆u
τ
t (0)∥2

L2 ≤ r2

and r independent of τ as in Theorems 4.1 and 4.2, consider⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
τaK1 ∗ uτ

ttt + a(uτ , uτ
t )uτ

tt − c2b(uτ , uτ
t )∆uτ − τac2K1 ∗ ∆uτ

t

− δK2 ∗ ∆uτ
tt + N (ut,∇u,∇ut) = 0 in Ω × (0, T ),

uτ |∂Ω = 0,
(uτ , uτ

t , u
τ
tt)|t=0 = (uτ

0 , u
τ
1 , 0).

According to Theorems 4.1, 4.2 a solution of this problem exists in B (although it might not be unique in
Case II). Therefore, we have the following uniform bounds with respect to the relaxation time:{

uτ is bounded in W s,r(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩Wσ,ρ(0, T ;H1(Ω)),

uτ
tt is bounded in L2(0, T ;L2(Ω)).

(4.22)

ence existence of a subsequence, not relabeled, such that

uτ −⇀ u weakly-⋆ in W s,r(0, T ;H2(Ω) ∩H1
0 (Ω)) ∩Wσ,ρ(0, T ;H1(Ω)),

uτ
tt −⇀ utt weakly in L2(0, T ;L2(Ω)).

(4.23)

ssuming compactness of the embedding

β0 1 β1
X ↪→↪→ C([0, T ];H (Ω)) ∩ C ([0, T ];H (Ω)), β0, β1 ≥ 0 (4.24)
31
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we have additionally
uτ −→ u strongly in C([0, T ];Hβ0(Ω)),
uτ

t −→ ut strongly in C([0, T ];Hβ1(Ω)).
(4.25)

e should prove that u solves the limiting problem. Let v ∈ C∞
0 ([0, T ];C∞

0 (Ω)). We have with ū = u− uτ :∫ T

0

∫
Ω

a(u, ut)uttv dxds− c2
∫ T

0

∫
Ω

b(u, ut)∆uv dxds+ δ

∫ T

0

∫
Ω

K2 ∗ ∇utt · ∇v dxds

+
∫ T

0

∫
Ω

N (ut,∇u,∇ut)v dxds

=
∫ T

0

∫
Ω

a(u, ut)ūttv dxds− c2
∫ T

0

∫
Ω

b(u, ut)∆ūv dxds+ δ

∫ T

0

∫
Ω

K2 ∗ ∇ūtt · ∇v dxds

−
∫ T

0

∫
Ω

τaK1 ∗ (uτ
ttt − c2∆uτ

t )v dxds

−
∫ T

0

∫
Ω

(a(uτ , uτ
t ) − a(u, ut))uτ

ttv dxds+ c2
∫ T

0

∫
Ω

(b(uτ , uτ
t ) − b(u, ut))∆uτv dxds

−
∫ T

0

∫
Ω

(N (uτ
t ,∇uτ ,∇uτ

t ) − N (ut,∇u,∇ut))v dxds.

e wish to prove that the right-hand side tends to zero as τ ↘ 0. To this end, we rely on the established
eak and strong convergence in (4.23) and (4.25), respectively. We first discuss the terms involving the
ernels and treat them by means of transposition and integration by parts (see (4.9)), which as compared
o the proof of Theorem 3.2 is required due to the limited regularity of ūtt:∫ T

0

∫
Ω

(K2 ∗ ∇ūtt)(s) · ∇v(s) dxds = −
∫ T

0

∫
Ω

(K2 ∗ ūtt)(s) · ∆vT (T − s) dxds

= −
∫ T

0

∫
Ω

ūtt(s) · (K2 ∗ ∆v
T )(T − s) dxds → 0 as τ ↘ 0,

and for wτ := uτ
tt − c2∆uτ

τa

∫ T

0

∫
Ω

(K1 ∗ wτ
t )(s)v(s) dxds = τa

∫ T

0

∫
Ω

(K1 ∗ wτ
t )(s)vT (T − s) dxds

= τa

∫ T

0

∫
Ω

wτ
t (s)(K1 ∗ vT )(T − s) dxds

= τa
(∫ T

0

∫
Ω

wτ (s)(K1 ∗ vT )t(T − s) dxds−
∫
Ω

wτ (0)(K1 ∗ vT )t(T ) dx
)

→ 0 as τ ↘ 0.

ere we have used the fact that due to v ∈ C∞
0 ([0, T ];C∞

0 (Ω)) we have

(K1 ∗ vT )t(t) = (K1 ∗ vT
t )(t) + K1(t)vT (0) = −

∫ t

0
K1(s)vt(T − s) ds

which vanishes for t = 0, even in case K1 = δ0.
By relying on the equivalence of the norms ∥a(u, ut)v∥L2 , ∥v∥L2 , and ∥b(u, ut)v∥L2 , we can conclude that∫ T

0

∫
Ω

a(u, ut)ūttv dxds+ c2
∫ T

0

∫
Ω

b(u, ut)∆ūv dxds → 0 as τ ↘ 0.

e have

−
∫ T

0

∫
Ω

(a(uτ , uτ
t ) − a(u, ut))uτ

ttv dxds+ c2
∫ T

0

∫
Ω

(b(uτ , uτ
t ) − b(u, ut))∆uτv dxds

= − 2
∫ T ∫

w̄(k1u
τ
tt + k2∆u

τ )v dxds

0 Ω
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with w̄ = ū (WB) or w̄ = ūt (KB), which tends to zero as well thanks to (4.22) and (4.25). Finally, with the
estervelt–Blackstock type nonlinearity (cf. (4.19), (4.20)):∫ T

0

∫
Ω

(N (uτ
t ) − N (ut))v dxds = 2k3

∫ T

0

∫
Ω

ūt(ut + uτ
t )v dxds

= − 2k3

∫ T

0

∫
Ω

ū((ut + uτ
t )v)t dxds

and with the Kuznetsov–Blackstock nonlinearity:∫ T

0

∫
Ω

(N (∇uτ , uτ
t ) − N (∇u,∇ut))v dxds = 2k3

∫ T

0

∫
Ω

(
∇ū · ∇uτ

t + ∇u · ∇ūt

)
v dxds.

We have
∇ū → 0 in L2(0, T ;L2(Ω)), ∥v∇uτ

t ∥L2(L2) ≤ ∥v∥L∞(L∞)∥∇uτ
t ∥L2(L2)

and
ūt ⇀ 0 weakly in L2(0, T ;L2(Ω)), ∥∇ · (v∇u)∥L2(L2) ≤ ∥v∥L∞(L∞)∥∆u∥L2(L2)

+ ∥∇v∥L∞(L4)∥∇u∥L2(L4).

In both cases these terms tend to zero on account of again (4.22), (4.23), and (4.25). The attainment of initial
conditions (u1, u2) follows by (4.25), analogously to (3.19). With a subsequence-subsequence argument and
using uniqueness for the limiting equation, similarly to Theorem 3.2, this leads to the following result.

Theorem 4.3. Let the assumptions of Theorems 4.1 or 4.2 with

∥∆uτ (0)∥2
L2 + ∥∆uτ

t (0)∥2
L2 + τ2a∥K1∥2

M(0,T )∥∆u
τ
t (0)∥2

L2 ≤ r2,

for τ ∈ (0, τ̄ ], as well as embedding (4.24) hold. Then any family {uτ }τ∈(0,τ̄ ] of solutions to (4.18) converges
weakly in the sense of (4.23) to the solution u ∈ X of⎧⎪⎨⎪⎩

a(u, ut)utt − c2b(u, ut)∆u− δK2 ∗ ∆utt + N (ut,∇u,∇ut) = 0
u|∂Ω = 0,
(u, ut)|t=0 = (u0, u1)

with a and b as in (4.14) and N as in (4.15) (and restricted to the Westervelt–Blackstock case with k1 = 0
under the conditions of Theorem 4.2).

Remark 3 (Weak Limits for Solutions of The fJMGT Equations). The condition on the compactness of the
embedding (4.24) that is left to be verified, for equations based on the Compte–Metzler fractional laws holds
by interpolation

Hσ(0, T ;H1(Ω)) ∩Hs(0, T ;H2(Ω)) ⊆ Hθiσ+(1−θi)s(0, T ;H2−θi(Ω))
↪→ Ci([0, T ];Hβi(Ω)), i ∈ {0, 1}

for θi >
i+1/2−s

σ−s . This yields β0 ∈ (0, 2) and β1 ∈ (0, 2 − 3−2s
2(σ−s) ); more precisely, β1 ∈ (0, 2) for the laws

FE I, GFE III and β1 ∈ (0, 1 + α) for GFE.
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T

Appendix A. Analysis of the semi-discrete problems

We present in this appendix the proof of the unique solvability of the semi-discrete problem considered
in Propositions 3.1 and 4.1. Let {ϕi}i≥1 be a basis of V = H2(Ω) ∩H1

0 (Ω) consisting of the eigenfunctions
of the Dirichlet–Laplace operator. Let Vn = span{ϕ1, . . . , ϕn} ⊂ V and set

u(n)(t) =
n∑

i=1
ξ

(n)
i (t)ϕi.

We choose the approximate initial data as

u
(n)
0 =

n∑
i=1

ξ
(0,n)
i ϕi, u

(n)
1 =

n∑
i=1

ξ
(1,n)
i ϕi, u

(n)
2

n∑
i=1

ξ
(2,n)
i ϕi ∈ Vn,

(with u
(n)
2 = 0 in Proposition 4.1) such that

u
(n)
0 → u0 in H2(Ω) ∩H1

0 (Ω), u(n)
1 → u1 in H2(Ω) ∩H1

0 (Ω), and u
(n)
2 → u2 in H1

0 (Ω), n → ∞.

For each n ∈ N, the system of Galerkin equations is given by

τa
n∑

i=1
(K1 ∗ ξ(n)

i,ttt)(t)(ϕi, ϕj)L2 +
n∑

i=1
ξ

(n)
i,tt(a(t)ϕi, ϕj)L2 + c2

n∑
i=1

ξ
(n)
i (b(t)∆ϕi, ϕj)L2

+ τac2
n∑

i=1
(K1 ∗ ξ(n)

i,t )(t)(∇ϕi,∇ϕj)L2 + δ

n∑
i=1

(K2 ∗ ξ(n)
i,tt)(t)(∇ϕi,∇ϕj)L2

= (f(t), ϕj)L2

for a.e. t ∈ (0, T ) and all j ∈ {1, . . . , n}. With ξ = [ξ(n)
1 . . . ξ

(n)
n ]T , we can write this system in matrix form{

τaMK1 ∗ ξttt +Maξtt +Kbξ + τac2KK1 ∗ ξt + δKK2 ∗ ξtt = f ,

(ξ, ξt, ξtt)|t=0 = (ξ0, ξ1, ξ2),

where (ξ0, ξ1, ξ2) = ([ξ(0,n)
1 . . . ξ

(0,n)
n ]T , [ξ(1,n)

1 . . . ξ
(1,n)
n ]T , [ξ(2,n)

1 . . . ξ
(2,n)
n ]T ). Above, M and K are the

standard mass and stiffness matrices, respectively. Ma and Kb are matrices with the following weighted
entries:

Ma,ij = (aϕi, ϕj)L2 , Kb,ij = −(b∆ϕi, ϕj)L2 .

Let µ = K1 ∗ ξttt be the new unknown. Then with K̃1 defined by (A1) we have

ξtt = K̃1 ∗ µ + ξ2,

ξt = 1 ∗ K̃1 ∗ µ + ξ2t+ ξ1,

ξ = 1 ∗ 1 ∗ K̃1 ∗ µ + ξ2
t2

2 + ξ1t+ ξ0.

he system can then be equivalently rewritten as a system of Volterra equations:

τaµ +M−1Ma(K̃1 ∗ µ + ξ2) +M−1Kb(1 ∗ 1 ∗ K̃1 ∗ µ + ξ2
t2

2 + ξ1t+ ξ0)

+ τac2M−1KK1 ∗ (1 ∗ K̃1 ∗ µ + ξ2t+ ξ1) + δM−1KK2 ∗ (K̃1 ∗ µ + ξ2) = M−1f

or equivalently

τaµ +M−1MaK̃1 ∗ µ +M−1Kb1 ∗ 1 ∗ K̃1 ∗ µ + τac2M−1KK1 ∗ 1 ∗ K̃1 ∗ µ
−1 ˜ ˜
+ δM KK2 ∗ K1 ∗ µ = f

34



B. Kaltenbacher and V. Nikolić Nonlinear Analysis: Real World Applications 76 (2024) 103991

b
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A
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w
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S

w

T

w
t

with the right-hand side

f̃ =M−1f −M−1Maξ2 −M−1Kb(ξ2
t2

2 + ξ1t+ ξ0) − τac2M−1KK1 ∗ (ξ2t+ ξ1)

− δM−1KK2 ∗ ξ2

∈L∞(0, T ).

By [45, Ch. 2, Theorem 3.5], the system has a unique solution µ ∈ L∞(0, T ). We then consider the problem{
K1 ∗ ξttt = µ,

(ξ, ξt, ξtt)|t=0 = (ξ0, ξ1, ξ2)

y rewriting it equivalently as {
ξtt = K̃1 ∗ µ + ξ2 ∈ L∞(0, T ),
(ξ, ξt)|t=0 = (ξ0, ξ1),

hich has a unique solution ξ ∈ W 2,∞(0, T ). In this way we obtain existence of a unique approximate
olution u(n) ∈ W 2,∞(0, T ;Vn).

ppendix B. Proof of Theorem 3.3

We present here the proof of the τ -uniform well-posedness stated in Theorem 3.3.

roof. Let u∗ ∈ BKB with BKB defined in (3.26). Since this implies that u∗ ∈ X KB, the smoothness
ssumptions on a and b in (3.22) are fulfilled and the smallness assumption on a given in (3.23) follows by
educing R > 0 (independently of τ). The non-degeneracy condition on a is fulfilled for small enough R as
ell. Furthermore, we have

∥N (∇u∗,∇u∗
t )∥W 1,1(L2)

≲ ∥∇u∗∥L∞(L4)∥∇u∗
t ∥L1(L4) + ∥∇u∗

t ∥L1(L4)∥∇u∗
t ∥L∞(L4) + ∥∇u∗∥L∞(L4)∥∇u∗

tt∥L1(L4)

≤C(Ω , T )R2,

here in the last line we have relied on the embedding H1(Ω) ↪→ L4(Ω). By employing bound (3.25) for the
inear problem, we obtain

∥u∥X KB ≤C1 exp
(
C2T (1 + ∥∆b∥H1(L2))

) (
∥u0∥2

H3 + ∥u1∥2
H3 + τa∥u2∥2

H2

+ ∥N (∇u∗,∇u∗
t )∥2

W 1,1(L2)

)
.

ince
∥∆b∥H1(L2) ≲ ∥u∗

t ∥L2(H2) + ∥u∗
tt∥L2(H2) ≲T R,

e have
∥u∥X KB ≤C1 exp (C2T (1 + TR)) (r2 + CR4).

herefore, u ∈ BKB for sufficiently small data size r and radius R.
Let T u∗ = u and T v∗ = v. Set ϕ = u− v and ϕ∗ = u∗ − v∗. Then the difference ϕ solves

τaK1 ∗ ϕttt + a(u∗
t )ϕtt − c2b(u∗

t )∆ϕ− τac2K1 ∗ ∆ϕt − δK2 ∗ ∆ϕtt

= − 2k1ϕ
∗
t vtt − 2k2ϕ

∗
t∆v − 2k3∇ϕ∗ · ∇u∗

t − 2k3∇v∗ · ∇ϕ∗
t := f

ith homogeneous boundary and initial data. Note that as before we cannot prove contractivity with respect
KB
o the ∥·∥X KB norm by exploiting the linear bound in X (see (3.25)), as the right-hand side of this equation
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r

does not belong to W 1,1(0, T ;H1(Ω)). Instead, we test this equation with ϕtt and prove contractivity with
espect to a lower-order norm. To this end, we rely on the following identity:

c2
∫ t

0

∫
Ω

b(u∗
t )∆ϕϕtt dxds

= c2
∫
Ω

(1 − 2k2u
∗
t (t))∆ϕ(t)ϕt(t) dx− c2

∫ t

0

∫
Ω

(1 − 2k2u
∗
t )∆ϕtϕt dxds

+ 2k2c
2

∫ t

0

∫
Ω

u∗
tt∆ϕϕt dxds,

from which we have

c2
∫ t

0

∫
Ω

b(u∗
t )∆ϕϕtt dxds

= − c2
∫
Ω

(1 − 2k2u
∗
t (t))∇ϕ(t) · ∇ϕt(t) dx+ 2k2c

2
∫
Ω

∇u∗
t (t) · ∇ϕ(t)ϕt(t) dx

+ c2
∫ t

0

∫
Ω

(1 − 2k2u
∗
t )∇ϕt · ∇ϕt dxds− 2k2c

2
∫ t

0

∫
Ω

∇u∗
t · ∇ϕtϕt dxds

− 2k2c
2

∫ t

0

∫
Ω

u∗
tt∇ϕ · ϕt dxds− 2k2c

2
∫ t

0

∫
Ω

∇u∗
tt · ∇ϕϕt dxds.

Similarly to the proof of uniqueness for the linear problem in Section 3, we then have∫ t

0
∥
√
a(u∗

t )ϕtt∥2
L2 ds+ ∥∇ϕt∥2

L∞(L2)

≲ ∥f∥2
L2(L2) + (1 + ∥u∗

t ∥L∞(L∞))∥∇ϕ∥L∞(L2)∥∇ϕt∥L∞(L2)

+ ∥∇u∗
t ∥L∞(L∞)∥∇ϕt∥L∞(L2)∥ϕt∥L∞(L2)

+ ∥u∗
t ∥L∞(L∞)∥∇ϕt∥2

L2(L2) + ∥∇u∗
t ∥L∞(L∞)∥∇ϕt∥L2(L2)∥ϕt∥L2(L2)

+ ∥u∗
tt∥L2(L∞)∥∇ϕ∥L2(L2)∥ϕt∥L∞(L2) + ∥∇u∗

tt∥L2(L4)∥∇ϕ∥L∞(L2)∥ϕt∥L2(L4).

(B.1)

We note that

∥f∥L2(L2) ≲ ∥ϕ∗
t ∥L∞(L4)∥vtt∥L2(L4) + ∥ϕ∗

t ∥L∞(L2)∥∆v∥L∞(L∞)

+ ∥∇ϕ∗∥L∞(L2)∥∇u∗
t ∥L2(L∞) + ∥∇v∗∥L∞(L∞)∥∇ϕ∗

t ∥L2(L2).

Therefore, from (B.1) by employing Young’s and Gronwall’s inequalities, and the fact that u∗, v∗, v ∈ BKB,
we conclude that ∫ t

0
∥ϕtt∥2

L2 ds+ ∥∇ϕt∥2
L∞(L2) ≲R2

(∫ t

0
∥ϕtt∥2

L2 ds+ ∥∇ϕt∥2
L∞(L2)

)
.

Thus, one can guarantee strict contractivity of the mapping T in the norm of the space W 1,∞(0, T ;H1
0 (Ω))∩

H1(0, T ;L2(Ω)) by reducing the radius R. □
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