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Tra le molte virtù di Chuang-Tzu c'era l'abilità nel disegno. Il re gli chiese il disegno d'un 
granchio, Chuang-Tzu disse che aveva bisogno di cinque anni di tempo e d'una villa con 
dodici servitori. Dopo cinque anni il disegno non era ancora cominciato. "Ho bisogno di 
altri cinque anni" disse Chuang-Tzu. Il re glieli accordò. Allo scadere dei dieci anni 
Chuang-Tzu prese il pennello e in un istante, con un solo gesto, disegnò un granchio, il 
più perfetto granchio che si fosse mai visto. 
 

Italo Calvino, Lezioni Americane, Cap. 2 - Rapidità 
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1.1 Scope of this thesis 
This thesis investigates how our internal representations of objects are driven by 
contextual information. In particular, we investigate the kind of contextual 
information we regularly encounter in the real world: naturalistic scenes. We 
explore how scene context can drive the prediction of object transformations: 
namely, how an object will look like from a new viewpoint. To do this, we use a 
novel experimental paradigm and explore behavioral and fMRI effects. We build 
upon an ample literature showing that expectations interact with visual processing 
through top-down connections to visual cortex (e.g. De Lange et al., 2018; Rao & 
Ballard, 1999), leading to behavioral changes in perceptual tasks (e.g. 
Summerfield & De Lange, 2014; Wyart et al., 2012). We find that object 
expectations driven by scene context share behavioral and neural hallmarks with 
other previously reported expectation-related effects, suggesting that common 
mechanisms might underlie these naturalistic expectations and more controlled 
ones found using synthetic stimuli. More specifically, the contributions of the 
experimental chapters are as follows:  
  
 In Chapter 2, we investigate scene-driven representations of objects from 
novel viewpoints by examining their effect on a perceptual task. We use fast 
presentation times, an orthogonal task and no explicit instructions in order to 
determine whether the object representation is updated automatically, as a result 
of the context rather than of a voluntary prediction. We also show the object from 
a variety of possible viewpoints and amounts of rotation, to determine the 
flexibility of the representation’s transformation. We find that participants’ 
performance is affected by whether an object is rotated congruently with the 
surrounding scene or not, suggesting that they flexibly and automatically update 
the object’s representation together with the scene. Moreover, we find that this 
behavioral effect is not affected by the probability of the object respecting the 
scene constraint during the experiment, indicating that it results from real-world 
expectations rather than contingencies observed during the experiment. 
 
 In Chapter 3, we use fMRI to investigate the role of visual cortex in 
representing the updated object’s view. We use multivariate pattern analysis 
(MVPA) to decode, from activity patterns in visual cortex, the object’s proximal 
shape (whether it projects a wide or narrow retinal image), after the viewpoint 
change. We find that whether the object shape shown on the screen matches the 
scene-driven expectation or not is reflected in a change in decoding performance 
in early visual cortex, but not in higher-level object selective cortex. These results 
suggest that the viewpoint update ultimately results in a representation of the 
object’s retinal shape, and that this is reflected in early visual cortex responses, 
consistently with ideas about early visual areas being recruited in computations 
that require retinotopically organized representations (Roelfsema & de Lange, 
2016). Moreover, we find evidence that these scene-driven expectations share 
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neural mechanisms with other, previously reported expectation effects in visual 
cortex (e.g. Kok et al., 2012; Yon et al., 2018): an increase in multivariate 
decodability for expected object shapes, accompanied by an overall lower 
univariate response. This provides further indication that the updating of the object 
representation occurs automatically, and a stimulus that matches the correct 
updated view is perceived as the ‘default’, while the expectation’s violation 
constitutes a disruptive event.  
 
 In Chapter 4, while the previous chapters always investigated the scene-
driven expectation indirectly, by examining the effects of its violations, we directly 
investigate the expectation signal itself. Again using fMRI and MVPA, we design 
an experiment in which the rotated object is not shown after the occlusion on a 
majority of trials. In this way, we are able to decode a purely internally generated 
expectation of the updated object shape. We find that this can be successfully 
decoded in visual cortex, suggesting that scene-driven expectations can evoke a 
sensory-like signal in the absence of any visual input, again consistently with work 
investigating expectations in simpler domains (Kok et al., 2014, 2017). 
 
 In Chapter 5, as the previous studies were focused on the case of rotation 
out of the picture plane, we investigate a different spatial transformation. We adapt 
the paradigm of Chapter 2 to study the case of object scaling, resulting from a 
translation in depth. We largely replicate the behavioral effects found in Chapter 
2, suggesting that the interactions between scene and object representations we 
report are not idiosyncratic to rotation, and might be a general process in 
predicting object transformations. These results also provide a link to existing 
work investigating the ‘rescaling’ of object representations driven by scene 
context (Gayet & Peelen, 2022; Murray et al., 2006; Yildiz et al., 2021), suggesting 
a common process.  
 
 In the remainder of this Introduction, I will outline a theoretical proposal 
starting from the broad question of ‘what constitutes a good perceptual 
representation’. This will largely be built around the idea that internal 
representations of objects should behave like those objects, making it possible to 
predict the outcome of transformations such as rotations or translations. There 
will be some notable absences in the topics I will treat. For one, the focus will be 
primarily on the psychological, computational and theoretical literature, as my 
interest here is to outline a series of desiderata for mental representations, 
regardless of their specific neural implementation. I will mention neuroscientific 
data wherever I deem it relevant, mainly for the purpose of exemplifying that some 
of the desiderata for representations that I list can indeed be found in the brain. 
Another major absence, for an Introduction addressing the topic of how we predict 
the behavior of external objects, is the predictive coding framework (Rao & Ballard, 
1999; Bastos et al., 2012; Clark, 2015). This is a deliberate choice, in part for 
reasons of space: the literature on that framework is vast, and it would have been 



General Introduction 

 12 

impossible to properly cover it here. I have thus preferred to focus on literature 
that offers different angles on the problem of how we internally represent the 
world, angles that are far less explored. Another reason for this omission is the 
fact that much of the focus of research on predictive coding seems orthogonal to 
the goals of the investigation presented here. Predictive coding is largely 
concerned with the mechanisms of interaction between top-down expectations 
and bottom-up visual input (De Lange et al., 2018; Press et al., 2020). Here, on the 
other hand, the main focus is on the structure of internal representations 
themselves, rather than how they lead to changes in perceptual processing. I will 
primarily be interested in the ways in which internal representations behave like 
the things they represent: something that, to the best of my knowledge, is not a 
major concern of predictive coding research. I will indeed address the topic of 
interaction between internal representations and external stimuli, but with a 
different focus: I will be concerned with how this interaction reflects how external 
objects interact, similarly to individual representations reflecting the behavior of 
the corresponding objects. In my treatment, internal representations and external 
stimuli will be maintained as separate entities, rather than treated as two sources 
of evidence to be integrated. Another main focus of predictive coding research 
has been to develop formalisms for the top-down/bottom-up interaction in 
probabilistic terms (e.g. Friston 2010). I see this as a possible specific 
implementation of some of the ideas I discuss here, one that makes particular 
assumptions about the probabilistic nature of representations, and their 
neurophysiological implementation. Here, I will remain agnostic both on their 
probabilistic interpretation, and their realization at the neural level.  
 In the chapters, on the other hand, as I will investigate the neural bases of 
these representations (as summarized above), I will also address the issue of how 
top-down predictions interact with visual input more in depth, although without 
committing too strongly on any specific mechanistic or theoretical framework. The 
content of this Introduction, on the other hand, is mainly meant to outline a broad 
picture around the specific studies we have conducted, and why I hope they will 
be an initial step towards clarifying what ‘good representations’ of the world 
should look like. With these clarifications out of the way, let us begin our journey. 
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1.2 The little world in our head 
 
The ordinary man asserts that he sees an external world containing various objects. It is only the 
philosopher who insists that he is conscious of sense-data, brown patches, and so forth.  

- Kenneth Craik1 
 
Do we have a little world in our head? Subjectively, we have the impression of 
seeing objects, people, events and places, even though of course, all that reaches 
our retina are rays of light. Does this mean that the world is ‘reconstructed’ in our 
brain? What does this internal world look like, and what is its relationship with the 
external one? If it is inside our head, how can it look ‘out there’? I have no pretense 
to answer any of these long-standing questions within the limited scope of a 
thesis. Instead, I would like to focus on a specific subset of them, and in this 
Introduction, try to formulate them more precisely, along the way reviewing work 
from several disparate domains that can prove useful in understanding them. The 
main arguments I will try to make are summarized as follows: 
 
a. In order for us to successfully behave in the world, our internal representations 

should mirror entities in the world in particular ways. I will review several 
related notions of what this should mean precisely: disentangled 
representations, analog representations, dynamic representations and linear 
transformations. 

b. Internally generated representations and external stimuli should closely 
interact in order to solve several important tasks in the real world. I will review 
empirical evidence of this interaction and connect this idea with the concept 
of an object file. 

c. In order for the interaction between internally generated representations and 
the external world to be successful, there need to be rules specifying how 
representations interact. These rules should mirror the interactions between 
entities in the external world, similarly to the way individual representations 
mirror the behavior of individual entities. 

d. One particularly ubiquitous example are spatial relations (relative positions 
and orientations), and particularly hierarchical part-whole relations. I will 
describe an efficient way of representing these relations - the scene graph - 
and review some of the ways in which it has been implemented in artificial 
intelligence (AI) research. 

e. Finally, I will bring these ideas together, suggesting that the task of tracking 
dynamic changes in structured scenes provides a motivation for: 

 
1 Craik (1943), p. 25 
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representations that mirror objects’ behavior; representations that interact 
with the current visual scene; representations of relations; and hierarchical 
spatial relations in particular.  

After exposing these arguments, I will describe a simple ‘model system’: an 
experimental paradigm designed to explore some of the questions I describe. In 
the following Chapters, I will describe several empirical results obtained using this 
paradigm. My hope is that the empirical work and theoretical ideas presented 
here, although limited in scope, will suggest fruitful avenues for future research, as 
well as a new outlook on existing research. 
 

1.3 What is a ‘good’ representation? 

1.3.1 Representation of similarities 

Our mental states can represent things in the world. I will take this here as an 
empirical fact rather than a thesis to be defended (for similar arguments, see John, 
2021; Poldrack, 2021; Thomson & Piccinini, 2018), starting from the simple 

Figure 1.1. Illustration of second-order isomorphisms. The internal representations 
(bottom) of stimuli (top) should preserve the distances between them. After Edelman 
(1998). 
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observation that the ‘units’ of our perception and thought are things in the world. 
As I look around my kitchen, I see a table, a cupboard, and an oven. In guiding 
actions, I similarly refer to and target things at this scale (I reach the cupboard to 
get the plate). I will leave aside here the thorny questions of whether these 
representations exist as cohesive entities in the brain (Piccinini, 2008; Hipólito, 
2022) and how they can be inferred from recordings of neural activity (Baker et al., 
2022; Burnston, 2021; Ritchie et al., 2019). Assuming that, at some level of 
organization, mental representations exist, I will focus on perceptual 
representations here, and ask the following question: what constitutes a ‘good’ 
perceptual representation? As has been previously pointed out (Shepard & 
Chipman, 1970; Edelman, 1998) it doesn’t make much sense to think that anything 
about a brain state that corresponds to a square object is actually square, or that 
a brain state representing an object that smells bad actually smells bad itself. First-
order similarity (isomorphism) of an internal state with an external entity, then, 
seems like a hopeless criterion for a successful representation. A more promising 
alternative is that our representations should respect a second-order isomorphism 
(Figure 1.1): put simply, similarities among internal representations should reflect 
similarities among external entities (Shepard & Chipman, 1970). For example, the 
representation of a square should “have a closer functional relation to the internal 
representation for a rectangle than to that, say, for a green flash or the taste of a 
persimmon” (Shepard & Chipman, 1970, p. 2). As highlighted by Edelman (1998), 
this idea can account for empirical findings showing that subjects can be 
remarkably sensitive when comparing different stimuli (Cortese & Dyre, 1996; 
Cutzu & Edelman, 1996), while being poor at judging the properties of a single 
stimulus (Koenderink et al., 1996; Phillips & Todd, 1996; Todd & Norman, 2003). 
The idea that inter-stimulus similarity is central to understanding internal 
representations also underlies representational similarity analysis (Kriegeskorte et 
al., 2008), a common technique in cognitive and systems neuroscience, consisting 
of comparing conditions, measurement techniques or computational models by 
comparing the distances between stimulus representations (such as brain 
activation patterns), rather than the representations themselves.  
 Let’s take this idea at face value: suppose that what representations 
should preserve are the distances between different entities in the world. That’s 
great, but we are still missing a crucial ingredient: to know what distance means, 
we need to define an appropriate space. What is a useful notion of distance to 
represent objects? 
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1.3.2 Invariance vs. equivariance 

One possibility is to exclusively represent the distances between object 
categories. In such a representational space, called an invariant representation, 
different views of a car would all be collapsed onto the same point: all that matters 
is that a car is a car. The notion that the goal of perception is to extract invariant 
representations, that retain information about object category while discarding all 
‘nuisance’ information, has been the basis for much work in computer vision (e.g. 
Lowe, 1999; Kadir et al., 2004; Gray & Tao, 2008; Wu et al., 2008; Krizhevsky et 
al., 2012; Achille & Soatto, 2018) and computational neuroscience (Fukushima, 
1980; Tanaka, 1996; Poggio & Bizzi, 2004; Deco & Rolls, 2004; Serre et al., 2007). 
Findings of neurons at the higher levels of visual cortex that respond to object 
identity independently of location, orientation or size (e.g. Ito et al., 1995; Tovee 
et al., 1994; Fujita, 2002; Booth & Rolls, 1998; Lueschow et al., 1994; Li & DiCarlo, 
2008, 2010) were classically interpreted as evidence for invariant representations 
being the ultimate outcome of visual processing. While this kind of representation 
would be ideal for recognizing objects (although some might disagree: DiCarlo & 
Cox, 2007; Hong et al., 2016; Patel et al., 2015), it would fail at most other visual 
tasks in the real world. Object transformations, such as viewpoint changes, are 
behaviorally relevant: if I encountered a tiger in the wild, I would want to know 

Figure 1.2. Equivariant representations: h is an ‘encoding’ function that maps stimuli to 
their internal representations. In an equivariant representation, transformations of 
external stimuli should be preserved by h, such that an internal operation, g, can be used 
to transform an internal representation similarly to how f transforms the corresponding 
external object. In this case, the transformation is a rotation. 
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whether I was facing its front or its back, and it would be useful to predict how 
long it would take for it to turn around and see me. Our internal representations, 
then, should explicitly include information about these transformations of objects 
(e.g. their orientation, position, size, state - is the tiger awake or asleep?). 
Moreover, these transformations should generalize to new, unseen objects. If I 
encounter a predator that I have never encountered before, say a lion, I should still 
be able to predict how it will look from different viewpoints. This could be achieved 
through equivariant representations (Bengio et al., 2013; Hinton et al., 2012). The 

Figure 1.3. Examples of the transformations that can be predicted by human 
participants. Please note that these have been investigated through very different 
paradigms, refer to the original papers for more details. (A) Mental rotation (Shepard & 
Metzler, 1971); (B) Mental scaling (Bundesen & Larsen, 1975); (C) Simultaneous rotation 
and deformation of a flexible object (Kourtzi & Shiffrar, 2001); (D) Object breaking: by 
adding tear marks, an object can be perceived as a broken part of a larger object (Spröte 
et al., 2016); (E) Changes in physical state: humans tend to extrapolate these 
transformations forward in time (Hafri et al. 2022); (F) The various scenarios used by 
Bear et al. (2021) to test humans’ and computational models’ physical prediction 
abilities. 
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idea of equivariant representations is illustrated in Figure 1.2: essentially, our 
internal representations of objects should transform similarly to those objects. 
More formally, if h is the function that maps an external object A to its 
corresponding internal representation, A’ = h(A), and f is the rotation of the object 
to a different viewpoint, it should be possible to apply a transformation g to the 

Figure 1.4. Disentangled representations. (A) Illustration of a disentangled 
representation: individual axes of the representational space correspond to meaningful 
factors of variations in the data. In this case, size and orientation, with category (dog, 
car) being an orthogonal dimension. After Higgins et al. (2022). (B) Disentangled 
representations in macaque face-selective cortex (Chang & Tsao 2017). Faces were 
decomposed into their principal components (left), and single neurons were found to 
respond according to a face’s position along one specific component, while being 
completely unresponsive to the component orthogonal to it (right). (C) Single neurons 
responding to meaningful factors of variations of faces (Higgins et al., 2021). (D) Neurons 
in macaque IT tuned to specific shape dimensions (Kayaert et al., 2005). (E) An example 
of a failure to disentangle in human vision (Ho et al., 2007): the roughness of a surface is 
perceived differently depending on its viewpoint, meaning they are not represented 
independently. 
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internal representation A’ such that g(A’) = h(f(A)). In other words, after applying 
the operation g to the internal representation, we obtain the same representation 
that we would have obtained by observing the object from the new viewpoint. In 
this example, the internal operation g would be a mental rotation (Shepard & 
Metzler, 1971). The idea that our internal representations of the world behave like 
the external objects they represent (i.e. they can be transformed in similar ways) 
has a long history in cognitive science (e.g. Shepard, 1984, 2001), and is 
supported by a vast number of empirical findings. Without the pretense of being 
exhaustive, humans have been found to be able to infer and predict a variety of 
object transformations (Figure 1.3). Beyond the most notorious example of mental 
rotation (Shepard & Metzler, 1971; Cooper & Shepard, 1973; Shepard & Cooper, 
1982), we are able to represent other rigid transformations (that leave object shape 
unaltered), such as translation and scaling (Bennett, 2002; Bundesen et al., 1983; 
Bundesen & Larsen, 1975; Larsen & Bundesen, 1978, 1998; Schmidt et al., 2016; 
Sekuler & Nash, 1972). Non-rigid transformations (which alter object shape) can 
also be represented, such as deformations (Kourtzi & Shiffrar, 2001; Hahn et al., 
2009; Spröte & Fleming, 2016; Schmidt et al., 2019), tearing (Chen & Scholl, 2016; 
Spröte et al., 2016), or changes in physical state, like burning or melting (Hafri et 
al., 2022). Moreover, humans are able to predict how the physical dynamics of a 
scene will unfold (Battaglia et al., 2013; Bates et al., 2019; Ullman et al., 2017, 
2018) in a way that surpasses current artificial systems (Bear et al., 2021). 
Together, these findings suggest that internal object representations can closely 
mirror the behavior of external objects, undergoing a wide variety of 
transformations. We will return to some of these ‘mental transformations’ later. 
 
1.3.3 Disentangled representations 

But first, what would a representation with these characteristics look like in a high-
dimensional space, such as a population of neurons? A common way to think 
about this problem is the notion of disentanglement (Bengio et al., 2013; 
Schmidhuber, 1992; Higgins et al., 2018, 2022), which can be defined as follows: 
a given object transformation should only affect a subset of the dimensions in the 
representational space. This idea reflects the simple fact that any single 
transformation of an object leaves many of its features unaltered. For example, 
changing an object’s orientation does not alter its color or shape. Figure 1.4A 
illustrates two dimensions of variation in a higher-dimensional representational 
space: one axis corresponds to the object’s orientation, while a different axis 
corresponds to its size. Contrary to the invariant representations we encountered 
earlier, different views of an object are not collapsed onto a single point. Instead, 
they can be retrieved by following a particular direction in the representational 
space. In the most intuitive case, these directions correspond to single axes. That 
would mean that the dimensions of the representational space reflect meaningful 
dimensions of variation: for example, one dimension corresponds to the object’s 
orientation, another to its size. Intriguingly, neuroscientific evidence has found 
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evidence for precisely this kind of code in the neural representation of high-level 
object features. For example, Chang & Tsao (2017) found individual neurons in 
macaque ‘face patch’ (part of high-level inferotemporal cortex, IT) tuned to single 
factors of variation in a low-dimensional embedding of face stimuli (Figure 1.4B). 
Higgins et al. (2021) later found that these single neurons in macaque IT had a 
one-to-one correspondence with the units of an artificial neural network trained to 
extract disentangled face representations. These single units corresponded to 
meaningful factors of variation, such as a face’s hair length or hair style (Figure 
1.4C). Similar results have been obtained with fMRI measurements in humans 
(Soulos & Isik, 2020) and with different classes of stimuli, such as shapes (Op de 
Beeck et al., 2001; Kayaert et al., 2005, Figure 1.4D). For a more exhaustive 
review, see Higgins et al. (2022). Behavioral findings have shown that participants 
independently encode particular features of 2D (Arguin & Saumier, 2000) and 3D 
shapes (Stankiewicz, 2002), such as aspect ratio and curvature. Other features, 
such as viewpoint and surface ‘roughness’, seem instead to be entangled in 
behavioral judgments (Ho et al., 2007; Figure 1.4E). Moreover, training 
participants to arrange stimuli in a disentangled space can improve their ability to 
flexibly learn different tasks on them (Flesch et al., 2018). Finally, one additional 
source of evidence for the plausibility of disentangled representations is the recent 
finding that they can emerge in a computational model with minimal biological 
constraints (Whittington et al., 2022). In summary, the intuitive idea that our 
internal representations of objects should mirror their transformations has found 
a fruitful formalization in the notion of disentanglement. In a disentangled 
representation, different meaningful object transformations are represented 
separately from each other, reflecting their separation in the external world. 
Several empirical findings show that disentangled representations closely match 
biological brains’ strategy for representing the world, at least in some domains. 
 
1.3.4 Linear transformations 

An idea closely related to disentangled representations is that of linear 
transformations in the representational space. According to this idea, meaningful 
object transformations, such as rotations, which cause highly nonlinear changes 
in the space of images, should become linear in representational space. This is 
based on the notion that representing a given property of the world should entail 
making it explicitly available to simple readout processes (Fekete, 2010). Trivially, 
any property of a visual scene can be said to be represented in primary visual 
cortex (V1), since visual input needs to go through this area before reaching the 
rest of the brain. However, we do not think this is the case because that 
information is not in an explicit format. The fact that some property should be 
extractible via a linear readout is a reasonable criterion for qualifying as an explicit 
representation, a criterion that underlies analyses based on the linear decoding of 
brain activation patterns (Kriegeskorte & Diedrichsen, 2019). Similarly, for a 
particular transformation to be predictable in the representational space, it should 
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correspond to a linear transformation in that space.  
 In machine learning, several approaches based on explicitly enforcing that 
learned representations should transform linearly have proved successful at 
parsing the structure of simple scenes (e.g. Paccanaro & Hinton, 2001; Hinton et 
al., 2011; Cohen & Welling, 2015; Goroshin et al., 2015) and solving reinforcement 
learning tasks (Saanum & Schulz, 2022). In computational neuroscience, a model 
that learned to represent spatial locations, with the constraint that its 
representations should transform linearly, was shown to spontaneously give rise 
to a representation resembling grid cells in medial entorhinal cortex (Dorrell et al., 
2022). This suggests that certain representations found in the brain might result 
from making useful transformations (such as shifts of one’s position in space) 
explicitly available as linear transformations. Relatedly, work in neuroimaging 
(Ward et al., 2018) has shown that object transformations, such as changes in size 
or location, correspond to linear transformations of the representations in higher-
level visual cortex. These transformations were shown to generalize across 
different objects, providing further evidence that they are explicitly disentangled 
from object identity. Interestingly, not only transformations that are actually linear 
in the real world, such as translation and scaling, but also nonlinear ones, such as 
image blurring, were shown to be similarly ‘linearized’ throughout visual cortex 
(Mocz et al., 2021). It is possible, then, that the purpose of this representational 
format is not to faithfully reproduce the true generating factors of the scene, but 
to render any potentially useful transformation explicitly available for further 
computations. Finally, a recent study (Hénaff et al., 2019) found that naturalistic 
video sequences, corresponding to highly curved trajectories in pixel space, were 
‘straightened’ in participants’ representational space, as inferred from their 
psychophysical discrimination performance. Linearizing, or straightening, 
meaningful transformations of a scene, then, might be a strategy employed by the 
brain to render these transformations explicit in its representational space.  
 In the last sections, we have described several criteria for a ‘good’ 
representation, that all boil down to the idea that internal representations of 
objects should ‘behave like’ those objects in some meaningful way. Importantly, 
however, our argument does not hinge on any of these criteria in particular. For 
example, the requirement that each different transformation should act on a 
subset of the representation’s dimensions exclusively (the formal definition of 
disentanglement mentioned above) might not be necessary, and might actually 
lead to failure to represent certain transformations (Bouchacourt et al., 2021). But 
for our purposes, all that matters is to convince ourselves that ‘good’ perceptual 
representations should in some useful way transform like the objects they aim to 
represent. In the next section, we turn to an idea which has been developed 
separately from that of disentangled representations, but which shares several 
important aspects with it. It is the idea of analog representations. 
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1.3.5 Analog representations 

Several definitions of what an analog representation is (as distinct from a digital 
one) have been proposed, starting from the seminal work of Goodman (1976). For 
the sake of brevity, we will only discuss a specific definition here, the one 
proposed by Maley (2011). Maley (2011) separates the distinction between analog 
and digital representations from that between continuous and discrete, which it 
had previously been equated with. He borrows a definition used in cognitive 
psychology (Shepard, 1978), and defines an analog representation of some 
quantity Q as a representation which has a property P. As the quantity Q increases 
or decreases, the property P similarly increases or decreases. A simple example 
would be a mercury thermometer: the height of the mercury column (P) can be 
said to represent temperature (Q). As the temperature increases by an amount d, 
so does the height, by an amount linearly dependent on d. In such a 
representational format, there exist intermediate representations between the 
representations of quantities Q and Q + d that will correspond to the intermediate 
quantities, Q + 1/3d, Q + 1/2d, etc. Note that this does not require the 
representation to be continuous: a column that, instead of being made of mercury, 
is drawn on a display has finite precision (the number of pixels in the display). It 
represents temperature in discrete steps, but still the intermediate steps in the 
representational space have a 1-1 correspondence with intermediate quantities, 
and that is what matters. Hence Maley's (2011) distinction between analog and 
continuous. This kind of representation can be contrasted with a digital 
representation, such as the binary representation of a number. The binary 
representation of 44, for example, is 101100. If we add some jitter to this binary 
number, by randomly flipping digits, we can equally likely get the representation 
of 60 (111100), 12 (001100) or 46 (101110). The ‘proximity’ of states in this 
representational space does not have any meaningful correspondence to that of 
the quantities they represent.  
 In discussing analog representations, we can notice quite a few 
similarities with some of the representational schemes discussed in the previous 
sections. For example, the straightened representations of video sequences found 
by Hénaff et al. (2019) are clear examples of analog representations: the 
representation of an intermediate frame corresponds to the point between the 
representations of the preceding and following frames along the straight 
trajectory. Disentangled representations, similarly, are clearly analog: a so-called 
‘latent traversal’ (varying the value of one disentangled dimension, while keeping 
others constant) will correspond to a smooth variation in some object property, 
for example a face’s orientation or hair length. Note that, however, positing analog 
representations does not require to assume any specific representational scheme, 
linear or non-linear, disentangled or not. Again, all that matters is what the 
representation can do. 
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1.3.6 Evidence for analog representations in cognition 

Analog representations are thought to be involved in several cognitive processes, 
most notably many of the mental transformations that we listed above. Shepard 
& Metzler (1971) famously found that participants’ reaction times for comparing 
two 3D shapes in different orientations increased proportionally with the angular 
difference between them. To confirm that participants traversed intermediate 
orientations in their minds during this process, Cooper (1976) determined each 
participant’s speed of mental rotation, and then presented objects at either the 
correct or incorrect intermediate angles during the rotation. She found that 
reaction times for identifying the shape were faster when it was presented at the 
correct intermediate orientation. These results suggest, then, that close-by angles 
of rotations are represented closer together, providing strong evidence for analog 
representations being involved in mental rotation. A similar paradigm was used by 
Kourtzi & Shiffrar (2001) to show that when subjects perceived an apparent 
rotation between two flashed views of deformable objects, objects with an 
intermediate orientation and shape were processed faster. This suggests that 
analog representations are involved in a variety of different mental 
transformations, not limited to rigid ones.  
 A separate line of evidence for the role of analog representations comes 
from computational models. Recently, Rajalingham et al. (2022) showed that in 
predicting the final position of a bouncing ball after occlusion, recurrent neural 
networks that were explicitly trained to track the dynamics (intermediate positions) 
of the ball behind the occluder better matched human and monkey behavior, than 
models only trained to predict the final outcome. The traversal of intermediate 
internal representations, then, seems to also be involved in predicting the physical 
dynamics of objects. Dulberg & Cohen (2020) trained artificial neural networks to 
predict simple transformations (translations and rotations) of 2D shapes. They 
found that networks that learned to apply small transformations iteratively were 
better able to generalize to unseen amounts of translation or rotation than 
networks learning to apply larger transformations at once. This suggests that the 
need to flexibly generalize to unseen amount of transformation might have a role 
in the emergence of analog representations. These studies show that enforcing a 
form of analog representations in computational models both increases their 
similarity to human behavior, and provides computational benefits, such as better 
generalization.  
 We have seen a series of distinct, but related, ideas about what 
constitutes a ‘good’ perceptual representation, such as disentangled and analog 
representations. We now turn to the question of what purpose these kinds of 
representations might serve. 
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1.3.7 Representations in here 

In the previous sections, we have suggested that representations which transform 
like the things they represent can be useful: disentangled, linear and analog 
representations are different ways to think about this principle. Moreover, we have 
reviewed substantial evidence that these types of representation exist in human 
perception. But what are they good for? One clear advantage of a representation 
that supports the prediction of object transformations is that it allows to explicitly 
imagine how things will unfold. Most people can evoke vivid image-like 
experiences from memory or imagination (mental imagery - Dijkstra et al., 2019; 
Pearson, 2019). This ability is believed to help in tasks such as planning (Hamrick, 
2019), reasoning (Hegarty, 2004) or memory recall (Mullally & Maguire, 2014; 
Schacter et al., 2012). These tasks all involve slow, deliberate predictions, that 
happen separately from the scene currently in front of our eyes, on a sort of 
‘mental canvas’.  
 Many of the mental transformation tasks we mentioned also involve a 
similar detachment from external stimuli: in the classic Shepard & Metzler (1971) 
mental rotation study, for example, participants’ task was to compare two shapes 
at different orientations. They solved it by bringing one into alignment with the 
other, rotating it in their mind and then comparing the rotated mental image with 
the stimulus. Subsequent research found additional evidence that the 
representations being manipulated in this task are image-like (Cooper & Shepard, 
1973; Koriat & Norman, 1984, 1988; Shepard & Cooper, 1982; Stewart et al., 
2022). Moreover, studies that broke mental rotation into separate cognitive sub-
processes, using eye fixations or computational modeling (Just & Carpenter, 1976; 
Xue et al., 2017; Larsen, 2014; Hamrick & Griffiths, 2014), found that this task 
involves a complex series of computations, such as determining the correct 
amount and direction of rotation, and comparing the two shapes. It would seem, 
then, that the role of internal representations is to support these cognitively 
effortful mental simulations, that are initiated deliberately and unfold on a 
timescale of several seconds.  
 This seems in conflict with the example that initially motivated our foray 
into representations: it all started with me encountering a tiger in the wild, needing 
to predict how long it would take it to turn around and see me. This does not look 
like an operation that could be done over several seconds. It needs to be faster. 
Additionally, much of the evidence for disentangled representations in the brain 
suggests that they are involved in any form of perception, not just imagination- or 
reasoning-related processes. Of course, our perceptual representations might 
come in different levels of detail depending on the task (e.g. Thoma et al., 2004; 
Li et al., 2022). Still, what could be the purpose of representations that allow 
detailed predictions being involved in general perception? The answer to this 
question might bring us closer to our tiger example, as we will see in the next 
section.   
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1.4 Representations out there 

1.4.1 Dynamic representations 

The ‘mental canvas’ described in the previous section, completely detached from 
the external environment, does not seem to be of much use in real-time 
perception. Often, our predictive abilities need to interact with what is in front of 
our eyes rather than being siloed from it. It is true that, even in mental rotation 
studies, ultimately participants have to compare their internal representation to an 
externally presented object in order to complete the task. However, the internal 
and external objects are still maintained as separate entities. But consider the 
case of the tiger I have encountered, with its back facing me. Suppose I form a 
prediction, in my mind, of what it will look like from different viewpoints, so that I 
know which way to run away without it seeing me. Should this prediction be similar 
to those formed by participants in mental rotation studies? Should it occur on a 
mental canvas, and be compared with visual input at each moment? This does 
not seem to match our subjective experience. In such a situation, I don’t have the 
experience of creating and maintaining such an image in my head, and 
continuously comparing it with the tiger out there. Of course, this might be 
happening outside of my conscious awareness. But the fast timescale needed 
here just does not match the empirical findings of slow, deliberate operations 
being involved in mental rotation (Just & Carpenter, 1976; Xue et al., 2017; Larsen, 
2014; Hamrick & Griffiths, 2014). Instead, it seems like the prediction of the tiger’s 
appearance from different viewpoints is represented implicitly in some way. What 
could be the nature of this representation? One helpful suggestion comes from 
some of the empirical findings we reviewed previously. Take Hénaff et al. (2019)’s 
finding of natural video sequences being straightened in perception. If visual input 
is represented in this way, there is no need for a separate ‘mental canvas’ to 
predict what an object will look like from viewpoints that are just a few movements 
away. The visual scene in front of my eyes, in my representational space, lies in a 
position that neighbors that of other visual scenes that are likely to follow it. The 
representation of the tiger from different viewpoints, then, is already implicitly 
activated as I look at it.  
 A similar idea was proposed by Freyd (1987), who argued that our 
perceptual representations are intrinsically dynamic. Because we live in a dynamic 
world, and our visual system intrinsically needs to be sensitive to temporal 
changes to ensure our survival, we represent things as snapshots of a sequence 
of events. Several experimental findings point to this idea being true: for example, 
we perceive hand-drawn characters to be similar, if they are distorted in a way 
consistent with the sequence of marks involved in drawing them (Freyd, 1983; 
Figure 1.5A). When recalling the final position of a moving stimulus, we tend to 
displace it forward, suggesting that we naturally tend to extrapolate its motion 
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(representational momentum: Freyd & Finke, 1984; Hubbard, 2005). We similarly 
extrapolate beyond the visible information in remembering and perceiving scenes, 
by automatically widening the scene view in our mind (boundary extension: Intraub 
& Richardson, 1989; Intraub et al., 1996; Figure 1.5B). Seeing static photographs 
depicting motion shares some of the mechanisms involved in perceiving physical 
motion, eliciting a motion aftereffect (Winawer et al., 2008; Figure 1.5C). And in 
rapidly detecting stimuli comprising detached, compatible Tetris pieces, 
participants tend to incorrectly respond to the ‘whole’ that would result from 
joining them (Guan & Firestone, 2020; Figure 1.5D), suggesting that they 
automatically represent the plausible outcome of the scene in front of them. These 
disparate findings all point to perceptual representations being organized by their 
likelihood of co-occurring, or following one another. This might bring back to mind 
two ideas discussed above: second-order isomorphisms, and analog 
representations. When we discussed second-order isomorphisms, the idea that a 
‘good’ representation should preserve relevant similarities among things in the 
world, we realized we were missing a notion of what constitutes a relevant 
similarity. In an analog representation, the proximity of representations 
corresponds to that of the quantities they represent (Kulvicki, 2004, 2015), such 
as in the case of a thermometer representing temperature by the height of its 
mercury column. Analog representations, then, are naturally compatible with the 

Figure 1.5. Dynamic representations. (A) Participants’ judged similarity between 
handwritten character depends on whether a deformation is compatible (match) or not 
(mismatch) with the gestures used to draw them (Freyd, 1983). (B) Participants tend to 
extrapolate beyond the visible context in recalling (e.g. drawing) scenes (Intraub & 
Richardson, 1989). (C) After seeing static photographs implying motion, participants 
show a motion adaptation aftereffect for moving stimuli (Winawer et al., 2008). (D) When 
making rapid responses to the presence of a stimulus, participants confuse a display 
that has the potential to form a whole (Potential, above) with the corresponding whole 
(left). They do not confuse displays without the potential to form a whole (No Potential, 
below) (Guan & Firestone, 2020). 
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idea that things should be represented as points along a dynamic trajectory. The 
principle of dynamic representations, then, suggests that analog representations 
might emerge from the need to deal with a constantly changing world. 
Interestingly, this idea also seems to have close ties with disentanglement. Klindt 
et al.  (2021) showed, mathematically and empirically, that enforcing the 
transitions between the representations of neighboring video frames to be small 
leads to the emergence of representations that disentangle the factors of variation 
in the data. Representations that preserve the temporal contiguity structure of the 
world, then, naturally tend to preserve other structural regularities as well. We have 
now seen that disentangled and analog representations are closely related, and 
that beyond their potential to support offline imagination, they can have a central 
role in dynamic perception as well. In the next section, I will discuss some ways 
in which these two roles might interact. 
 
1.4.2 The occlusion problem 

Another reason to believe that the same representations might have a role in both 
‘regular’ perceptual processing and imagination, is the fact that in the real world, 
the distinction between these two tasks is often blurred. A clear example of this 
blurring is the fact that we constantly need to deal with occlusion. Objects are 
often partially or completely occluded by other objects, yet we are able to 
successfully recognize them, and have the subjective impression of a seamless 
visual scene. In the case of partial occlusion, our visual system is known to have 
a series of mechanisms to ‘fill in’ the invisible part of the stimulus based on the 
surrounding context (Pessoa et al., 1998; Thielen et al., 2019), using cues such as 
the continuity of edges. These mechanisms are distinct from simply inferring 
object identity from the visible part, and there is substantial evidence that we 
actually represent what the object looks like behind the occluder (Ringach & 
Shapley, 1996; Carrigan et al., 2016; Gold et al., 2000; Lande, 2021). An occluded 
segment of a contour, for example, is represented as having a specific orientation 
and location. This process, then, already involves a form of prediction closely 
intermixed with regular perception. However, it does not seem to require the full 
machinery of disentangled or analog representations described above. It can be 
solved by relatively simple computations, based on low-level visual cues (e.g. 
Fantoni & Gerbino, 2003), while above we discussed representations that can 
faithfully mirror the transformations of real-world objects. A case that brings us 
closer to that level of processing is that of fully occluded objects. When an object 
is fully hidden behind an occluder, it is impossible to use contextual information 
from the surround to infer its appearance. Instead, what is required is some form 
of memory process, either long- or short-term, that uses prior information that is 
not currently present in the visual field. An example of long-term memory, in this 
case, would be visiting Piazza San Marco in Venice, but finding that a tall barrier 
is hiding the Basilica. Having seen the unoccluded view of the Piazza before, either 
in real life or in photographs, we can still represent the church behind the occluder. 
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Here, we will be more concerned with short-term processes involving 
experiencing an object which is later occluded, such that the representations of 
the object before and during the occlusion period need to be integrated.   
 
1.4.3 Object Files 

Representing objects across periods of occlusion is believed to involve a specially 
devoted mechanism, called an object file (Kahneman et al., 1992; Scholl & 
Flombaum, 2010; Green & Quilty-Dunn, 2020). Object files are akin to memory 
slots which refer to a particular object in the environment, such that the object’s 
different features (e.g. color, shape) are bound together as a unit (Figure 1.6A). 
Originating as an explanation of findings from cognitive psychology, the principle 
of object files has been computationally implemented in a variety of ways (see 
Greff et al., 2020; Peters & Kriegeskorte, 2021 for reviews). It provides an elegant 
solution for the problem of representing objects as cohesive units, which many 
believe to be a fundamental precursor of our ability to interact with the world (e.g. 
Spelke, 1990; Lake et al., 2017; Shanahan et al., 2020).  
 Experimental evidence for object files comes from a variety of classic 
paradigms, most notably the object reviewing (Kahneman et al., 1992) and 

Figure 1.6. Object files. (A) Illustration of the concept of an object file. Each file stores the 
information (features) of a specific visual object, and it is bound to that object in the external 
scene. (B) Object reviewing (Kahneman et al., 1992). See text for explanation. (C) Multiple 
object tracking (Pylyshyn & Storm, 1988). See text for explanation. (D) Illustration of the 
‘occlusion/disocclusion’ and ‘implosion/explosion’ conditions used by Flombaum & Scholl 
(2006). 
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multiple object tracking (MOT; Pylyshyn & Storm, 1988) paradigms. In object 
reviewing (Figure 1.6B), two stimuli (such as letters) are initially shown on two 
objects (squares). The letters then disappear, and the objects are moved to 
different locations. After that, a test letter appears, and the participant has to 
indicate whether it is the same as one of the two initial letters. When the letter 
appears on the same object it initially appeared on, participants are faster at 
correctly reporting it was one of the initial letters. Despite being in a new location, 
then, the letter has a processing advantage by virtue of remaining bound to the 
same object (Object-specific preview benefit, OSPB). Kahneman et al. (1992) 
explained this effect in terms of object files: seeing the initial display, the 
participant ‘opens’ two files associated with the objects in their short-term 
memory. If a letter reappears on the same object as in the initial display, it can be 
compared with information already present within the same object file, facilitating 
the response. The object file, then, aligns information related to the same object 
across changes in position. In MOT (Figure 1.6C), on the other hand, several 
objects are shown on the screen, and a subset of them (targets) are briefly 
highlighted, to instruct the participant to track them. The objects then start to 
move randomly for several seconds, after which the participant either has to 
indicate whether a particular object was a target or not, or to report all of the 
targets. Pylyshyn (2000, 2007) explained participants’ ability to perform this task 
by positing the existence of visual indexes, which bind objects on the screen with 
individual object files in short-term memory.  
 An object file, then, is clearly an internal representation, but one that refers 
to a specific item in the external world. Most relevantly for us, it is a representation 
which can track specific object properties across periods of occlusion: in MOT, 
for example, participants are still able to track the targets’ positions when they are 
temporarily occluded (Scholl & Pylyshyn, 1999). Or when a moving object 
reappears from behind an occluder, provided that its timing and position is 
consistent with continuous motion, it is perceived as the same object, despite 
changes in features such as color or shape (Burke, 1952; Flombaum et al., 2004). 
This perceived continuity is associated with increased change detection 
performance, which interestingly, does not occur when the object is shown to 
implode and then explode on the sides of the occluder, instead of going behind it 
(Flombaum & Scholl, 2006; Figure 1.6D). When contextual information suggests 
that two different objects have gone in and out of existence, then, it seems like 
the existing object file is closed and a new one is opened, eliminating the 
processing advantage for features within the same object file. During these 
occlusion periods, information about the object is not only being maintained, but 
also updated (to successfully predict the location and time of its reappearance). 
Neuroimaging evidence has confirmed that information about an object’s location 
can be decoded in visual cortex during the occlusion period (Erlikhman & 
Caplovitz, 2017; Teichmann et al., 2022). Moreover, while tracking in space has 
been investigated most extensively, humans are also able to track objects 
changing in different features, such as orientation or spatial frequency (Blaser et 
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al., 2000), including across occlusions (Makin & Bertamini, 2014; Makin & 
Chauhan, 2014). They can also track location and other object features 
simultaneously (De Freitas et al., 2016). Information about multiple features of 
objects, then, can be maintained and updated across occlusions, suggesting a 
possible role for representations that can support continuous predictions in 
processes that are tightly interwoven with perception.  
 The representation of an object when it is visible and when it is occluded 
interact closely, leading some authors (e.g. Munton 2022) to question the 
usefulness of the distinction between perception and memory in such contexts. 
Munton (2022) questions what she calls the ‘conveyor belt’ model according to 
which representations are transported into memory as soon as an object becomes 
occluded, and back into perception when it reappears. Instead, she proposes that 
the relationship between perception and memory might be better described as a 
‘luggage carousel’. Information can be added to the carousel as we register new 
sensory stimuli, or removed when we cease to track an object. But our perceptual 
experience depends on all the information present on the carousel, whether it is 
currently visible or not. In this view, internal representations and external stimuli 
interact continuously. We have seen that representations that support predicting 
object transformations, such as disentangled and analog representations, can 
play an important role both in perceiving the world, and in imagining things on a 
‘mental canvas’. The tight link between ‘perception’ and ‘memory’ (for lack of 
better terms), exemplified in occlusion, might actually suggest an answer to the 
question of how these two roles are related. As a dynamic object goes out of sight 
behind an occluder, we use our predictive abilities to update its properties in our 
mind, but this prediction does not occur on a mental canvas shut off from the 
external world, instead being bound to a specific location in the visual scene. 
Through a visual index-like mechanism, we maintain this binding between our 
internal representation and the outside world. Exciting as this theoretical picture 
might sound, the examples of tracking we have mentioned thus far involved quite 
simple stimulus properties. In tracking across occlusions, we are able to update 
an object’s retinotopic location, its orientation, its spatial frequency… None of this 
seems to scale to the complexity of real-world scenes. When we slowly, 
deliberately imagine things in our head, on the other hand, we seem to be able to 
simulate how 3D objects transform, how they physically interact, and many other 
incredible things. Is there, then, a fundamental difference in the complexity of 
predictions made during dynamic perception and deliberate imagination? This 
might well be the case, but before making this conclusion, it is worth considering 
some experimental results we have thus far neglected. 
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1.5 Context and relations 

1.5.1 Representations in context 

Earlier, when describing some of the evidence for our internal representations 
reflecting the transformations of external objects, I focused on certain tasks. In 
particular, I have mentioned tasks such as mental rotation, in which a participant 
deliberately creates and manipulates an image in their mind. From this limited 
view, it would seem that predicting complex transformations, such as 3D object 
rotations, can be only done within one’s own mind, shutting off the external world. 
However, this picture is far from complete. The previously mentioned (in the 

Figure 1.7. Examples of the spatial transformations that can be perceived in apparent 
motion (from Shepard, 1984). 
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context of analog representations) study by Cooper (1976) already showed that 
mental rotation itself can be sensitive to external stimuli. At any point during the 
mental rotation process, an object could be shown that either matched the current 
orientation in the participant’s mind or not. Participants were more efficient at 
responding to the matching objects, indicating that the internal representation 
they were manipulating could interact with externally presented stimuli. Jolicoeur 
& Cavanagh (1992), and Jolicoeur et al. (1998) found that physically presented 
motion can influence the speed of mental rotation, which they interpreted as 
evidence for a common neural substrate. These results, however, could still be 
interpreted in terms of a separate mental canvas on which participants rotated the 
object. In Cooper (1976)’s study, they could have compared the presented 
stimulus with the object they were mentally rotating, while still maintaining them 
as two separate representations. In Jolicoeur’s studies, on the other hand, they 
could have applied the physical motion they observed to the representation in 

Figure 1.8. Examples of interaction of an internally generated representation (apparent 
motion) with contextual stimuli. (A) The red square, quickly flashed in the left and right 
position, can be seen as going through the curved ‘tunnel’. This effect occurs when the 
tunnel is shown stereoscopically in front of the square (middle), but not behind (right) (Kim 
et al., 2012). (B) Showing the green stimuli, which move up consistently with being 
‘launched’ by the red ones, leads to the perception of curved motion through the tunnel 
(Kim et al. 2013). (C) Flashing the stimulus at the top followed by the one at the bottom left 
leads to a perception of translation in depth, while the one at bottom right leads to 
perceived ‘lifting off’ from the ground, depending on the position of the cast shadow 
(Kersten et al. 1997). (D) Apparent motion of the arm, when these two views are displayed 
quickly, is seeing as ‘jumping over’ the leg (Heptulla Chatterjee et al. 1996). (E) The path 
of apparent motion follows the shape of a stereoscopically shown surface (He & Nakayama 
(1994). 
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their mental canvas, rather than integrating the physical and mental rotations. A 
different paradigm might provide us with some more convicing evidence of 
complex mental transformations being tightly integrated with external stimuli: 
apparent motion. 
 Apparent motion and mental transformation paradigms have a deeply 
connected history: they were extensively investigated around the same time, 
largely by the same researchers, and with similar goals. Shepard (1984, 2001) saw 
them both as evidence of geometrical constraints of the world being ‘internalized’ 
in our visual system. Moreover, more recent evidence suggests that they might 
indeed rely on common cognitive and neural mechanisms (Larsen & Bundesen, 
2009). Here, it might be worth taking a step back, and first explain what apparent 
motion is. It is the perception of a continuous path between two stimuli that are 
flashed in rapid succession in two locations (Exner, 1876; Wertheimer, 1912). 
Beyond simple displacement, a variety of transformations can be perceived in 
apparent motion, including scaling and rotations in and out of the picture plane 
(e.g. Kolers & Pomerantz, 1971; Foster, 1975; Shepard & Judd, 1976; Carlton & 
Shepard, 1990a, 1990b; see Figure 1.7). Apparent motion can even follow the 
biomechanical constraints of the human body (Shiffrar & Freyd, 1990), suggesting 
that it relies on the full power of our ability to predict real-world transformations. 
Most relevantly for our purposes, apparent motion does not seem to take place 
on a mental canvas, but ‘out there’: we see it as the motion of that stimulus in 
front of us. In this sense, it is quite close to tracking under occlusion, or even to 
filling-in of partially occluded objects. Moreover, several studies have shown that 
it can be strongly influenced by contextual stimuli. Shepard & Zare (1983) showed 
participants either a straight or a curved path between two rapidly flashed dots, 
and found that the dots could be perceived as following the displayed path. Kim 
et al. (2012) showed a curved occluder in between two tokens (Figure 1.8A), and 
found that with a long enough time interval between them, they could be perceived 
as following a curved path behind the occluder. Interestingly, when they 
manipulated perceived depth using a stereoscopic display, they found that the 
curved motion was only seen when the occluder was in front of the tokens, and 
not vice versa. In a subsequent study (Kim et al., 2013), when they showed two 
additional tokens moving consistently with being ‘launched’ by the token exiting 
the tunnel (Figure 1.8B), they found this to induce a percept of curved motion as 
well. Hubbard & Bharucha (1988) found that in the presence of an obstacle, 
apparent motion could be seen as ‘bouncing off’ the obstacle. Kersten et al., 
(1997) flashed a ball at two different positions in a 3D scene, and manipulated the 
position of its cast shadow (Figure 1.8C). They found that the ball was perceived 
as either translating in depth or lifting off from the ground, depending on the 
shadow’s position. Heptulla Chatterjee et al. (1996) rapidly showed two pictures 
of a human with their hand on either side of their knee (Figure 1.8D). Apparent 
motion was perceived to follow the path around the knee, incorporating the basic 
physical constraint that an object cannot pass through another. He & Nakayama 
(1994) stereoscopically showed 3D surfaces of different shapes (e.g. vertical 
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plane, slanted plane, convex surface - Figure 1.8E) and found that the path of 
apparent motion could be perceived coherently with the surface. In summary, the 
phenomenon of apparent motion provides particularly striking evidence that 
internally generated predictions can occur ‘out there’ in the visual scene. 
Moreover, it can interact with a wide variety of contextual information, including 
2D and 3D scene structure and basic physics. Some of the reviewed effects 
involve particularly sophisticated inferences about the scene, suggesting a role for 
rich predictive representations in a process tightly linked with ordinary perception. 
The main takeaway, here, is that so-called ‘internal’ representations, usually 
thought of as unfolding on a mental canvas, can be tightly integrated with a visual 
scene. The interaction between the visible and invisible parts of the scene 
happens on the basis of rules that mirror those governing the interaction of objects 
in the world, an idea that we will explore in the next section. 
 
1.5.2 Relating representations, representing relations 

In the previous section, we have seen how internal representations and external 
stimuli continuously interact, in situations such as tracking objects under 
occlusion and perceiving apparent motion. What is common between these 
situations is the need to fill-in an incomplete visual scene (because of partial 
occlusion and temporal discontinuity, respectively). Given that ‘perception’ and 
‘prediction’ are so seamlessly integrated, it makes sense that representations 
which mirror the transformations of external objects are involved in both. One fact 
that I have not mentioned explicitly, but that was implied in the examples listed 
above, is that not all internal representations can interact with all external stimuli 
in any way. There are rules governing how they interact, and similar to how 
individual representations mirror the transformations of the objects they represent, 
so do the rules of their interactions mirror how objects interact in the world. To be 
sure, this is not specific to interactions between internal representations and 
external stimuli. All perceptual representations obey rules that constrain how they 
can combine with other representations, similar to the role of syntax in language 
(Lande, n.d.). Perceptual representations are strongly context-dependent: the 
same edge segments in Figure 1.9A can be perceived as being part of a 
meaningful whole (a contour) or not, depending on the context surrounding them 
(Geisler & Super, 2000). The orientation of the two triangles in Figure 1.9B is 
perceived to be different due to the orientation of their background, despite them 
being physically identical. As Lande (n.d.) notes, while in language syntax and 
semantics are clearly distinct (a sentence can be well-formed while being 
meaningless, as in “colorless green ideas sleep furiously”; Chomsky, 1957), in 
perception whether a representation is ‘well-formed’ generally depends on its 
probability of occurring in the real world. For example, whether a set of edges 
perceptually combine to form a contour depends on the probability of their 
orientations and locations forming a contour in the environment (Geisler et al., 
2001). Contextual effects are also ubiquitous in high-level vision: for example, 
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showing objects within an appropriate scene can facilitate their detection 
(Biederman et al., 1982), disambiguate their identity (Bar, 2004; Oliva & Torralba, 
2007; Brandman & Peelen, 2017; Figure 1.9C), alter their perceived size (Leibowitz 
et al., 1969; Murray et al., 2006; Yildiz et al., 2021) or sharpness (Rossel et al., 
2022). Objects shown in pairs that match likely co-occurrences in the real world 
elicit lower activation in visual cortex than the sum of their parts, and are ignored 
more effectively in visual search (Kaiser et al., 2014), suggesting that they are 
represented as integrated units. The presence of rules governing the interaction 
of perceptual representations, and the fact that these rules mirror the co-
occurrences between objects in the world, is then a general fact about perception. 
But there is one reason why it is especially relevant in the case of incomplete (e.g. 
partially occluded) scenes. The problem of reconstructing the missing part of a 
scene involves inferring what might be hiding behind the occluder. If there were 
no constraints on how things in the world interact, this would be a hopeless task, 
as the possibilities would be limitless. Internalizing the rules of how objects 
interact with each other and with their context allows to predict the missing 
component of such interaction. The apparent motion phenomena listed above are 
a good instance of this. For example, the rule that objects cannot pass through 

Figure 1.9. Contextual effects in visual perception. (A) The same two line segments are 
represented as being part of a contour or not, depending on the surrounding context 
(Geisler & Super 2000; as illustrated in Lande, n. d.). (B) The same triangle is seen as 
pointing right or top-left depending on the contextual rectangle (from Lande, n. d.). (C) 
A degraded object can be disambiguated by a background scene. 
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other objects allows an observer to interpolate the likely movement of the hand 
around the leg in Figure 1.8D. Another clear example, this time involving filling-in 
an invisible static object, was recently found by Little & Firestone (2021). They 
showed human characters (Figure 1.10A) whose behavior implied an interaction 
with an invisible object of a particular shape: they could either step on the object 
(implying a horizontal shape) or bump into it (implying a vertical shape). When 
participants had to identify a stimulus presented subsequently, they were faster 
when it was congruent with the shape implied by the interaction (Figure 1.10B). 
These results, then, provide further evidence that internalizing the mechanisms by 
which objects interact can support filling-in of the missing components in an 
interaction. How might we represent these relations? Hafri & Firestone (2021) 
review a wide variety of findings, suggesting that physical, social and eventive 
relations between objects are represented as self-standing entities, and they are 
an integral part of visual perception. Similarly to how we can recognize objects 
invariantly to their lighting or viewpoint, then, we can represent a relationship such 
as ‘containment’ regardless of which object contains which other object (Hafri et 

Figure 1.10. Representing relations between objects can aid the filling-in of missing 
objects. (A) Knowing how a surface and a person interact (a horizontal surface causes the 
person to bump into it), we can infer the shape of the surface by observing the person’s 
behavior. Little & Firestone (2021) show precisely this kind of filling-in: a stimulus that 
matches the inferred invisible shape of the surface (B) is identified more quickly (C). 
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al., 2020; Ullman et al., 2019). A natural way to represent scenes in terms of 
objects and the relationships between them is a graph, with nodes corresponding 
to objects and edges to relations. Recently, artificial neural networks specifically 
designed to parse graph structures (Battaglia et al., 2018) have been proven to be 
extremely successful in a variety of tasks, including visual tasks such as object 
segmentation and scene captioning (see Chen et al., 2022 for a review). Is it 
possible that our perceptual representations are similarly organized by graph-like 
structures relating them? And how does the predictive power of individual object 
representations, described above, relate to that of the relations between them? In 
the next section, we will explore these questions, narrowing down our scope to a 
kind of relation particularly relevant for perceptual representations: spatial 
relations.  
 

1.6 Spatial relations in scenes 

1.6.1 Spatial relations 

Spatial relations, here, are defined as the relative positions and orientations of 
objects within a scene. The spatial relations that are possible in real-world scenes 
are inevitably constrained by the physics of the world, meaning that one object’s 
position and orientation limits the possible positions and orientations of others. A 
particularly clear and ubiquitous example is gravity: all objects are subject to 
gravity, so that for example, if a table is in a given position, other objects will be 
most likely to be directly on top of it, rather than floating above it. Moreover, given 
the orientation of the table’s plane, the objects on it will most likely point in a 
direction parallel or perpendicular to it. Given the importance of stability as a 
constraint, it is considered a primary driver of our representations of spatial 
relations (see Kasturirangan, 2004 for an extensive treatment). Indeed, both 
humans (Richards et al., 1996) and computational models (Du et al., 2018) can 
exploit stability to infer the likely configuration of a visual scene. Moreover, 
objects’ and scenes’ alignment to gravity is represented by subpopulations in 
macaque object-selective cortex (Vaziri & Connor, 2016; Emonds et al., 2022). 
These mutual constraints, similarly to some of those mentioned above, could allow 
to fill-in a missing object given another. I am not aware of any work explicitly 
investigating if we can fill-in whole invisible objects by exploiting physical stability. 
Given the strength and importance of this constraint in the real world, however, it 
would be reasonable to think that it is incorporated into our predictions of objects’ 
appearance. 
 While stability constrains the likely range of relative positions and 
orientations of objects, it still leaves several degrees of freedom: the vertical 
position of an object is constrained to be on the top of a table, for example, but it 
can be located anywhere on its surface (Figure 1.11B). Similarly, while its angles 
of pitch and roll are constrained to be orthogonal to the table’s surface, its yaw is 
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free to vary (Figure 1.11A). In this case, what constrains these degrees of freedom 
is the fact that they tend to remain fixed across time and the observer’s viewpoint. 
By representing the position and orientation of objects relative to each other, it is 
possible to exploit this constraint. A great wealth of empirical evidence indicates 
that humans indeed code the position of objects relative to several reference 
points in the environment, such as walls (Julian et al., 2016; S. A. Lee, 2017), 
landmarks such as buildings (Galati et al., 2010), other objects (Rieser, 1989) and 
the overall layout of a scene (Mou & McNamara, 2002). These relative location 
representations can be used, for example, to reorient ourselves in space (Julian et 
al., 2018), or to detect changes in a scene across viewpoints (Mou & McNamara, 
2002). The case of relative orientation is less clear, although there is evidence that 
participants exploit contextual viewpoint information in object recognition: Hinton 
& Parsons (1988) found that when determining whether two physical objects, 
presented in different orientations, were the same, they rotated them to have the 
same orientation relative to the scene (a table), rather than to their own view 
(Figure 1.12A). Humphrey & Jolicoeur (1993) found that showing a background 
with a consistent slant in depth facilitated recognition for objects shown in 
unorthodox orientations (Figure 1.12B). And Christou et al. (2003) found that 
synthetic 3D objects in virtual reality could be recognized better when shown 
within a scene context, indicating that the scene could be used as a reference 
frame (Figure 1.12C). In summary, evidence points to humans using relative 
coding of spatial location and orientation in a variety of tasks, including spatial 

Figure 1.11. Stability provides a ubiquituous constraint for objects’ orientations and 
positions. (A) Given the orientation of the table surface, two degrees of freedom of the 
object’s orientation are constrained: pitch and roll (only roll is shown for clarity). Yaw, on 
the other hand, is free to vary. (B) Similarly for position, an object is highly unlikely to float 
above the table, so its z position is constrained. Its x and y positions, on the other hand, 
can vary freely.  
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reorientation and object recognition. Whether it can be used to fill-in an object, for 
example by providing cues to its viewpoint, is a question that will be addressed in 
the next chapters of this thesis. For the moment, I will turn to the question of what 
constitutes a ‘good representation’ (a question we have encountered multiple 
times already) in the specific case of spatial relations: enter the scene graph. 
 

1.6.2 Scene graphs 

In the previous section, I have mentioned that objects’ positions and orientations 
can be encoded relative to other objects. While pairwise relations between two 
objects, or one object and its context, can already provide enough information to 

Figure 1.12. Scene context can provide a useful reference frame for object orientations. (A) 
In Hinton & Parsons (1988), participants rotated physical objects to have the same scene-
centered, rather than viewer-centered, orientation in order to compare them. (B) Showing a 
background with a coherent slant can facilitate the recognition of objects from unusual 
angles (Humphrey & Jolicoeur, 1993). (C) The context of a scene can facilitate the recognition 
of novel objects, even when participants can freely explore them in VR (Christou et al. 2003). 
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support spatial reorientation, recognition, and possibly predicting object 
viewpoint, it might not be the most efficient representation for real-world scenes. 
Most scenes we encounter in daily life are structured hierarchically, with larger 
objects supporting smaller objects, which in turn are made of multiple parts. 
Generally, parts causally depend on the wholes they belong to, and smaller 
objects depend on the larger objects that they lie on. For example, moving a table 
with multiple objects on it causes all of those objects to move, while the opposite 
is usually not true. While interactions between other objects may occur 
occasionally, such interactions between wholes and their parts are default in most 
scenes. For this reason, it would make sense to use specialized representations 
to efficiently process these kinds of structures. In the field of computer graphics, 
scene graphs have been designed explicitly for this purpose. A scene graph2 (Bar-
Zeev, 2007; Cunningham & Bailey, 2001; Sowizral, 2000; Figure 1.13A) is a 
directed hierarchical graph, in which nodes correspond to objects, and edges to 
“part-of” relationships. A given node’s children are its parts. Each object or part, 
beyond appearance information such as its texture and shape, stores its spatial 
transformations (translation, rotation, scaling) relative to its parent, usually in the 
form of a matrix. This structure can be traversed hierarchically, so that each 
individual part’s transformation can be computed efficiently from its ancestors. 
For example, if an object, such as a robot, is updated (e.g. moved to a different 
location), its parts, such as its arms and legs, will be updated with it. The 
usefulness of this structure in modeling real world scenes has led researchers in 
AI to address the problem of how similar structures can be represented in 
distributed neural patterns and learned (e.g. Hinton, 1981, 1990, 2021). One 
particularly fruitful class of models has been that of capsule networks (e.g. Hinton 
et al., 2011; Sabour et al., 2017; Hinton et al., 2018; Kosiorek et al., 2019). Similarly 
to scene graphs, capsule networks store spatial transformations together with 
their corresponding objects: each ‘neuron’, beyond responding specifically to a 
particular feature, is also equipped with a representation of its relative pose 
(Figure 1.13B). The greatest challenge in capsule networks is to learn how to 
correctly assign parts to objects based purely on the input data, a problem which 
has been tackled using a variety of approaches (see Ribeiro et al., 2022 for a 
review). Capsule networks have shown success on tasks ranging from image 
classification to segmentation of 3D data such as point clouds. Granskog et al. 
(2021) proposed a similar approach to combine the advantages of structured 
scene graphs and representations that can be learned from data. They also used 
distributed representations of object properties, such as geometry and texture, 
related to each other by linear transformations (Figure 1.13C). In spirit, this 
approach is similar to enforcing linear transformations (in the representational 
space) of single objects, as we mentioned above. In this case, the linear 

 
2 This term is sometimes also used in AI (for example, in image captioning) to indicate a more general 
representation of all kinds of relations among objects in a scene (e.g. Johnson et al., 2015, 2018; 
Chang et al., 2021). To avoid confusion, please note that we are not using that meaning of the term 
here. 
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transformations are between each object and its children. They find this approach 
to be helpful in learning scene representations that can be manipulated piecewise, 
for example by only modifying the texture of a single object without affecting 
others. Ost et al. (2021) similarly enforced linear transformations of objects relative 
to each other, learning scene representations that can generate novel views and 
object arrangements. 
 Other researchers have attempted to tackle the problem of learning part-
whole representations by incorporating some biologically plausible constraints: 
Bear et al. (2020) developed a model (Figure 1.13D) that learns to construct 
hierarchical scene representations using Gestalt-like visual cues, such as 
common motion, which are believed to underlie the development of object 
representations in early life in humans (Spelke, 1990). Hawkins and colleagues 
(e.g. Hawkins et al., 2017; Lewis et al., 2019) proposed a comprehensive 
framework for learning relative spatial representations, based on several 
biologically-inspired computational motifs. Gklezakos & Rao (2022) implemented 
part-whole representations through the use of saccade-like active sampling. 
Despite these early attempts at biologically plausible scene graph representations, 
the question of whether scenes are represented in such a hierarchical way in 
human perception has not been addressed thoroughly. While researchers noted 
early on the importance of hierarchical structure in perception in general (e.g. 
Palmer, 1977; Marr & Nishihara, 1978), most of the work on hierarchical 
representations in human vision has been in the domain of single object 
perception. In particular, an influential class of models (part-based models; 
Biederman, 1987) has recognized the crucial importance of parts and their 
arrangements in object recognition. In these models, objects are represented as 
collections of parts and spatial relationships between them (e.g. above, below), 
rather than precise metric coordinates. They can account for the finding that we 
often perceive changes in the part structure of objects to be much more salient 
than changes in their exact metric arrangement (Stankiewicz & Hummel, 1996). 
Moreover, since relative spatial relations are invariant of the observer’s viewpoint 
(unlike absolute coordinates), they afford the ability to recognize objects across 
different orientations (Biederman & Gerhardstein, 1993). Part-based models were 
originally contrasted with view-based models (Hummel, 2000), in which objects 
are represented in terms of image-like templates of specific views (Bülthoff & 
Edelman, 1992; Tarr & Pinker, 1989; S. Ullman, 1998). In fact, experimental 
evidence suggests that observers might use both part-based and view-based 
processes in parallel during object recognition (Foster & Gilson, 2002), or switch 
between them through the allocation of attention (Thoma et al., 2004). 
Interestingly, a mixture of image-based and structural representations also 
underlies some recent models that learn to extract hierarchical structures from 
scenes (e.g. Bear et al., 2020), suggesting a promising avenue for cognitively 
plausible computational models. Regardless of the specific representations 
involved, however, the evidence that object perception involves hierarchical 
representations is quite abundant.  
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 Whether whole scenes are also processed in terms of hierarchical 
structures, similar to scene graphs in computer graphics and AI, is less clear. Such 
a representation would have the advantage that scenes, objects and object parts 
would be represented as parts of a single, deep hierarchy (see Feldman, 2003 for 
a view on what constitutes an ‘object’ in a similar framework). Processing of 
complex scenes, comprising multiple objects and interactions between them, 
seems to share some mechanisms with part-based processing of single objects. 
For example, in judging similarities between scenes, the features of single parts 
and the overall structure of the scene appear to be used in parallel: scenes are 
brought into ‘alignment’ with each other such that the features of corresponding 
components are compared (Markman & Gentner, 1993; Goldstone, 1996). In 

Figure 1.13. Scene graphs. (A) Illustration of a simple scene graph for a hierarchical 
object (a robot). The squares marked with ‘T’ stand for spatial transformations relative 
to the parent node. (B) Example of a capsule network: the network has units that 
respond to a specific object part, and represent its position and orientation relative to 
the whole (from Ribeiro et al. 2022). (C) Neural scene graph model from Granskog et al. 
(2021). (D) Schematic of the model from Bear et al. (2020). 
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attentional guidance as well, humans seem to exploit the hierarchical structure of 
scenes, using larger objects as ‘anchors’ to search for smaller ones (Võ et al., 
2019). While these results could be seen as tentative evidence that hierarchical 
representations analogous to those for objects underlie the processing of multi-
object scenes, further research should clarify whether this is really the case. 
Further studies should also investigate whether any of the recently proposed 
methods for learning scene graph-like representations from data is a viable model 
of scene parsing in humans. For now, we move to the final section of this 
Introduction, and bring together several of the topics discussed so far. 
 

1.6.3 Scene dynamics 

In the previous section, we have introduced the idea of scene graphs, which 
originates in computer graphics, but we have not properly motivated what its role 
could be in human perception. In fact, the purpose it was originally designed for 
in graphics might also be where its usefulness for perception lies. As we have 
already seen several times in this chapter, it is all about dynamics. In real-time 
graphics applications, where the scene needs to be rendered many times per 
second, speed is crucial. Structures such as scene graphs were devised to 
efficiently update the scene when something needs to be changed (e.g. an object 
is moved). As for representations of single objects, hierarchical scene 
representations map updates that occur frequently to small ‘jumps’ in 
representational space. Consistent with the dynamic representations account 
outlined above, then, efficiently representing changes, rather than static scenes, 
might be the goal of scene graph representations, and their main advantage. Is 
there any evidence that hierarchical structure is exploited by humans in dynamic 
tasks? Actually, there is. In motion tracking, participants are more accurate when 
a motion display is hierarchically structured (H. Xu et al., 2017; Bill et al., 2020, 
2021), consistently with the idea that they exploit that structure to constrain their 
tracking. This previous research used simple, synthetic stimuli comprising multiple 
dots at different spatial locations. An intriguing question for future research would 
be whether this hierarchical structure is also exploited when tracking in complex, 
naturalistic scenes.  
 Often in the real world, objects do not simply change their retinotopic 
position, but can undergo several of the transformations listed above: 3D 
translations and rotations, deformations, changes in physical state, etc. As 
discussed earlier, we are able to represent and predict several of these 
transformations, seemingly relying on mechanisms shared with those dedicated 
to motion in space. At least some of these transformations also tend to follow a 
scene’s hierarchical structure. For example in the case of rotation, if a table with 
several objects lying on top of it rotates, generally so do those objects. If 
hierarchical dependencies are exploited even when tracking these 
transformations, what might be the mechanisms making this possible? I argue 
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that a series of empirical findings from different fields might suggest an answer. 
First, in motion tracking under occlusion, substantial evidence indicates that the 
representation of tracked objects behind the occluder is limited to certain 
properties of the objects. In particular, only object location seems to be 
represented (Scholl & Pylyshyn, 1999; Teichmann et al., 2022). In light of the 
‘object files’ theory described above, this finding has been interpreted in terms of 
maintaining an index to a particular object file bound to a location in space. Spatial 
position, then, might play a unique role in maintaining persistent object 
representations (Flombaum et al., 2009; Mitroff & Alvarez, 2007), which can 
facilitate the detection of changes in other properties, such as color or shape 
(Bahrami, 2003; Flombaum & Scholl, 2006). However, some have questioned 
whether this distinction between space and other features is fixed (Quilty-Dunn & 
Green, 2021). Other features, such as color (Hollingworth & Franconeri, 2009), 
shape (Zhou et al., 2010) or orientation (Gordon et al., 2008), can be used to bind 
changing stimuli to an object file. If features different from spatial position can be 
used to track objects, it might be possible to infer hierarchical dependencies in a 
scene on the basis of these features as well. Is there any empirical evidence that 
inter-object dependencies can be extracted for transformations different than 
translation? Graf (2006) reviews a series of findings consistent with the presence 
of reference frames in object perception: the position, size or orientation of an 

Figure 1.14. Illustration of spatial reference frames in visual perception, from Graf (2006). 
(A) An object shown with a particular orientation can facilitate the recognition of a 
subsequent (different) object with the same orientation (Graf et al. 2005). (B) This 
facilitation is believed to happen through the alignment of the visual scene with a 
canonical orientation, or in other words, by the establishment of a contextual reference 
frame. 
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object can be pre-cued by other objects (Graf et al., 2005; Figure 1.14A) or by a 
coherent scene context (such as examples we have seen before, Figure 1.12B-
C). These reference frames appear to be transformed in a manner similar to mental 
images during (explicit) mental transformations, by applying analog coordinate 
transformations (Figure 1.14B). However, they do not involve explicit mental 
images of a specific object, but rather a coordinate system that can facilitate 
processing of any object. In this way, they are quite similar to the abstract nature 
of motion tracking: one particular feature (position in the case of motion, 
orientation or size in the case of coordinate transformations) acts as a reference 
frame for an object representation. Detection of changes in other features could 
then be facilitated when they occur within a coherent reference frame. Clearly, 
further work will be required to clarify whether motion tracking and the setting of 
coordinate frames indeed rely on a common mechanism. It is an intriguing 
possibility, however, that flexible use of different features to ‘guide’ stable object 
representations could be a mechanism to exploit hierarchical dependencies in 
real-world scenes. While I do not commit to any specific computational 
implementation here, it is worth noting that disentangled representations easily 
lend themselves to representing links between specific features. If meaningful 
dimensions of objects (position, size, orientation) are associated with single 
dimensions of a representation, it is possible to constrain those dimensions 
exclusively (for example by making them dependent on a parent object) while 
letting others free to vary. Whittington et al. (2021) implemented a similar strategy 
in a model that learned to represent scenes comprising multiple objects: only the 
disentangled dimensions corresponding to the objects’ positions were dependent 
on each other, while the rest was unconstrained.  
 In summary, scene graph-like representations would seem to be most 
useful in situations that require tracking the dynamic changes of a hierarchical 
scene in real time. Just like in the case of single objects’ transformations, 
representing the dependencies between objects constrains which scene 
transformations are possible or likely given the current scene. Going through 
several disparate topics, I have offered some ideas of what might constitute a 
good representation for dynamic real-world tasks. Now, I will relate the big picture 
that I have just laid out with the content of the following experimental chapters. 
 

1.7 Our experimental paradigm 
In the following chapters, I will describe an experimental paradigm that aims to 
investigate internal object representations in humans, integrating several of the 
properties I have listed. In this paradigm, participants see an object within the 
context of a 3D scene. This object is then temporarily occluded while the scene’s 
viewpoint, still visible, changes. We investigate, using behavior and fMRI, whether 
participants update the representation of the invisible object coherently with the 
surrounding scene’s viewpoint. Thus, we investigate whether their representation 
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of the object: (a) behaves like the 3D object it's representing, rotating to novel 
viewpoints; (b) is bound to an external object, similar to object tracking under 
occlusion, rather than happening on a mental canvas; (c) interacts with the 
surrounding visual scene by respecting real-world constraints (the simple fact that 
an object and the surrounding scene move coherently). This paradigm, then, 
combines the first three of the points listed above. As our scenes were relatively 
simple, we did not investigate point (d) (scene graphs, specialized representations 
for part-whole hierarchies). Point (e) is even more speculative, and pertains to the 
role of hierarchical structures in dynamic vision more broadly. These points are 
meant to be an inspiration for future research (I will return to this in the General 
Discussion). 
 



  

 
 

Chapter 2 
Scene context automatically drives 
predictions  of object transformations 
 
 
Abstract 
Humans are able to mentally transform objects in accordance with their transformations in 
the external world. For example, we are able to predict how a 3D object will look from a 
novel viewpoint. In real-world environments, objects are not generally transformed in 
isolation, but in accordance with their context. As we change our viewpoint, for example, 
we see the whole visual scene rotate coherently. Exploiting these structural regularities 
would enable us to predict object transformations in complex real-world scenes. Here, in a 
series of online behavioral experiments (N = 152), we investigate whether scene context 
can automatically drive predictions of objects from novel viewpoints. We find that 
participants’ responses in an orthogonal task are strongly influenced by whether objects 
appear rotated coherently with the surrounding scene after a period of occlusion. This 
behavioral effect holds true across a variety of possible object orientations, and different 
amounts of scene rotation, suggesting that it reflects a flexible transformation mechanism 
rather than associative learning of specific views. It also persists, and does not reverse, 
when the scene-driven viewpoint expectation is violated on a large proportion of trials, 
showing that short-term contingencies cannot easily overrule it. Altogether, these findings 
point to a possible mechanism for tracking and predicting objects in real-world contexts. 
 
  

 
This chapter is based on: 
Aldegheri, G., Gayet, S., and Peelen, M.V. (2023). Scene context automatically drives predictions of 
object transformations. Cognition 238, 105521. 
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2.1 Introduction 
The appearance of objects in our everyday environments is continually 
transforming, for example due to their motion or to changes in our viewpoint. 
Predicting how objects change is crucial for survival in a dynamic world, but in 
most cases these transformations cannot be easily inferred from visual input, 
making future prediction challenging. An important function of perceptual 
systems, then, is to extract representations that behave similarly to objects in the 
external world (Shepard, 1984, 2001; Higgins et al., 2022): for example, our 
internal representations of objects can be mentally rotated similarly to how 
external objects rotate (Shepard & Metzler, 1971); they are extrapolated forward 
in time, such that a moving object will be remembered as being displaced further 
along its motion direction (Hubbard, 2005); and they support predictions of 
physical dynamics, consistent with an internal simulation of real-world physics 
(Battaglia et al., 2013; Bear et al., 2021). 
 This prior research investigating the human ability to predict object 
transformations has focused on objects shown in isolation, driven by properties 
intrinsic to the objects themselves, such as their motion, or by cognitive 
operations determined by the participant, such as the amount of mental rotation 
required to match two object views. In the real world, however, objects are 
strongly constrained by their context (Bar, 2004; Oliva & Torralba, 2007), so that 
prediction often amounts to a task of completing the partial information present in 
a scene. For example, a visually degraded object’s identity can be disambiguated 
based on its background scene, such that a blurred shape appearing on a road 
will be seen as a car (Brandman & Peelen, 2017) and even be perceived as visually 
sharper (Rossel et al., 2022). Contextual information can also be provided by other 
objects or agents: for example, Little & Firestone (2021) found that human subjects 
mentally ‘fill in’ the shape of an invisible object based on how an actor interacts 
with it, perceiving it as horizontal if the actor steps on it, or vertical if he bumps 
into it.  
 The interaction between objects and their context is not limited to fixed 
object properties, like their shape or size: scenes also constrain how objects 
transform. A particularly clear example can be seen as we navigate an 
environment: assuming the objects around us remain still, all of their orientations 
relative to us will change jointly as we move, together with the layout of the scene 
(e.g., the orientations of walls). Rather than predicting how objects look from a 
new viewpoint based entirely on internally driven mental rotation operations, then, 
it is possible to use contextual scene information to fill them in. The ability to use 
such relational information to predict an object’s appearance from a new 
viewpoint would be highly relevant in many real-world settings. We constantly 
need to track and update the representations of objects in the external 
environment, even when they’re temporarily invisible (Munton, 2022; Scholl & 
Flombaum, 2010; Scholl & Pylyshyn, 1999), rather than evoke and manipulate a 
mental image of the object separate from the current visual input. It would also 
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provide a computational advantage, by alleviating the burden on several cognitive 
processes, such as determining the correct amount of mental rotation (Hamrick & 
Griffiths, 2014) or finding correspondences between rotated versions of the same 
object (Just & Carpenter, 1976; Larsen, 2014; Xue et al., 2017). Instead, the 
amount of rotation of the object can be determined from the rotation of its 
surrounding scene, and its updated representation can be filled-in and compared 
with incoming visual input at the relevant scene location. Similar interactions 
between internally driven processes and scene context have been found in visual 
search, in which the visual cortical representation of the object that subjects are 
searching for in a scene is ‘rescaled’ based on the distance at which they search 
(Gayet & Peelen, 2022). 
 Here, in three online behavioral experiments, we investigated whether 
human participants automatically predict an object’s appearance from a new 
viewpoint, based exclusively on changes in the surrounding scene’s viewpoint. 
We designed an experimental paradigm in which an object (a bed or couch) was 
shown in the context of a realistic indoor scene, which changed in viewpoint 
(Figure 2.1). During the viewpoint change, the object was hidden by an occluder. 
Afterwards, the occluder would disappear and the object would be revealed: it 
could either be oriented consistently with the scene’s new viewpoint (Expected 
condition) or inconsistently (Unexpected condition). Crucially, the total viewpoint 
change of the scene was varied across trials, so that participants’ prediction could 
not be driven by simply extrapolating the object’s rotation by a constant amount. 
To process an object’s view as Expected or Unexpected, they needed to take into 
account how much the surrounding scene had rotated. The (Expected or 
Unexpected) object was displayed briefly twice, and participants had to indicate 
whether these two appearances had the same orientation or not (same/different). 
We compared their performance, in terms of both sensitivity (d’) and response 
bias (criterion) between Expected and Unexpected trials. Any performance 
difference would indicate that they internally represented the updated object view. 
The task was orthogonal to the expectancy manipulation, and participants were 
not explicitly instructed to use scene viewpoint or try to predict the upcoming 
object view. We were interested in gauging whether they would automatically 
extract the dependency between scene and object. 
 In Experiment 1, we found that both participants’ response bias and 
sensitivity were affected by whether the object matched the scene-driven 
expectation. On Unexpected trials, participants tended to give more ‘different’ 
responses and had lower sensitivity compared to Expected trials. Since in this 
experiment, the object appeared more frequently in the Expected than the 
Unexpected view (75% of trials), we next asked whether the effect of scene-driven 
expectations could still be found if the two views appeared with equal probability 
(50% of trials). In Experiment 2, we found this to be the case, finding the exact 
same profile of results as in Exp. 1, in both response bias and sensitivity. Finally, 
in Experiment 3, we found that the effect of expectancy persists in the same 
direction even when the Expected view is shown only on a minority of trials (25%). 
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Together, these results indicate that scene viewpoint influences object 
expectations in an automatic fashion. Moreover, this influence is not attenuated 
or reversed when violated frequently during the experiment, suggesting that it 
derives primarily from real-world regularities and cannot be easily overruled. 
Automatically predicting object transformations on the basis of scene context 
might be a mechanism to overcome the complexity of the real world by exploiting 
its regularities. 
 

2.2 Methods 

2.2.1 Participants 

All experiments were run online, hosted on Pavlovia and programmed in 
Javascript using JsPsych 6.3.0 (De Leeuw, 2015) and the jspsych-psychophysics 
library (Kuroki, 2021). 
Online participants were recruited on Prolific (Palan & Schitter, 2018), and had to 
satisfy the following criteria: reside in Europe or the UK, to ensure their timezone 
was the same as ours and they were participating during day hours; be between 
18 and 35 years old; have normal or corrected-to-normal vision; have participated 
in at least 10 previous studies on Prolific; and have a Prolific approval rate of at 
least 95%. Participants provided informed consent before the study and received 
monetary compensation for their participation. The study was approved by the 
Radboud University Faculty of Social Sciences Ethics Committee (ECSW2017-
2306-517). Participants were included in the analysis if a one-sided binomial test 
comparing their hit rate in our same/different task with 50% was significant (at 
alpha = 0.05), meaning that they were performing better than chance. We 
continued data collection until the number of included participants reached 50 for 
each experiment. In Experiment 1, we excluded 30 participants. Of the included 
50 participants, 25 were females, and mean age was 26.7 ± 5.1. In Experiment 2, 
we excluded 33 participants. Of the included 50 participants, 20 were female, and 
mean age was 24.5 ± 4.3. In Experiment 3, we excluded 56 participants. Of the 
included 52 participants, 25 were female, 26 male and one participant’s 
demographic information was missing. Mean age was 24.7 ± 4.4. 
 The high exclusion rate was likely due to several reasons: we kept a very 
short presentation time (50 ms) for the two probes, in order to reduce the influence 
of deliberate judgment and find evidence of a perceptual representation of the 
object’s updated appearance, also making the task more challenging; we limited 
the maximum orientation difference between the two probes to 20°, to avoid 
exceeding 1/3 of the difference between expected and unexpected views (60°). 
This meant that the staircase was limited in its ability to adjust to participants with 
a higher discrimination threshold. 
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2.2.2 Stimuli 

The stimuli were based on 8 different indoor scenes modeled in Blender 2.92 and 
rendered using the Cycles rendering engine for realistic lighting. The scenes all 
had the same layout (floor, two walls at a right angle and a main object in the 
center) but contained various other objects, adjacent to the walls, and different 
textures on the walls and floor. The central object was a couch on half of the 
scenes, and a bed on the other half. The central object’s size was the same across 
scenes. For each scene, a sequence of different viewpoints was rendered, by 
rotating the scene around the vertical axis between 0° to 90° in steps of 5°. The 
two walls were oriented such that the scene was fully visible from all these 
viewpoints. All scene images were presented at a resolution of 960 x 540 pixels. 
 
2.2.3 Procedure 

Each trial (Figure 2.1) began with a fixation dot (which was always present during 
the trial, radius 5 pixels) for 500 ms, followed by the first view of the scene for 
2000 ms, the 3 intermediate views for 500 ms each, and the final view for a 
randomly jittered duration between 1500 and 2000 ms. 
The central object (couch or bed) was fully visible for the first and second view, 
and was occluded by a grey rectangle during the third, fourth and final view. The 
occluder had the height and width of the largest possible view of the object, plus 

Figure 2.1. Example trial - in this case, corresponding to a “Large” total rotation (90°), 
an “Expected” view, and a “Different” trial: the second probe is slightly rotated relative 
to the first (arrows added for illustration). 
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a margin (horizontal: 110 pixels, vertical: 40 pixels) to ensure the object was fully 
covered and its shadow was not visible, which would have provided a cue to its 
orientation. 
 After the final view of the scene was shown, with the object still fully 
occluded, the object was briefly flashed twice (within the scene) for 50 ms, with a 
100 ms inter-stimulus interval in between. We refer to these two brief 
presentations of the object as the probes. Participants’ task was to report whether 
the second probe was the ‘same’ as, or ‘different’ from, the first, by pressing the 
F or J key, respectively. After responding, they would receive feedback: the 
fixation dot would turn green following a correct answer and red following an 
incorrect one for 250 ms. They had a maximum of 2500 ms to respond, after which 
the fixation dot would turn black, the experiment would skip to the next trial and 
the current trial would be counted as missed. 
 Participants were explicitly told that their task would be on the final two 
views of the objects exclusively, but that they should also pay attention to the 
preceding sequence of images, to ensure they wouldn’t completely disengage 
during the seconds preceding the probes. 
The first probe was randomly sampled from a normal distribution centered around 
the Expected or Unexpected object viewpoint, with a standard deviation of 1°, to 
add a small amount of jitter, and then rounded to the nearest integer. 
The second probe, on half of trials (‘same’ trials), was exactly the same as the first 
probe. On the other half of trials (‘different’ trials), it was rotated around the vertical 
axis relative to the first (see Figure 2.1, bottom left), clockwise or 
counterclockwise with equal probability. 
 The orientation difference on the ‘different’ trials was titrated using a 2-
down 1-up staircase, to keep the task difficulty constant across participants and 
across experiments. Specifically, a single staircase was used across both 
Expectancy conditions to ensure average performance around 70% correct 
(Wetherill & Levitt, 1965) across conditions, while still allowing for accuracy 
differences between the Expected and Unexpected conditions. Stimulus intensity 
(orientation difference between probes) was adjusted after both ‘same’ and 
‘different’ trials. The starting value for the staircase was 10°, step size was 1° 
(lowered to 0.5° after 3 staircase reversals) and the minimum and maximum 
possible orientation differences shown were 0.5° and 20°, respectively. The means 
and standard deviations of the angle differences reached by the staircase in the 
second half of trials, in each experiment, were 12.76° ± 4.64, 11.96° ± 5.18, and 
14.11° ± 4.90 respectively. 
 Each experiment lasted about 30 minutes in total, divided in blocks, and 
participants were encouraged to take a short break after the end of each block. 
Before the experiment began, participants read instructions, accompanied by 
demonstration images, at their own pace. Then they completed a short practice 
run. During the practice run, the presentation time of the two target probes 
gradually decreased across trials, from 300 ms to their presentation time in the 
main experiment, 50 ms. This allowed participants to familiarize with the task with 



Chapter 2 

 53 

an initially less challenging presentation time. 
 
2.2.4 Experimental design 

Trials varied along three different factors (Figure 2.2): Expectancy (Expected, 
Unexpected), Object Orientation relative to the scene (6 angles: 0°, 60°, 120°, 
180°, 240°, 300°), Scene Rotation (Small, Large) and Scene (1 of 4 different scene 
exemplars, one of two subsets of the 8 total views, selected randomly for each 
participant). 
The overall proportion of Expected and Unexpected trials varied depending on the 
experiment (75% of total trials in Exp. 1, 50% in Exp. 2, and 25% in Exp. 3). All 
the other factors were fully balanced within the Expected and Unexpected trials, 
meaning that each of four partitions of the trials (variably assigned to either 
Expected or Unexpected depending on the experiment) were equally divided 
among each combination of Object Orientation, Scene Rotation and Scene (6 x 2 
x 4 = 48 trials for each partition, resulting in 192 trials in total). All these trials were 
presented in random order throughout the experiment. 
 The Unexpected view corresponded, on Small rotation trials, to a view 
that was rotated 60° more than expected, and on Large rotation trials, to a view 
rotated 60° less than expected. The 6 initial object orientations were chosen to be 
60° apart, so that the Unexpected view for one orientation corresponded to the 
Expected one for another. This way the exact same images could be presented 
as Expected in the context of one trial, and Unexpected in another, avoiding any 
possible confounds due to physical differences (Figure 2.2). 
 
2.2.5 Data analysis 

In order to distinguish the effects of scene-driven expectations on observers’ 
perceptual sensitivity and response bias, we computed d’ and criterion for each 
of the two conditions of interest (Expected and Unexpected trials). We consider 
‘Same’ trials as noise, and ‘Different’ as signal, meaning that criterion measures 
the tendency to respond ‘same’. We used the log-linear method (Hautus, 1995) to 
correct for the rare cases of 100% accuracy in a particular condition. 
 All analyses were conducted in Python using Pandas 1.2.5 (McKinney, 
2011), Numpy 1.20.2 (Harris et al., 2020), Pingouin 0.3.4 (Vallat, 2018), and Scipy 
1.6.2 (Virtanen et al., 2020), and results were visualized using Matplotlib 3.3.4 
(Hunter, 2007), and Seaborn 0.11.1 (Waskom, 2021). 
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2.2.6 Post-experiment survey 

After completing the experiment, participants were asked three questions for us 
to gauge their awareness of the expectation manipulation.  
The questions were: 
•  “Your task was only on the final image, when the object changed or not. Did 

you also pay attention to the sequence of images before the task image?” - the 
response had to be indicated on a Likert scale from 1 (Not at all) to 7 (All the 
time). 

• “When the scene rotated, did you anticipate seeing the object in the correct 
viewpoint after it reappeared?” - the response also had to be indicated on a 1-
7 Likert scale. 

• “What percentage of objects were in line with your expectation? (They 
reappeared with the correct viewpoint)” - the response had to be a value in 
percentage, from 0 to 100%. 

Figure 2.2. Illustration of the experimental design, showing the initial orientation of the 
object relative to the scene, and the final images (after the whole view sequence and 
the occlusion period) resulting from a Small or Large rotation on Expected or 
Unexpected trials. The images highlighted by the colored frames are examples of the 
same images appearing as either Expected or Unexpected on different trials. 
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2.3 Results 

2.3.1 Experiment 1: 75% Probability 

In the first experiment, participants had a 75% probability of seeing the object in 
the expected view (given the scene viewpoint). Across conditions, their mean 
accuracy (and SEM) was 0.68 ± 0.01, indicating that they were fully able to do the 
task, and that the staircase successfully converged to the desired accuracy of 
70%. Criterion overall was significantly above zero (mean: 0.69, t(49) = 37.3, p < 
0.001, d = 5.27, 95% CI = [0.66, 0.73]), indicating a strong general bias towards 
responding ‘same’, possibly due to the small perceptual differences between the 
probes. 
 In our central analysis, we compared d’ and criterion between the 
Expected and Unexpected trials. We found both measures to significantly differ. 
Criterion was higher on Expected than Unexpected trials (means: 0.82 vs. 0.56; 
t(49) = 6.63, p < 0.001, d = 1.35, 95% CI = [0.18, 0.33], Figure 2.3A). Participants, 
then, had a tendency to respond ‘different’ more often on Unexpected trials, 
reducing their overall bias. This result indicates that participants were sensitive to 
the object’s congruence with the scene viewpoint, and that this influenced their 
responses. Interestingly, despite having less response bias on Unexpected trials, 
their sensitivity was also lower. Comparing d’, we found it to be higher on 
Expected than Unexpected trials (means: 0.75 vs. 0.48; t(49) = 4.53, p < 0.001, d 
= 0.89, 95% CI = [0.15, 0.38], Figure 2.3B). The object’s congruence, then, 

Figure 2.3. Results of Experiment 1. (A) Left – mean (and SEM) criterion for the Expected 
and Unexpected trials. Right – distribution of the differences between conditions 
(Expected – Unexpected) for each participant. (B) Same as in A, for d’. * p < 0.05, ** p < 
0.01, *** p < 0.001. 
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beyond influencing participants’ responses, also had an effect on their perceptual 
sensitivity. Together, these effects on bias and sensitivity suggest that participants 
formed an expectation of the object’s view given the scene context, and that 
whether this expectation was respected or violated influenced their performance 
in our orthogonal task. 
 In this experiment, the object matched participants’ scene-driven 
expectations on a majority of trials. Real-world regularities (the coherence of an 
object’s rotation with the surrounding scene), then, matched the short-term 
regularities observed during the experiment. In the next experiment, we 
investigated whether more frequent violations of real-world regularities would 
reduce this behavioral effect. 
 
2.3.2 Experiment 2: 50% Probability 

In Experiment 2, the object, after the occlusion, reappeared in an expected or 
unexpected view with equal probability. Besides this probability manipulation, 
stimuli and experimental paradigm were the same as in Experiment 1. Like in the 
previous experiment, participants were solidly above chance in performing the 
task (mean accuracy and SEM: 0.69 ± 0.01). Their overall criterion was also 
consistent with the previous experiment, being significantly higher than zero 
(mean: 0.76, t(49) = 41.2, p < 0.001, d = 5.82, 95% CI = [0.72, 0.80]). They were 
then still prone to respond ‘same’ (no difference between the two probes) on a 
majority of trials. 
 Again, in our main analysis, we found both criterion and d’ to significantly 

Figure 2.4. Results of Experiment 2. (A) Left – mean (and SEM) criterion for the Expected 
and Unexpected trials. Right – distribution of the differences between conditions 
(Expected – Unexpected) for each participant. (B) Same as in A, for d’.  * p < 0.05, ** p 
< 0.01, *** p < 0.001. 
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differ between Expected and Unexpected trials. Criterion was higher in the 
Expected than the Unexpected condition (means: 0.82 vs. 0.71, t(49) = 3.51, p < 
0.001, d = 0.63, 95% CI = [0.05, 0.17]; Figure 2.4A), and so was d’ (means: 0.75 
vs. 0.59, t(49) = 2.89, p < 0.01, d = 0.54, 95% CI = [0.05, 0.27]; Figure 2.4B). The 
behavioral effect of the object’s expectancy on both bias and sensitivity was thus 
consistent with the previous experiment. This suggests that even when the long-
term expectation of scene and object rotating coherently was not informative of 
the stimuli that would be shown in the experiment, it still affected participants’ 
behavioral performance. It could thus not be easily overruled by short-term 
experiment regularities. In Experiment 3, we asked whether presenting 
unexpected object views on a majority of trials could overrule, and possibly even 
reverse, these behavioral effects. 
 
2.3.3 Experiment 3: 25% Probability 

In this experiment, the object would reappear with an expected view only on 25% 
of trials. Aside from this, stimuli and paradigm were the same as in the previous 
two experiments. Here, again, participants were well above chance (mean 
accuracy and SEM: 0.69 ± 0.01). Their overall bias was also consistent with the 
previous two experiments, with a majority of ‘same’ responses, leading to a 
significantly positive criterion (mean: 0.78, t(51) = 46.4, p < 0.001, d = 6.44, 95% 
CI = [0.75, 0.82]). 
 In our central comparison of criterion and d’ between Expected and 
Unexpected trials, we again found a significant difference in both measures. 

Figure 2.5. Results of Experiment 3. (A) Left – mean (and SEM) criterion for the Expected 
and Unexpected trials. Right – distribution of the differences between conditions 
(Expected – Unexpected) for each participant. (B) Same as in A, for d’.  
* p < 0.05, ** p < 0.01, *** p < 0.001. 
 
 



Scene context automatically drives predictions of object transformations 

 58 

Criterion was higher in the Expected than the Unexpected condition (means: 0.84 
vs. 0.73, t(51) = 3.59, p < 0.001, d = 0.66, 95% CI = [0.05, 0.17]; Figure 2.5A), 
consistently with the previous experiments.  
The higher d’ in the Expected vs. Unexpected condition (means: 0.78 vs. 0.59, 
t(51) = 3.92, p < 0.001, d = 0.58, 95% CI = [0.09, 0.28]; Figure 2.5B) was also 
replicated in this experiment. Interestingly, then, the behavioral  
influence of expectancy did not reverse when the short-term experimental 
regularities ran counter to it. This result provides further confirmation that the real-
world constraint of coherent scene-object rotation cannot be easily overruled by 
inconsistent evidence. 
 
2.3.4 Role of alignment to the scene 

Our object orientations could be divided into those that were aligned with one of 
the scene’s main axes (0°, 180°) and those that were not (60°, 120°, 240°, 300°).  
We conducted an exploratory analysis to determine whether the behavioral effects 
we observed were influenced by the object’s alignment to the scene’s axes. If the 
effect were only found with aligned object orientations, this would suggest that 
participants’ expectations of the object’s view were primarily based on scene-
centered cues. For each of the three experiments, we compared the magnitude of 
the behavioral effect (difference in d' or criterion between Expected and 
Unexpected trials) between aligned and misaligned object orientations. We did  

Figure 2.6. Distributions of Expected-Unexpected differences in criterion (A) and d’ (B) 
for aligned and misaligned object orientations, for each of the three experiments. 
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not find any significant effect of alignment on the magnitude of the behavioral 
differences, in any of the three experiments, in either criterion (t(49) = 2.08, 2.16, 
t(51) = 1.22; pbonf = 0.127, 0.108, 0.687 for the three tests; Figure 2.6A) or d’ (t(49) 
= 2.31, 0.84, t(51) = 0.81; pbonf = 0.074, 0.812, 0.812 for the three tests; Figure 
2.6B). While this analysis was purely exploratory, and based on a small number of 
trials (as few as 12 in some conditions), we did not find any evidence of the 
distinction between expected and unexpected object views being based on 
scene-centered cues. We discuss the possible interpretation of this in the 
Discussion. 
 
2.3.5 Final survey data 

The purpose of the final survey questions was to gauge the extent to which 
participants were aware of the experimental manipulation: how much they paid 
attention to the sequence of scene viewpoints before the target object appeared, 

 Experiment 1 
Probability = 75% 

Experiment 2 
Probability = 50% 

Experiment 3  
Probability = 25% 

Attention to Sequence 
1-7 Likert scale 4.34 ± 0.21 3.90 ± 0.22 4.00 ± 0.23 

Correlation with criterion r = 0.12, p = 0.40, 
BF01 = 4.03 

r = 0.26, p = 0.07, 
BF01 = 1.17 

r = -0.07, p = 0.62, 
BF01 = 5.13 

Correlation with d’ r = 0.16, p = 0.25, 
BF01 = 2.99 

r = 0.11, p = 0.42, 
BF01 = 4.15 

r = -0.06, p = 0.69, 
BF01 = 5.38 

Object Prediction 
1-7 Likert scale 3.90 ± 0.19 4.02 ± 0.20 3.88 ± 0.17 

Correlation with criterion r = 0.00, p = 0.98, 
BF01 = 5.68 

r = -0.12, p = 0.39, 
BF01 = 3.97 

r = -0.02, p = 0.90, 
BF01 = 5.75  

Correlation with d’ r = 0.11, p = 0.45, 
BF01 = 4.29 

r = -0.15, p = 0.29, 
BF01 = 3.27  

r = 0.00, p = 0.98, 
BF01 = 5.78 

Probability Estimate 
Percentage 60.48 ± 2.46 54.80 ± 2.48 50.85 ± 2.28 

Correlation with criterion r = -0.20, p = 0.17, 
BF01 = 2.32 

r = -0.10, p = 0.48, 
BF01 = 4.44 

r = -0.22, p = 0.12, 
BF01 = 1.74 

Correlation with d’ r = 0.00, p = 0.99, 
BF01 = 5.68 

r = -0.23, p = 0.11, 
BF01 = 1.66 

r = 0.09, p = 0.53, 
BF01 = 4.81 

Table 2.1. Mean responses (and SEM) to our final survey questions, and Pearson’s r 
correlation with the behavioral effects (Expected – Unexpected trials) for both criterion and 
d’. 
 
 



Scene context automatically drives predictions of object transformations 

 60 

how much they actively tried to predict the final object viewpoint, and their 
estimate of the probability of the object appearing in the expected orientation. 
Table 2.1 reports participants’ mean responses for each of the questions, 
together with their correlation (Pearson’s r) with the magnitude of the criterion and 
d’ difference in our task (Expected-Unexpected) across participants. We found 
that none of the survey questions correlated with our behavioral effect size, 
suggesting that the accuracy difference was not driven by an explicit prediction 
strategy, by the amount of attention deliberately paid to either the scene sequence 
or the frequency of the stimulus matching their expectations. 
Comparing the Likert ratings across the three experiments, we found that neither 
Attention to Sequence nor Object Prediction changed significantly depending on 
the probability of the object appearing in the Expected view (respectively: F(2, 
99.2) = 1.169, p = 0.315, η2 = 0.014; F(2, 98.7) = 0.151, p = 0.860, η2 = 0.002; 
Welch ANOVAs). Their Probability Estimate, on the other hand, significantly 
differed across experiments (F(2, 99.0) = 4.117, p = 0.019, η2 = 0.052), showing  
that participants could detect a difference in the probability of the object matching 
their expectation. While they were somewhat aware of the probability 
manipulation, then, according to their self-reports they did not seem to adopt a 
different strategy (e.g. paying more attention to the scene, or more actively trying 
to predict the object) based on the probability of the object matching their 
expectations. More importantly, our behavioral effects correlated with none of 
these self-report measures, suggesting that they did not depend on conscious 
adoption of one of these strategies. 
 

2.4 Discussion 
In the real world, objects and their context are strongly interdependent, meaning 
that it is possible to predict how an object’s viewpoint will change, based on 
changes in the viewpoint of the surrounding scene. In this study, we manipulated 
whether objects respected this constraint, and measured how this affected 
participants’ performance in an orthogonal perceptual task. Across  
three experiments, we found that expectancy affected both participants’ 
sensitivity and response bias, suggesting that they formed an expectation of the 
object’s view. This was the case even though the task did not explicitly require 
them any explicit prediction, or even to take scene information into account. 
Strikingly, the effect was still present even when the real-world constraint was not 
predictive during the experiment (in Experiment 2) or counter-predictive 
(Experiment 3). The effect we reported, then, likely did not arise from a form of 
associative learning between arbitrary object views occurring during the 
experiment, unlike in paradigms investigating the effect of probabilistic 
expectations on perception (Kok, Jehee, et al., 2012; Kok & Turk-Browne, 2018). 
Moreover, both the amount of overall scene rotation and the orientation of the 
object relative to the scene were varied across trials, suggesting a flexible 
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mechanism allowing to predict an object from novel viewpoints given any initial 
orientation, and adjusting this prediction to the amount of rotation in the scene. 
 These results provide a potential bridge between the known human ability 
to transform internal representations of objects, such as rotating them to novel 
viewpoints, and the requirements of real-world perception. Prediction in the real 
world generally involves filling-in missing information from a context, rather than 
imagining something on a ‘mental canvas’. A clear example is the case of 
occlusion: even as objects go in and out of sight, we need to track and update 
their representations (Munton, 2022; Scholl & Pylyshyn, 1999; Teichmann et al., 
2021). Mental transformations such as rotation, by contrast, have generally been 
studied in isolation, using tasks that required to manipulate a separate mental 
image of an object, and compare it with a target stimulus in a series of slow, 
deliberate cognitive steps (Shepard & Metzler, 1971; Just & Carpenter, 1976; 
Larsen, 2014; Xue et al., 2017). A question left open by the present study is 
whether the representations involved in our paradigm are the same as in classic 
mental transformation paradigms. Reviewing several related findings, Graf (2006) 
highlights the importance of spatial object transformations, such as rotation and 
scaling, in a variety of tasks beyond those requiring explicit imagery. However, he 
proposes that these tasks might fall into two distinct classes. On the one hand, 
there is the deliberate manipulation of mental images, a process that happens 
slowly, and results in a prediction of a specific object in a specific orientation or 
size (Cooper & Shepard, 1973; Koriat & Norman, 1984, 1988; Stewart et al., 2022). 
On the other, there is a faster process of establishing a spatial reference frame for 
object perception. For example, a particular orientation or size can be ‘activated’ 
and any object that matches it can be recognized more efficiently (Graf et al., 2005; 
Larsen & Bundesen, 1978). These reference frames can also be established by 
scene context (Humphrey & Jolicoeur, 1993; Christou et al., 2003), suggesting that 
the effect we observed here might also involve setting up an abstract reference 
frame, rather than forming a mental image of a specific object from a novel 
viewpoint. Interestingly, studies investigating the tracking of moving objects under 
occlusion have found that only the object’s position, and not its surface properties 
such as shape or color, are represented behind the occluder (Flombaum et al., 
2009; Pylyshyn, 2004; Scholl & Pylyshyn, 1999; Teichmann et al., 2022). This 
suggests an interesting parallel with our paradigm, raising the possibility that 
abstracted representations of spatial object transformations – beyond position, 
orientation as well – might support tracking in naturalistic environments. Further 
research should clarify whether the effect we report results from an image-like 
representation of the expected object, or an abstract reference frame. For 
example, by comparing expected and unexpected views for different object 
exemplars from the one seen at the start of the trial, it should be possible to 
determine whether participants form an object-specific prediction. 
 A related, but distinct, question for future research is how the structure of 
the scene is represented to support the prediction of the updated object view. The 
field of object perception has traditionally contrasted structure-based and view-
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based models. According to structure-based models, objects are represented in 
terms of parts and their spatial relations (Biederman, 1987; Marr & Nishihara, 1978; 
Hummel, 2000; Erdogan & Jacobs, 2017; Ayzenberg & Behrmann, 2022), allowing 
to recognize objects across different viewpoints (Biederman & Gerhardstein, 
1993). In view-based models, on the other hand, objects are represented as 
collection of image-like templates, with operations such as mental rotation or view 
interpolation allowing generalization to novel views (Bülthoff & Edelman, 1992; 
Tarr & Pinker, 1989; S. Ullman, 1998). In spatial cognition, at the level of whole 
scenes, a similar distinction has been drawn. Some evidence suggests that 
subjects, in tasks that require spatial reorientation or detection of changes across 
viewpoints, primarily rely on viewpoint-invariant cues, by representing objects’ 
positions relative to each other (Rieser, 1989), to landmarks or boundaries in the 
environment (Galati et al., 2010; Julian et al., 2016; S. A. Lee, 2017), or to scene 
layout (Mou & McNamara, 2002). On the other hand, there is also substantial 
evidence for subjects primarily relying on self-centered views to orient themselves 
in space (Franz et al., 1998; Gillner & Mallot, 1998; Gootjes-Dreesbach et al., 2017; 
Vuong et al., 2019). Both in object recognition and spatial navigation, then, models 
based on structural descriptions, that remain invariant across viewpoints, have 
traditionally been contrasted with models based on image-like representations 
and mappings between them. Which kind of representation might underlie the 
scene-driven predictions reported here? To provide a tentative answer, we have 
compared our behavioral effects between trials in which the object was aligned 
with one of the cardinal axes in the scene with those in which it wasn’t. This is a 
classic manipulation used to distinguish structure-based from view-based scene 
representations (e.g. Marchette et al., 2011; Marchette & Shelton, 2010; Mou & 
McNamara, 2002), since salient axes of the environment provide a stable 
reference frame that can be used across viewpoints. We did not find any 
difference in the magnitude of the effect, suggesting that participants might have 
relied more on a view-based representation. Clearly, this does not necessarily 
mean that they represent scenes exclusively as holistic, image-like 
representations. In both object perception (Edelman & Intrator, 2001; Foster & 
Gilson, 2002; Hayward, 2003; Hummel & Stankiewicz, 1998) and spatial navigation 
(Burgess, 2006; Burgess et al., 2004; Heywood-Everett et al., 2022), views and 
structural relations seem to be used in parallel. It is still possible, then, that scene-
driven predictions of objects rely on structured representations of scenes in terms 
of different objects and their relations, even if those representations still rely on 
viewpoint-specific image features. Interestingly, a recent computational model 
(Bear et al., 2020) has provided a proof of concept that complex hierarchical scene 
representations can be constructed while remaining bound to image-centered 
features and spatial locations. Future research should clarify the nature of the 
scene representation driving object predictions in our paradigm, for example by 
examining systematic distortions in how distance relations are represented (e.g. 
Svarverud et al., 2012).  
 In conclusion, we have shown that participants create expectations of 
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objects from novel viewpoints automatically, driven exclusively by scene context. 
These expectations affect both their sensitivity and response bias in an orthogonal 
perceptual task. Moreover, they cannot easily be overruled by frequent violations, 
further confirming their automaticity. These results suggest that humans’ mental 
transformation abilities might support perception in real-world scenes by 
automatically interacting with contextual information. 



  

 



  

 
 

Chapter 3 
Scene context drives object 
expectations across viewpoints in 
visual cortex 
 
 

Abstract 
As we change our viewpoint in a scene, the objects around us change coherently with each 
other, and with the layout of the scene. Scene context thus provides powerful cues to 
predict dynamic changes in object appearance. Known contextual effects on object 
perception, however, are limited to the disambiguation of fixed object properties, such as 
category. Here, we used a behavioral task and fMRI to assess whether participants formed 
expectations of 3D objects’ appearance after a viewpoint change. Importantly, the 
viewpoint change could only be determined from the surrounding scene, allowing us to 
measure how object predictions can be driven by scene context. We found that 
participants’ performance in an orthogonal visual task and object representations in early 
visual cortex are both enhanced when the object is rotated consistently with the scene. 
These results provide evidence that scene context, beyond disambiguating objects, can 
also drive predictions of object transformations. 
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3.1 Introduction 
Human visual perception is able to handle the complexity of the real world by 
exploiting statistical regularities: an example is the way that objects are 
constrained by the surrounding scene. For instance, particular object categories 
are more likely to occur in some contexts, such as a boat on the sea or a car on a 
road: our visual system exploits this by disambiguating an object’s identity based 
on its background (Bar, 2004; Oliva & Torralba, 2007; Brandman & Peelen, 2017; 
Rossel et al., 2022). Or the same retinal size can correspond to a large object far 
away or a small object up close, which is reflected in the object’s perceived size 
being affected by visual depth cues (Leibowitz et al., 1969; Murray et al., 2006; 
Yildiz et al., 2021).  
 The effect of scene context on inferring these fixed object properties can 
be seen as a form of convergence towards a single most likely explanation. 
However, we live in a highly dynamic world, in which relevant properties of objects 
are continuously changing. For example as we move, objects’ appearance keeps 
changing with our viewpoint. These dynamic changes are also strongly 
constrained by context: objects will tend to move together, coherently with the 
overall layout of a scene. Whether scene context automatically informs dynamic 
perceptual predictions is still unknown. 
 Here, we set out to investigate whether scene context can drive the 
prediction of objects from novel viewpoints. We reasoned that if these effects of 
scene context happen automatically, they should share some of the cognitive and 
neural mechanisms involved in other forms of perceptual expectations. 
Expectations deriving from regularities in the environment are believed to 
modulate perception independently of voluntary or attentional processes 
(Summerfield & Egner, 2009; De Lange et al., 2018). In behavior, this leads to 
expected stimuli being discriminated better, regardless of their relevance to the 
task (Wyart et al., 2012; Cheadle et al., 2015). Neuroimaging studies, on the other 
hand, have found representations of expected stimuli to be sharpened in visual 
cortex: decoding of stimulus information is enhanced, while the overall amount of 
cortical activation is reduced (e.g. Kok, Jehee, et al., 2012; Yon et al., 2018), 
suggesting a more efficient code. 
 We used fMRI and behavioral measurements to investigate (1) whether 
contextual information in realistic 3D scenes can drive expectations of an object’s 
appearance from a new viewpoint, and (2) whether these expectations can lead 
to the sharpening of stimulus information in visual cortex. We designed a 
paradigm (Figure 3.1) in which an object was shown in the context of a realistic 
scene, which changed in viewpoint (rotated). During the viewpoint change, the 
object was temporarily occluded, and when it reappeared, it could either be 
oriented consistently with the rotation of the surrounding scene (Expected trials) 
or inconsistently (i.e., more or less rotation than the scene; Unexpected trials). 
Importantly, because expectations of object appearance depended on the 
correspondence between the amount of rotation of the object relative to the 
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amount of rotation of the scene, Expected and Unexpected trials could not be 
differentiated based on the final scene alone. Both the initial orientation of the 
object and the amount of scene rotation had to be taken into account. The object 
orientations at the start of a trial and the rotation angles were chosen such that 
the objects always reappeared in a ‘wide’ (i.e., front or back) view or ‘narrow’ (i.e., 
side) view, thus generating differentiable visually evoked responses. Participants 
were not given any instruction about the viewpoint changes or the scenes; they 
were only instructed to perform an orthogonal perceptual task on the object upon 
its reappearance (see Figure 3.1, bottom). To test whether observers generate 
predictions of object appearance across viewpoint changes, we compared the 
Expected and Unexpected conditions on (1) participants’  performance on the 
perceptual task, and on (2) the amount of information about the shape of the 
reappearing object (i.e., wide versus narrow) in visually evoked activity. We 
focused on two regions of interest (ROIs) in visual cortex: early visual cortex (EVC) 
– corresponding to areas V1 and V2, and object selective cortex (OSC) – 
corresponding to the lateral occipital complex. We found that Expected trials were 
associated with (1) an increase in participants’ accuracy on the task; (2) a sharper 
representation of object shape in EVC (but not OSC); and (3) a smaller whole-brain 
univariate response. Together, these results provide evidence that scene context 
can inform predictions of object appearance across viewpoints, that these 
predictions seem to happen automatically rather than as the result of deliberate 
cognitive operations, and that they lead to increased precision in behavioral 
stimulus discrimination and to sharpened representations in visual cortex. 
 

3.2 Methods 

3.2.1 Participants 

Participants were recruited through the Radboud University participant pool 
(SONA systems) and received a monetary reimbursement for their participation. 
They provided informed consent before the experimental session. The study was 
in accordance with the institutional guidelines of the local ethical committee (CMO 
region Arnhem-Nijmegen, The Netherlands, Protocol CMO2014/288). 
A total of 35 participants took part in the study, and one was excluded due to 
chance-level performance in the main behavioral task, leaving a sample of 34 
participants to be analyzed (20 females, mean age = 24.2, SD = 4.4). The 
predetermined sample size of 34 was chosen to achieve 80% power for detecting 
a medium-sized effect. 
 
3.2.2 Apparatus 

Participants viewed the stimuli through a mirror mounted on the head coil of the 
scanner. Stimuli were presented on a 32-inch BOLDscreen monitor (Cambridge 
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Research) with 1920x1080 px resolution and 120 Hz refresh rate. The total viewing 
distance (eyes from mirror + mirror from screen) was 1206 mm. Stimuli were 
presented using Psychtoolbox (Brainard, 1997) in MATLAB R2017b. Participants 
provided responses on a HHSC-2x4-C button box. 
 
3.2.3 Procedure 

Before the scanning session, participants performed a short training session (40 
trials, around 10 minutes duration) to familiarize with the main experimental task. 
During this session, they received feedback on every trial, as well as seeing their 
overall accuracy at the end of the session. After the training, they were also 
instructed about the other task they would have to perform in the scanner (1-back 
task in the Training and Functional Localizer runs). During the five-minute 
anatomical scan, they practiced the main task again, also with trial-by-trial 
feedback. Participants were in the scanner for a total of 12 functional runs. Each 
functional run began and ended with 15 seconds of fixation. 
 
3.2.4 Experimental design & stimuli: Main task runs 

In the main task (Figure 3.1), participants saw realistic scenes featuring a central 
object. The scenes underwent a change in viewpoint, during which the central 
object was occluded. The object then reappeared, and participants had to perform 

Figure 3.1. Example of the stimulus sequence within a trial. When the target object 
reappeared after occlusion (here in the Expected orientation), it was briefly flashed 
twice, and participants had to report whether the second presentation was rotated 
clockwise or counterclockwise relative to the first (in this example, the correct answer 
is counterclockwise). 
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a perceptual task on it. On each trial, a fixation dot was shown for 500 ms, followed 
by the initial view of the scene for 2000 ms. The scene then started rotating, in 3 
intermediate views, each shown for 500 ms. The object was fully occluded starting 
from the second of these intermediate views. The final view of the scene, with the 
object still occluded, was displayed for a randomly jittered time between 1500 and 
2000 ms. The object then reappeared, and was briefly flashed twice (with the 
scene background always present) for 50 ms each, with a 100 ms inter-stimulus 
interval in between.  
 We refer to these two brief presentations of the object as the probes. On 
a given trial, the second probe was rotated clockwise or counterclockwise, with 
equal probability, relative to the first, and participants’ task was to report 
‘clockwise’ or ‘counterclockwise’ using the index or middle finger of their right 
hand, respectively. Participants had a maximum of 1500 ms to respond, after 
which the experiment would skip to the next trial and the current trial would be 
counted as missed. The duration of the initial fixation for the next trial was adjusted 
to compensate for participants’ response time on the current trial, to ensure that 
the overall duration of each run was constant.  
 Our central experimental manipulation was that, on 75% of trials, the 
object reappeared in the orientation that was expected if it had rotated 
consistently with the scene, and in an unexpected orientation (more or less 
rotation than the scene) on the other 25%. We call these the Expected and 
Unexpected trials respectively. Crucially, participants’ task was completely 
orthogonal to this contextual manipulation: they did not have to explicitly judge 
whether the object remained in the same orientation relative to the beginning of 
the trial, or to predict its upcoming view after the occlusion period. They were 
instructed that their task would be on the final probes exclusively, but to remain 
attentive during the whole sequence. Additionally, the total amount of viewpoint 
change of the scene was varied on a trial-by-trial basis: it could be a small (30°) 
or a large (90°) rotation with equal probability. The purpose of this was to ensure 
that whether the reappeared object’s view was expected or unexpected 
depended on the orientation of the background on the final frame, and not just on 
the initial orientation of the object, which would have been the case had the 
amount of rotation remained constant across trials. The central object in each 
scene could be oriented in two possible ways, A or B, aligning with the main axes 
of the scene: in A the object’s long axis was orthogonal to the observer’s line of 
view, while in B it was parallel to it (Figure 3.2B, left). For each of the two initial 
orientations, then, the object could appear, in the final frame, with either a wide 
shape (A - small rotation or B - large rotation) or a narrow shape (B - small rotation 
or A - large rotation). This meant that on half of trials, the object’s proximal shape 
 was wide, and narrow on the other half, enabling us to use decoding of object 
shape as a measure of information about the stimulus’ visual appearance in the 
brain. When the object was initially shown in orientation A, on Unexpected trials 
the corresponding rotation from orientation B was shown, and vice versa (Figure 
3.2B, right). This meant that the same images could be presented as either  
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Figure 3.2. (A) Examples of 30° and 90° rotation sequences, in this case for an object in 
the orientation A (orthogonal to the line of view). (B) Overview of the 4 possible views 
that the object could reappear in, corresponding to combinations of initial viewpoint (A/B) 
and amount of rotation (30/90). On Unexpected trials, the object view corresponding to 
the same amount of rotation but the other object orientation was shown (e.g. A30 was 
shown when B30 was expected). 
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Expected or Unexpected depending on the context of the trial, avoiding the 
possibility that any of our results could be driven by visual stimulus differences.  
 In total, each participant completed 7 runs of the main task, each 
consisting of 48 trials (336 trials total). Within each run, 36 trials were Expected 
and 12 were Unexpected. Both Expected and Unexpected trials were equally 
divided among the 4 possible initial orientation/amount of rotation combinations 
(A30, A90, B30, B90). 
 The stimuli for the main task and training runs were 20 different indoor 
scenes modeled in Blender 2.80 and rendered using the Cycles rendering engine 
for realistic lighting. The scenes all had the same layout (floor, two walls at a right 
angle and a main object in the center) but contained various other objects, 
adjacent to the walls, and different textures on the walls and floor. The central 
object was a couch on half of the scenes, and a bed on the other half. This object’s 
size was the same across scenes. For each scene, a range of viewpoints was 
rendered, by rotating the entire scene around the vertical axis between 0° and 90°, 
in steps of 5°. A subset of these viewpoints was presented on each trial. The two 
walls were oriented such that the scene was fully visible from all the viewpoints. 
The scenes were presented at the center of the screen at a size of 20.53 x 11.64 
degrees of visual angle (dva). The occluder was a grey rectangle which had the 
height and width of the largest possible view of the object on that particular scene 
(average size: 5.50 x 2.86 dva), plus a margin (horizontal: 1.08 dva, vertical: 0.43 
dva) to ensure the object was fully covered and its shadow was not visible, which 
would have provided a cue to its orientation. The fixation dot (size 0.2 dva, shown 
at the location of the central object, 3.24 dva below the center of the screen) was 
present throughout the whole image sequence, and participants were instructed 
to maintain fixation. 
 For the discrimination task, the first probe’s orientation was randomly 
sampled from a normal distribution centered around the Expected or Unexpected 
orientation, with a standard deviation of 1°, to add a small amount of jitter, and 
then rounded to the nearest integer. The second probe was rotated, clockwise or 
counterclockwise, relative to the first by an angle that was titrated using a 2-down 
1-up staircase, to keep the task difficulty constant across participants. To ensure 
that the visual stimuli in the Expected and Unexpected trials did not differ, a single 
staircase was used across both Expectancy conditions, thus allowing for accuracy 
differences between conditions. Unlike in the training session, participants did not 
receive feedback on every trial, to avoid possible effects of differing feedback 
between conditions (Expected and Unexpected trials) on the fMRI activity. 
Instead, their overall accuracy within a run was displayed at the end of the run. 
 
3.2.5 Experimental design & stimuli: Training runs 

The training runs had the purpose of estimating prototypical response patterns to 
the stimuli in our main task, without the context of the whole rotation sequence. 
The images displayed in the training runs were the final frames of the sequences 
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in the main task, for the 4 possible object orientation/scene rotation combinations 
(A30, A90, B30, B90 - see Figure 3.3). They were presented in mini-blocks, each 
consisting of 18 stimuli (different scene exemplars, all in the same 
orientation/rotation combination), with each stimulus presented for 350 ms and 
followed by a 400 ms blank interval (13.5 s in total). After a series of 4 different 
mini-blocks (54 s in total) a longer blank interval was shown for 6.75 s. The fixation 
dot was present throughout, and all stimuli were presented at the exact same 
location and size as in the main task runs. Participants’ task was to press any 
button whenever the exact same image was repeated twice in a row (1-back task). 
Each run included 20 mini-blocks, and 3 training runs were presented in total. 
 
3.2.6 Experimental design & stimuli: Functional localizer runs 

The purpose of the functional localizer was to identify object-selective ROIs for 
each participant. The stimuli were images from 4 different image categories: 
Objects, Scrambled objects, Faces and Scenes (houses or landscapes). The 
stimuli used were the same as in Epstein & Kanwisher (1998), presented against a 
uniform gray background at a size of 12 x 12 dva. Stimuli were divided in mini-
blocks, each lasting 15 s and comprising 20 unique images from a particular 
category, presented for 450 ms followed by a 300 ms blank. Each localizer run 
included 16 mini-blocks (4 repetitions of 4 stimulus types) and the experiment 
comprised 2 localizer runs in total. 
 
3.2.7 fMRI data acquisition and preprocessing 

Images were acquired on a 3T MAGNETOM Skyra MR scanner (Siemens AG, 
Healthcare Sector, Erlangen, Germany) using a 32-channel head coil. Functional 
data was acquired using a T2*-weighted gradient EPI sequence, with 6x multiband 
acceleration factor (TR 1s, TE 35.2 ms, flip angle 60°, 2x2x2 mm isotropic voxels, 
66 slices). For the main task runs, 404 images were acquired per run, 333 and 318 
images for the training and functional localizer runs, respectively. At the start of 
the scanning session, a high-resolution T1-weighted anatomical scan was 
acquired using an MPRAGE sequence (TR 2.3 s, TE 3.03 ms, flip angle 8°, 1x1x1 
mm isotropic voxels, 192 sagittal slices, FOV 256 mm). The data was 
preprocessed using SPM12 (Penny et al., 2011) functions in Nipype 1.6.0 
(Gorgolewski et al., 2011). The functional volumes were fieldmap-corrected, 
spatially realigned, co-registered with the anatomical image, normalized to MNI 
152 space using the template provided in SPM, and smoothed with a 3x3x3 mm 
FWHM Gaussian filter. 
 
3.2.8 GLM analysis 

The responses evoked by each of the stimulus types relevant to our analysis were 
modelled using general linear models (GLMs) in SPM12, using Nipype 1.6.0 as 
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interface.  
 In the main task, the onsets of the final object views were modelled as 
impulse functions and the time series was convolved with the canonical HRF 
provided in SPM12. For the MVPA analysis, we included regressors for each 
combination of object viewpoint and final scene rotation (A30, A90, B30, B90), 
separately for the Expected and Unexpected trials. Since the Expected condition 
included 3 times as many trials as the Unexpected one, to control for the possible 
benefit of the larger amount of data in multivariate decoding, we randomly split 
the Expected trials within each run into three subsets of 12 trials each (the same 
number as the Unexpected trials). Considering each split of the Expected trials as 
a separate condition, then, we obtained a single beta weight map per condition 
per run. For the univariate analysis, we only included regressors for Expected and 
Unexpected trials, obtaining two beta weight maps per run. 
 In the training runs, individual mini-blocks were modeled as boxcars and 
the time series was convolved with the canonical HRF. Regressors were included 
for each of the initial object orientation/scene rotation combinations, yielding one 
beta weight map per condition per miniblock per run. 
 For functional localizer runs, we also used a block-based design, but 
estimated a single beta map per condition per run. Miniblocks were modeled as 
boxcars and convolved with the canonical HRF. To estimate the beta weights 
used to define the OSC ROI, we included regressors for each of the stimulus types 
(Faces, Objects, Scenes, and Scrambled), and to estimate the weights for the EVC 
ROI, we included regressors for stimulus (of any type) and baseline (fixation) only. 
 All GLMs included six motion parameters and one run-based regressor as 
nuisance regressors. As participants were performing a 1-back task in the training 
and localizer runs, these runs also included a nuisance regressor synchronized to 
participants’ button presses. 
 
3.2.9 Regions of interest 

To select voxels to include in our visual cortex ROIs, we used subject-level t-
contrast maps estimated using data from the functional localizers, contrasting 
stimulus (both objects and scrambled images) vs. fixation baseline for EVC, and 
intact objects vs. scrambled images for OSC. These maps were intersected with 
an anatomical mask corresponding to Brodmann areas 17 and 18 (corresponding 
to areas V1 and V2; Wohlschläger et al., 2005) for EVC, and a population-level 
functionally defined lateral occipital cortex mask, retrieved from Julian et al. 
(2012), for OSC. Each participant’s map was then thresholded to only include 
voxels that significantly responded (puncorrected < 0.05) to the relevant stimuli for each 
ROI: general visual stimulation for EVC, and intact object pictures for OSC. To 
assess the robustness of our results to specific voxel inclusion criteria, the most 
active voxels were selected from the thresholded images, in a range from 100 to 
3000 (in EVC) or 100 to 2000 (in OSC) selected voxels in steps of 100, creating 30 
and 20 sub-ROIs for EVC and OSC respectively, with an increasingly liberal voxel 
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inclusion criterion. 
 
3.2.10 Multivariate pattern analysis 

The multivariate pattern analysis (MVPA) was conducted using linear support 
vector machines (SVMs) implemented in Scikit-learn (Pedregosa et al., 2011) and 
PyMVPA (Hanke et al., 2009). Our cross-classification analysis consisted of 
training the SVM classifiers on the miniblock-based beta weights from the training 
runs, and testing them on the run-based beta weights from the main task runs, 
and vice versa. Both directions of cross-classification were run, and the results 
were averaged, in order to increase robustness to task- or stimulus-unrelated 
factors that can lead to asymmetries between classification directions, such as 
different signal-to-noise ratios (van den Hurk & de Beeck, 2019). The training and 
testing datasets were separately z-scored before decoding. Each classifier was 
trained and tested on voxels within a single ROI and hemisphere, in a single 
subject.  

Figure 3.3. The conditions that the classifiers were trained to discriminate in the main task 
and training runs.  
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 To decode the stimulus feature of interest – proximal object shape (wide 
vs. narrow), we separately trained classifiers to discriminate between the A and B 
object orientations embedded in scenes rotated by 30 or 90 degrees (Figure 3.3), 
corresponding to classifying conditions A30 vs. B30, and A90 vs. B90, in such a 
way as to classify the object’s shape against a matched background. The 
accuracies of classifiers trained on the two backgrounds were then averaged. 
Additionally, given that the number of Expected trials was 3 times larger than the 
number of Unexpected trials, in order to avoid a difference in decoding accuracy 
being driven by the number of trials (training set size), we modeled three random 
splits of Expected trials as separate regressors (see GLM analysis) and we tested 
(or trained, depending on decoding direction) separate linear classifiers on each 
of these three subsets. The accuracies from the three splits were also averaged. 
Importantly, the labels of the beta weights corresponding to Unexpected trials in 
the main task runs corresponded to the object orientation that was actually 
presented on the screen at the end of the trial, not the one expected given the 
context, as our goal was to assess how the same visual stimuli are processed 
differently depending on the context. 
 Discrete classification outcomes have been shown to be less reliable than 
continuous measures in estimating the distance between stimulus representations 
in the brain (Walther et al., 2016). For this reason, we used each sample’s distance 
from the classification hyperplane estimated by the SVM (distance from bound), 
rather than classification accuracy, as our main measure of decoding 
performance. For each classifier, performance (classifier information) was 
measured as follows: 
 

Classifier Information = 1
#$%!&!

"
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Where di’s are the z-scored distances from bound, li’s are the true labels (either -
1 or 1), for each sample, and n is the number of test samples. Intuitively, this 
measure corresponds to the average match between each distance from bound 
and the corresponding ground-truth label, i.e. the degree to which the distance is 
positive when the target is positive, and negative when the target is negative. 
Classification is above chance when this measure is higher than 0. Averaging this 
measure across samples allows to compare classification performance with 
different numbers of test samples, enabling us to combine data across decoding 
directions. The classifier information was computed for each sub-ROI within EVC 
and OSC, and each subject. Importantly, our results were consistent, albeit 
noisier, when using classification accuracy instead of classifier information. 
 
3.2.11 Significance testing 

To compare the amount of classifier information between conditions (Expected 
and Unexpected), we used two approaches. (1) To assess the statistical 
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significance of differences between conditions across numbers of selected 
voxels, we applied threshold-free cluster enhancement (TFCE, Smith & Nichols, 
2009) to the classifier information differences between conditions, across sub-
ROIs. TFCE boosts the magnitude of a statistic based on its extent across 
neighboring samples (in this case, sub-ROIs with similar numbers of voxels), 
reflecting the assumption that any signal in the data should be smooth across 
consecutive datapoints. This measure is then compared with a null distribution 
generated by randomly shifting the signs of each participant’s 1D map (classifier 
information difference across sub-ROIs). This null distribution has the same 
variance and autocorrelation as the original signal. The shuffling procedure was 
applied 10,000 times. TFCE was computed using the MNE toolbox (Gramfort et 
al., 2013). Statistical significance of the TFCE scores is shown in the figures. (2) 
To summarize results with a single statistic, we averaged the classifier information 
across sub-ROIs for each condition (Expected and Unexpected) and each subject, 
and ran a two sided paired-samples t-test between the two conditions. This is the 
main statistic reported in the text of the rest of the paper. These statistical tests 
were run using Pingouin (Vallat, 2018). 
 
3.2.12 Univariate analysis 

The purpose of the univariate analyses was to estimate the difference in overall 
response elicited by Expected and Unexpected trials. This was done within the 
main visual ROIs as well as across the whole brain. For the within-ROI analysis in 
visual cortex, we averaged the beta weights across voxels for each participant 
and each sub-ROI (number of selected voxels) in EVC and OSC. The averages 
across sub-ROIs in the Expected and Unexpected conditions were then 
compared using a two-sided paired t-test. For whole-brain analyses, we 
conducted a nonparametric, cluster-based analysis at the group level (one-
sample t-test against 0 for the single subjects’ T contrast maps) using SnPM13 
(nisox.org/Software/SnPM13/), with a p < 0.05 I-corrected threshold and p < 0.001 
cluster-forming threshold, for 5,000 permutations. 
 

3.3 Results 

3.3.1 Behavioral results 

We first set out to test whether participants’ accuracy differed between trials in 
which the object reappeared oriented consistently with the rotation of the 
background scene (Expected trials) and trials in which it was oriented 
inconsistently (Unexpected trials). We found that participants were more accurate 
on Expected than Unexpected trials: mean hit rates were 0.642 and 0.605 
respectively, t(33) = 2.83, p = 0.007, d = 0.69, 95% CI = [0.01, 0.06] (Figure 3.4). 
This indicates that participants formed predictions of the updated object view, and 

http://www.nisox.org/Software/SnPM13/
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were more accurate in performing an orthogonal task when the target matched 
this predicted object view. Given that the amount of scene (and thus object) 
rotation was varied from trial to trial, these predictions were necessarily derived 
from scene information, and could not have been generated by mentally rotating  
the object alone. 
 
3.3.2 MVPA results 

We next addressed the question of how the target object’s shape was represented 
in multivariate activity patterns in visual cortex, and how  these representations 
differed between Expected and Unexpected trials. For each sub-ROI (number of 
included voxels) in EVC and OSC, we assessed the cross-decoding performance 
of a classifier trained to distinguish between wide and narrow object shapes, 
separately for the Expected and Unexpected trials. 
 We found that decoding of object shape in EVC was significantly higher 
for Expected compared to Unexpected trials, mean classifier information: 0.344 
and 0.272 respectively, t(33) = 2.94, p = 0.006, d = 0.51, 95% CI = [0.02, 0.12] 
(Figure 3.5A). This difference was significant in both hemispheres (Left: mean 
classifier information 0.367 vs. 0.306, t(33) = 2.16, p = 0.038, d = 0.40, 95% CI = 
[0.0, 0.12], Right: mean classifier information 0.321 vs. 0.239, t(33) = 2.70, p = 
0.011, d = 0.53, 95% CI = [0.02, 0.14]). However, no such difference was present 
in OSC, mean classifier information: 0.129 and 0.149 respectively, t(33) = -1.20, p 
= 0.237, d = 0.20, 95% CI = [-0.05, 0.01] (Figure 3.5B). This result was also 

Figure 3.4. (left) Mean hit rate on Expected and Unexpected trials in our behavioral task. 
Error bars indicate SEM. (right) Hit rate differences between Expected and Unexpected 
trials. Points indicate individual subjects, horizontal bar indicates mean difference, and 
error bar 95% CI. * p < 0.05, ** p < 0.01, *** p < 0.001 
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consistent across hemispheres (Left: mean classifier information 0.128 vs. 0.137, 
t(33) = -0.52, p = 0.609, d = 0.09, 95% CI = [-0.05, 0.03], Right: mean classifier 
information 0.129 vs. 0.160, t(33) = -1.25, p = 0.219, d = 0.22, 95% CI = [-0.08, 
0.02]). 
Given that our EVC ROI spanned both V1 and V2, we further investigated whether  

Figure 3.5. Results of multivariate classification in EVC (A) and OSC (B). (left) Average 
classifier information across sub-ROIs. Shaded areas represent SEM, asterisks represent 
TFCE significance. (right) distribution of differences across participants (averaged across 
sub-ROIs) for each hemisphere separately. Shaded areas represent within-hemisphere 
95% CIs. For both left (TFCE) and right plots: * p < 0.05, ** p < 0.01, *** p < 0.001 
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our results were primarily driven by one or both visual areas. We found the 
difference between shape decoding on Expected and Unexpected trials to be 
significant in both ROIs. V1: mean classifier information 0.270 and 0.190  
respectively, t(33) = 3.40, p = 0.002, d = 0.57, 95% CI = [0.03, 0.13]; V2: mean 

Region p(cluster) t statistic k voxels  Coordinates (mm) – x, y, z 

Left precuneus 0.003 6.08 1360 -6 -68 56 

Right angular gyrus < 0.001 5.70 2630 36 -72 42 

Left inferior parietal lobule 0.003 5.65 1380 -24 -66 44 

Right precuneus 0.003 5.51 1360 8 -70 54 

Right precentral gyrus 0.005 4.67 1020 26 -4 50 

Left inferior parietal lobule 0.005 4.66 1090 -34 -54 46 

Figure 3.6. Significantly activated clusters (pcFWE < 0.05, cluster-defining threshold puncorrected 
< 0.001) for the whole-brain univariate contrast, Unexpected > Expected. 
 

Table 3.1: Results of the whole-brain contrast for Unexpected > Expected. 
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classifier information 0.328 and 0.268 respectively, t(33) = 2.72, p = 0.010, d = 
0.46, 95% CI = [0.02, 0.11]. A repeated measures ANOVA, ROI (V1, V2) x 
Expectancy (Expected, Unexpected) on mean classifier information revealed a 
significant main effect of Expectancy (F(1, 33) = 11.09, p = 0.002, ηp

2 = 0.252)  
and ROI (F(1,33) = 54.036, p < 0.001, ηp

2 = 0.621), but no significant interaction 
between ROI and Expectancy (F(1, 33) = 1.13, p = 0.295, ηp

2 = 0.033) indicating 
that the effect of Expectancy did not differ between V1 and V2. 
 In summary, we found information about the shape of objects otated 
consistently with the scene to be sharpened in EVC, but not in LOC. This effect 
was present in both V1 and V2, across both hemispheres. These results provide 
evidence for scene-driven expectations of object appearance across viewpoints 
in early visual areas. 
 
3.3.3 Univariate results 

The higher decoding accuracy we observed on Expected compared to 
Unexpected trials in EVC might be driven by a higher signal-to-noise ratio, deriving 
from higher univariate activation on Expected trials. This could occur, for example, 
if participants paid more attention to a stimulus matching their expectations. To 
determine whether this could have been the case, we compared average beta 
activations across all of the EVC sub-ROIs included in the multivariate analysis. 
We found no significant difference in overall activation between Expected and 
Unexpected conditions (mean activation: -3.20 and -3.12 for Expected and 
Unexpected respectively, t(33) = -0.75, p = 0.457, d = 0.02, 95% CI = [-0.28, 0.13]). 
In fact, numerically, the activation was slightly lower for Expected trials. This 
indicates that the higher multivariate decoding accuracy on Expected trials, 
described above, was not driven by an overall larger response on those trials. 
 We next ran a whole-brain univariate contrast to assess whether an overall 
increased response to either the Expected or Unexpected condition was present 
anywhere in the brain. We found no suprathreshold clusters responding more to 
the Expected trials. Instead, 6 clusters exhibited a significantly higher response to 
Unexpected trials, located in the posterior parietal cortex and right precentral 
gyrus (Figure 3.6 and Table 3.1).  
Overall, these results are in line with the view of expectation effects in visual cortex 
as sharpening: the increase in multivariate decoding performance for Expected 
trials was not associated with an overall increase in response in EVC. Moreover, 
across the whole brain, Unexpected trials elicited a stronger response than 
Expected, rather than the other way around, a pattern of results that has been 
proposed to distinguish expectation from attention-related effects (Kok, Rahnev, 
et al., 2012).  
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3.4 Discussion 
The present results indicate that scene context, beyond influencing object 
perception in static settings, can also drive predictions of object appearance 
across viewpoint changes. These predictions seem to happen in an automatic 
manner, in the absence of an explicit task, and to sharpen the representation of 
object features in EVC.  
 In everyday life, we need to track objects across continuous changes in 
our viewpoint, and the highly structured nature of real-world scenes can aid us in 
doing so. By exploiting information from the surrounding scene, we can predict 
how objects will look from new viewpoints, while avoiding computationally 
expensive mental rotation operations (Hamrick & Griffiths, 2014). Using behavioral 
measurements and fMRI, we have found that objects rotated consistently with the 
surrounding scene show signatures of enhanced processing. These signatures 
were previously reported for other forms of perceptual expectations (Kok, Jehee, 
et al., 2012): (1) higher behavioral performance on orthogonal tasks; (2) enhanced 
multivariate decoding in the visual cortex; (3) absence of a corresponding increase 
in univariate activity. These shared characteristics suggest that similarly to those 
previously reported effects, the effect of scene context in our study reflects 
statistical regularities rather than explicit attentional guidance. In particular, 
attention is known to increase the overall response to a stimulus in visual cortex 
(Corbetta et al., 1990; Kastner et al., 1998). A study attempting to disentangle the 
effect of attention from that of expectations found that while expected stimuli elicit 
a reduced BOLD response in visual cortex, relative to unexpected ones, attending 
to the stimulus reverses this effect (Kok, Rahnev, et al., 2012). If participants in our 
study had adopted a deliberate attentional strategy, such as “predict the shape of 
the rotated object, and attend to the corresponding region of space”, we should 
have similarly observed a higher univariate response to stimuli matching their 
expectations. This was not the case in visual ROIs, and the whole-brain contrast 
revealed several clusters with a higher response to unexpected stimuli, but none 
with a higher response to expected ones.  
 The overlap of our results with previous reports also suggests that 
different forms of expectations (driven by arbitrary statistical associations, or by 
real world contextual regularities) rely on common mechanisms. This is consistent 
with the idea of common computations underlying different forms of perceptual 
expectations (De Lange et al., 2018; Keller & Mrsic-Flogel, 2018). For example, 
Kok et al. (2020) found a consistent involvement of visual cortex in expectations 
of different stimuli (complex shapes or oriented gratings), despite high-level areas 
such as the hippocampus undertaking different roles. And Ortiz-Tudela et al. 
(2021) found EVC to be the target of feedback conveying both contextual and 
mnemonic information in naturalistic scenes. 
 The effect of expectations we measured was specific to EVC, 
corresponding to visual areas V1 and V2. Several prior reports of contextual scene 
effects on object perception, instead, have reported effects in high-level object-
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selective areas (Brandman & Peelen, 2017; Gayet & Peelen, 2022; Kaiser et al., 
2021). This different pattern of results could be due to particular choices of 
stimulus or experimental design (Coutanche et al., 2016): for example, decoding 
coarse object shape, a relatively low-level feature, instead of higher-level 
properties such as object category. However, it is also possible that the dynamic 
nature of our task was fundamentally different from the static images used in those 
previous studies. Prior fMRI work investigating the tracking of objects across 
periods of occlusion (Erlikhman & Caplovitz, 2017) found that information about 
the feature that was being updated, object position, could be decoded from the 
occluded region in EVC. Object shape, a feature that remained constant 
throughout the trial, could instead be decoded from higher-level visual areas, 
consistently with previous studies of object maintenance during occlusion (C. 
Baker et al., 2001; Hulme & Zeki, 2007). EVC seems, then, to play a specific role 
in tracking object position across time. An intriguing question is whether this might 
generalize to tracking other object features as well. In our study, we observed 
involvement of EVC despite the object’s location remaining constant. Instead, 
what changed was the object’s orientation relative to the viewer, and its resulting 
proximal shape. Besides position, humans are also able to track objects based on 
other visual features (Blaser et al., 2000) but whether this tracking also relies on 
EVC is still unknown. Evidence coming from mental rotation paradigms (Albers et 
al., 2013; Christophel et al., 2015; Iamshchinina et al., 2021) suggests that this 
might be the case, but those studies used simpler synthetic stimuli. Whether EVC 
also plays a general role in dynamically tracking the properties of naturalistic 
objects, like those in our study, remains an open question. Roelfsema & de Lange 
(2016) have hypothesized that EVC might act as a ‘cognitive blackboard’ 
supporting any computation that requires a high-resolution spatial buffer. 
Generating expectations of upcoming object views might be one such operation. 
 While the present work focuses on investigating the outcome of 
expectations based on scene context, future work should clarify the format of the 
representations that make these expectations possible. One possibility is that the 
scene is represented as a structural description in 3D coordinates, and then 
translated back to retinotopic coordinates, leading to the 2D shape 
representations we observed in EVC. This kind of explicit coordinate 
transformation has been proposed to underlie spatial navigation and mental 
imagery (Byrne et al., 2007). The fact that we did not observe expectation effects 
on 2D shape decoding in higher-level OSC, in that case, could be due to 
expectations in high-level visual areas being represented in a 3D format. 
Alternatively, the scene might not be converted to an explicit structural description 
at all, and expectations might be based on a collection of views, perhaps related 
by transition probabilities (Franz et al., 1997; Glennerster, 2016). View-based 
representations have been shown to account for behavior in both object 
recognition (Bülthoff & Edelman, 1992; Tarr & Pinker, 1989; S. Ullman, 1998) and 
spatial orienting tasks (Gillner & Mallot, 1998; Gootjes-Dreesbach et al., 2017). 
Adopting similar methods to these prior works, future experiments could clarify 
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whether scene-based expectations exhibit inconsistencies that would not be 
expected if participants faithfully reconstructed the scene’s 3D structure in their 
minds. For example, scenes with an altered 3D layout, but a similar appearance 
from the subject’s viewpoint, might not be perceived as unexpected. Testing this 
will likely require designing more complex scenes that place a greater burden on 
participants’ capacity to represent spatial relations. 
 Regardless of whether the representations that participants relied upon in 
our study are based on egocentric views or 3D structure, our results suggest that 
humans can represent scene-object relations in a rich enough way to support 
predictions across changes in viewpoint. This extends a long line of empirical and 
theoretical work investigating how our internal representations of objects reflect 
their properties in the external world (e.g. Craik, 1943; Shepard, 1984, 2001). This 
includes the ability to mentally rotate objects (Shepard & Metzler 1971) or to 
simulate their physical dynamics (Battaglia et al., 2013). It is possible that these 
internal representations also incorporate models of how objects interact with their 
context, for example the way they rotate concurrently with the surrounding scene. 
One way to efficiently process these kinds of spatial relations in complex scenes 
is to represent them in a hierarchical manner, linking scenes to the objects they 
contain, and objects to their parts. These kinds of hierarchical representations are 
extensively used in computer graphics (Cunningham & Bailey, 2001; Sowizral, 
2000), and artificial intelligence research has addressed the problem of how they 
can be extracted from unstructured visual input (Sabour et al., 2017; Bear et al., 
2020; Deng et al., 2020; Gklezakos & Rao, 2022; Hinton, 2021). Whether humans 
also internally represent scenes in a similar manner is still unknown, although 
some evidence exists that we process scenes hierarchically (Võ et al., 2019). 
Additionally, models based on graph-structured representations provide the best 
fit to human behavior on tasks such as predicting physical dynamics (Bear et al., 
2021). Predicting novel object views based on scene context, as in the paradigm 
used here, might be another cognitive ability relying on structured scene 
representations.  
 In summary, we have found evidence for predictions of objects from new 
viewpoints, driven by scene context, affecting object representations in visual 
cortex. These results suggest that common mechanisms might underlie simple 
expectations learned in the lab and those resulting from the complex structure of 
the real world. 



  

  



  

 
 

Chapter 4 
Scene viewpoint drives the prediction 
of rotated objects under occlusion  
 
 

Abstract 
Humans have the ability to track and predict changes in external objects while they are 
temporarily occluded. How this ability can generalize to complex, real-world environments 
is still an open question. In the real world, scenes are highly structured, meaning that 
objects and their context tend to change coherently. A clear example can be seen when 
we navigate an environment: as we vary our viewpoint, we see objects rotating jointly with 
the scene’s overall layout. Previous research has shown that our internal representations 
of scenes contain rich structural information about objects’ relative positions and 
orientations. Here, we ask whether the prediction of occluded objects capitalizes on this 
information. We present objects within realistic 3D scenes that change in viewpoint. The 
object is shown in an initial view, and then occluded during the viewpoint change, while the 
scene remains visible. Using fMRI and multivariate pattern analysis (MVPA), we find that 
the object’s updated appearance, consistent with the scene’s new viewpoint, is 
represented in the visual cortex, despite the object being fully invisible. These predictions 
emerge in the absence of an explicit prediction or mental rotation task. Capitalizing on 
spatial relations might be a way in which the visual system is able to complete missing 
information in partially occluded real-world scenes. 
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4.1 Introduction 
In daily life, objects continuously go in and out of sight. They are often occluded 
by other objects for extended periods of time, yet we are able to perceive a 
coherent, seamless visual scene. We are able to do this by maintaining persistent 
object representations (Kahneman et al., 1992; Scholl & Flombaum, 2010; Green 
& Quilty-Dunn, 2020; Peters & Kriegeskorte, 2021) that remain active while objects 
are present but not visible (C. Baker et al., 2001; Hulme & Zeki, 2007; Puneeth & 
Arun, 2016). Beyond being stable, these representations can also be updated 
during periods of occlusion. We routinely track objects’ positions while they are in 
motion, even when they go out of sight (Scholl & Pylyshyn, 1999; Teichmann et 
al., 2021), and we are also able to track and extrapolate changes along other, 
more abstract feature dimensions (Blaser et al., 2000; Blaser & Sperling, 2008; 
Makin & Bertamini, 2014; Makin & Chauhan, 2014). Maintaining and updating 
object representations during occlusion can be seen as signatures of basic 
‘internal models’ of the world. Respectively, they reflect the fact that objects don’t 
suddenly cease to exist from one moment to the next, and that their dynamic 
changes tend to continue smoothly while we don’t see them.   
 Previous work has shown that visual cortex seems to play a specific role 
in representing invisible objects during occlusion: in the absence of any visual 
stimulation, information about occluded objects can be decoded from visual 
cortex (Erlikhman & Caplovitz, 2017; Teichmann et al., 2022). This is consistent 
with a more general role of visual cortex in representing top-down expectations in 
a template-like format (Kok et al., 2014, 2017). Interestingly, these representations 
appear to be reflected in patterns of activity similar to those evoked during 
perception, suggesting that they are sensory-like in nature. A common format 
between these internally generated predictions and perception can support the 
seamless integration required in many real-world situations, such as when objects 
continuously disappear and reappear (Munton, 2022).  
 Can the ‘internal models’ we use in tracking occluded objects scale up to 
the complexity of real-world environments? In daily life, objects do not usually 
appear in isolation, but embedded within the context of a scene. Previous 
research has shown that we can use stable elements of a scene, such as its layout 
or environmental boundaries, as reference frames to represent objects’ locations 
and orientations (Hinton & Parsons, 1988; Rieser, 1989; Mou & McNamara, 2002; 
Galati et al., 2010; Julian et al., 2016, 2018; Lee, 2017). More in general, objects 
might always be perceived within a reference frame established by contextual 
information (Graf, 2006). This contextual information, in principle, is ideally suited 
for driving the tracking of unseen objects. For example, as we change our 
viewpoint in navigating a scene, the appearance of objects changes jointly with 
the environment’s overall layout. While objects are occluded, then, we could 
exploit information from the scene’s viewpoint changes to predict how objects’ 
appearance will change.  
 Here, we investigate whether information from scene context can 
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automatically drive predictions of occluded objects from novel viewpoints in visual 
cortex. We show participants objects within realistic scenes, which undergo a 
change in viewpoint (Figure 4.1). During this viewpoint change, the object is 
completely occluded, while the surrounding scene is still visible. On a majority of 
trials, the object does not reappear, enabling us to gauge participants’ internal 
representation in the absence of visual input using multivariate pattern analysis 
(MVPA) in fMRI. Is the representation of the invisible object updated concurrently 
with the scene’s viewpoint? We train linear classifiers on participants’ brain activity 
while they observe images of objects from different viewpoints, and find that they 
can successfully cross-decode the expected shape of the fully occluded object in 
the visual system. Participants were not explicitly instructed to predict the object’s 
appearance from the new viewpoint, meaning that the updating of the object 
representation occurs automatically. These results indicate that representations 
of fully occluded objects in visual cortex are automatically driven by contextual 
information from the surrounding scene’s viewpoint, providing a bridge towards 
object tracking and prediction in more naturalistic conditions. 
 
4.2 Methods 
4.2.1 Participants 

Participants were recruited through the Radboud University participant pool 

Figure 4.1. Trial outline. The object was shown in an initial view within a scene, which 
underwent a viewpoint change. The object was occluded during this viewpoint change, 
and after a series of intermediate views, the scene reached its final view (in this case, 
rotated by 90° relative to the beginning of the trial). On 12.5% of trials, the object was 
briefly shown in its updated orientation, coherent with the scene’s final view.  
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(SONA systems) and received a monetary reimbursement for their participation. 
They provided informed consent before the experimental session. The study was 

Figure 4.2. (A) Outline of the experimental design. Each initial object orientation could result 
in either a wide or narrow object view, depending on the amount of scene rotation.  
(B) Examples of the two possible rotation amounts, small (30°) and large (90°), with the 
corresponding sequences of views shown on each trial. 
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in accordance with the institutional guidelines of the local ethical committee (CMO 
region Arnhem-Nijmegen, The Netherlands, Protocol CMO2014/288). A total of 34 
participants took part in the study: this predetermined sample size was chosen to 
achieve 80% power for detecting a medium-sized effect. Four participants were 
excluded due to poor performance on the main task (see Results), leaving a 
sample of 30 partipants (16 females, mean age = 25.2, SD = 8.5). 
 
4.2.2 Apparatus 

Participants viewed the stimuli through a mirror mounted on the head coil of the 
scanner. The stimuli were presented on a 1024x768 EIKI LC-XL100 projector (60 
Hz refresh rate), back-projected onto a projection screen (Macada DAP diffuse 
KBA) attached to the back of the scanner bore. The effective viewing distance 
(eyes from mirror + mirror from screen) was approximately 1440 mm. Stimuli were 
presented using Psychtoolbox (Brainard, 1997) in MATLAB R2017b (Mathworks 
Inc.). Participants provided responses using a HHSC-2x4-C button box. 
 
4.2.3 Procedure 

Before entering the scanner, participants were instructed about the main task they 
were going to perform and were shown example stimuli. They were also told that 
on some runs they would have to detect repeated images (1-back task in the 
Training and Functional Localizer runs). During the five-minute anatomical scan, 
they practiced the main task, receiving feedback. Participants were in the scanner 
for a total of 13 functional runs. Each functional run began and ended with 15 
seconds of fixation. 
 
4.2.4 Experimental design & stimuli: Main task runs 

In the main task (Figure 4.1) participants saw realistic scenes featuring a 
prominent object in the center (a bed or couch). The object was then completely 
occluded, while the scene underwent a change in viewpoint. The object 
reappeared only on a minority of trials, allowing us to assess the content of 
participants’ predictions in the absence of visual input. 
 On each trial, a fixation dot was shown for a randomly jittered duration 
between 1500 and 2000 ms, followed by the initial view of the scene for 2000 ms. 
The scene then started rotating, in 3 intermediate views, each shown for 500 ms. 
The object was fully occluded starting from the second of these intermediate 
views. The final view of the scene was then displayed for a duration randomly 
jittered between 1500 and 2000 ms. On a subset of trials (40/320, or 12.5% in 
total - between 2 and 10 per run) the occluder disappeared, revealing the object 
behind it from the new viewpoint for 200 ms. To encourage participants to pay 
attention to the stimulus sequence, at the end of each run they were asked to 
report on how many trials the object reappeared after occlusion, and then shown 
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the correct number as feedback. 
 On exactly half of the trials, the final viewpoint of the object would project 
a wide shape on the screen, and on the other half, a narrow shape. These two 
conditions were both equally split into two different initial viewpoints, and two 
overall amounts of rotation of the scene, as illustrated in Figure 4.2A. The two 
initial viewpoints ensured that a given outcome (wide or narrow) was not uniquely 
associated with a particular viewpoint at the beginning of the sequence, avoiding 
memory-related confounds on decoding. Two different possible amounts of 
rotation (Figure 4.2B) were included to ensure that participants could not predict 
the final view of the object by mentally rotating it by a constant amount on every 
trial, ignoring the background. Instead, they needed to observe the rotation of the 
background scene. 
 The stimuli for the main task and training runs were 20 different indoor 
scenes modeled in Blender 2.80 (The Blender Foundation) and rendered using the 
Cycles rendering engine for realistic lighting. The scenes all had the same layout 
(floor, two walls at a right angle and a main object in the center) but contained 
various other objects, adjacent to the walls, and different textures on the walls and 
floor. The central object was a couch in half of the scenes, and a bed in the other 
half. This object!s size was the same across scenes. For each scene, a range of 
viewpoints was rendered, by rotating the entire scene around the vertical axis (out 
of the image plane) between 0° and 90°, in steps of 5°. A subset of these 
viewpoints was presented on each trial. The two walls were oriented such that the 
scene was fully visible from all the viewpoints. The scenes were presented at the 
center of the screen at a size of 20.53 x 11.64 degrees of visual angle (dva). The 
occluder was a grey rectangle which had the height and width of the largest 
possible view of the object on that particular scene (average size: 5.50 x 2.86 dva), 
plus a margin (horizontal: 1.08 dva, vertical: 0.43 dva) to ensure the object was 
fully covered and its shadow was not visible, which would have provided a cue to 
its orientation. The fixation dot (size 0.2 dva, shown at the location of the central 
object, 3.24 dva below the center of the screen) was present throughout the whole 
image sequence, and participants were instructed to maintain fixation. Each main 
task run comprised 40 trials, and each participant underwent 8 main task runs, for 
a total of 320 trials. 
 
4.2.5 Experimental design & stimuli: Training runs 

The purpose of the training runs was to obtain prototypical response patterns to 
the stimuli (objects and scenes) in the main task, in order to compare the BOLD 
response elicited by expecting a given stimulus with that elicited by seeing it on 
the screen. The images shown in the training runs (Figure 3) were the objects as 
they would have appeared at the end of the roation sequence, also rotated by 30° 
or 90°, presented in isolation without the surrounding scene. Different object 
exemplars were grouped together by their proximal shape, so that a given 
miniblock contained exclusively wide or narrow objects, comprising different initial 
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orientations and final rotations. Images of the scenes as they appeared at the end 
of the rotations in the main task (either rotated by 30° or 90°), with the occluder 
present, were also shown during the training runs. However, this data was not 
used in our final analysis. Each miniblock consisted of 9 images (6.75 s in total), 
each image being presented for 350 ms and followed by a 400 ms blank interval. 
After a series of 8 different miniblocks (54 s in total) a longer blank interval was 
shown for 6.75 s. The fixation dot was present throughout, and all stimuli were 
shown at the exact same location and size as in the main task runs. Participants 
were instructed to press any button whenever the exact same image was repeated 
twice in a row (1-back task). Each training run included 40 mini-blocks, and 3 
training runs were presented in total. 

Figure 4.3. The two stimulus categories used to train the classifiers: Wide and Narrow 
objects. Both categories included two different views (one orientation of the object rotated 
by a small amount, the other by a large amount) and multiple object exemplars (couches 
and bed). Objects were always shown in isolation during the training runs, at the same size 
and position as in the main task runs. 
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4.2.6 fMRI data acquisition and preprocessing 

fMRI images were acquired on a 3T Magnetom PrismaFit MR scanner (Siemens 
AG, Healthcare Sector, Erlangen, Germany) using a 32-channel head coil. For 
acquisition of functional data, a T2*-weighted gradient echo EPI sequence with 6x 
multiband acceleration factor was used (TR 1 s, TE 34 ms, flip angle 60°, 2x2x2 
mm isotropic voxels, 66 slices). For the main task runs, 315 images per run were 
acquired, and 333 and 318 images for the training and functional localizer runs 
respectively. A high-resolution T1-weighted anatomical scan was acquired at the 
start of the experimental session, using an MPRAGE sequence (TR 2.3 s, TE 3.03 
ms, flip angle: 8°, 1x1x1 mm isotropic voxels, 192 sagittal slices, FOV 256 mm). 
The data was preprocessed using SPM12 (Penny et al., 2011) through the Nipype 
1.6.0 interface (Gorgolewski et al., 2011). The functional volumes were fieldmap-
corrected, spatially realigned, co-registered with the anatomical image, 
normalized to MNI 152 space using the template provided in SPM, and smoothed 
with a 3x3x3 mm FWHM Gaussian filter. 
 
4.2.7 GLM analysis 

The responses evoked by each of the stimulus types relevant to our analysis were 
modelled using general linear models (GLMs) in SPM12, using the Nipype 1.6.0 
interface.  
 In the main task runs, the entire period from the onset of the final scene 
view to its offset was modeled as a boxcar and the time series was convolved with 
the canonical HRF provided in SPM12. We included regressors for Wide and 
Narrow expected final object shapes, and excluded trials in which the object 
reappeared after the occlusion. We thus obtained a single beta map per condition 
(Wide/Narrow) per run. 
 In the training runs, each individual miniblock was modeled as a boxcar 
and the time series was convolved with the canonical HRF. Regressors were 
included for each scene viewpoint (rotated by 30° or 90° relative to the initial 
viewpoint) and for each proximal object shape (Wide and Narrow), yielding one 
beta weight map per condition per miniblock per run. 
 For functional localizer runs, we also used a block-based design, but 
estimated a single beta map per condition per run. Miniblocks were modeled as 
boxcars and convolved with the canonical HRF, yielding a beta weight map for 
each condition (Objects, Scrambled objects, Faces and Scenes) per run. 
 All GLMs included six motion parameters and one run-based regressor as 
nuisance regressors. As participants were performing a 1-back task in the training 
and localizer runs, these runs also included a nuisance regressor synchronized to 
participants’ button presses. 
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4.2.8 Regions of interest 

Anatomical regions of interest were defined based on an anatomical atlas. For the 
initial analysis, in order to broadly cover the visual system, we used a large ROI 
including Brodmann areas (BAs) 17, 18 (corresponding to retinotopic areas V1 and 
V2 respectively, Wohlschläger et al., 2005), 19 (including visual areas V3, V4, 
V5/MT and V6) and 37 (corresponding to occipitotemporal cortex and including 
the posterior fusiform gyrus and the posterior inferior temporal gyrus). We 
subsequently split this ROI into two sub-ROIs, roughly corresponding to early (BAs 
17/18) and late (BAs 19/37) visual cortex. The latter was then further split into BAs 
19 and 37.  
 
4.2.9 Sliding window analysis 

The purpose of this exploratory analysis was to assess whether above-chance 
decoding could be reliably found at intermediate levels of the visual hierarchy. The 
large ROI comprising BAs 17, 18, 19 and 37 was used again, divided by 
hemisphere and sliced by y-coordinate, with a sliding window of 13 voxels. The 
sliding window proceeded from posterior to anterior, within the bounds of the 
macro-ROI (from MNI y-coordinate -102 to -24). 
 
4.2.10 Robustness to voxel inclusion 

To assess the robustness of our results within BA 19, we created multiple sub-
ROIs, by including increasing numbers of voxels responding significantly (puncorrected 

< 0.05 for a bidirectional t-test) to either of the main conditions of interest in the 
main task runs: expectancy of a wide vs. narrow or narrow vs. wide shape. Voxels 
were sorted according to the absolute value of their t-statistic in this univariate 
contrast, and the top N voxels were selected for each sub-ROI, with N ranging 
from 100 to 1000, yielding an increasingly liberal voxel inclusion threshold. All 
analyses were conducted within each hemisphere separately, and results were 
averaged across hemispheres. 
 
4.2.11 Multivariate pattern analysis 

The multivariate pattern analysis (MVPA) was conducted using linear support 
vector machines (SVMs) implemented in Scikit-learn (Pedregosa et al., 2011) and 
PyMVPA (Hanke et al., 2009). The cross-classification analysis consisted of 
training SVM classifiers on the miniblock-based beta weights from the training 
runs, and testing them on the run-based beta weights from the main task runs, 
and vice versa. Both directions of cross-classification were run, and the results 
averaged, in order to increase the robustness to to task- or stimulus-unrelated 
factors that can lead to asymmetries between classification directions, such as 
different signal-to-noise ratios (van den Hurk & de Beeck, 2019). The training and 
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testing datasets were separately z-scored before decoding. Each classifier was 
trained and tested on voxels within a single ROI and hemisphere, in a single 
subject. To decode the stimulus feature of interest - proximal object shape (wide 
vs. narrow), we trained classifiers on the isolated objects presented in the training 
runs, and tested them on the expected object shapes in the test runs (or vice 
versa, depending on decoding direction). 
 We used a continuous measure of classifier performance, as discrete 
classification outcomes have been shown to be less reliable in estimating the 
distance between stimulus representations in the brain (Walther et al., 2016). Our 
measure, which we call ‘classifier information’, was based on a test sample’s 
distance from the classification hyperplane estimated by the SVM (distance from 
bound). Classifier information was defined as follows: 
 

Classifier Information = 1
#$%!&!

"

!#$
 

 
Where di’s are the z-scored distances from bound, li’s are the true binary labels 
(either -1 or 1), for each sample, and n is the number of test samples. Intuitively, 
this measure corresponds to the average match between each distance from 
bound and the corresponding ground-truth label, i.e. the degree to which the 
distance is positive when the target is positive, and negative when the target is 
negative. Classification is above chance when this measure is higher than zero. 
Averaging this measure across samples allows to compare classification 
performance with different numbers of test samples, enabling us to combine data 
across decoding directions. The classifier information was computed for each ROI 
(or sub-ROI in the sliding window and voxel selection analyses) and each subject. 
Importantly, our results were consistent, albeit noisier, when using classification 
accuracy instead of classifier information. 
 
4.2.12 Significance testing 

To assess whether classifier information was reliably above zero for the decoding 
of the occluded object’s shape, we used two approaches. (1) At the whole-ROI 
level, we used simple one-sample t-tests against a null of zero for the average 
classifier information of each participant, for a classifier trained and tested on all 
voxels. We started with a broad ROI including much of the visual stream, and then 
progressively split the ROIs that showed above-chance decoding into sub-
regions. To correct for multiple comparisons, we used one-step Bonferroni 
correction. (2) For the sliding window and voxel selection analyses, we tested for 
the presence of above-chance decoding across y-coordinates and numbers of 
voxels, respectively, using threshold-free cluster enhancement (TFCE, Smith & 
Nichols, 2009). TFCE boosts the magnitude of a statistic based on its extent 
across neighboring samples (in this case, spatial windows or sub-ROIs with similar 
numbers of voxels), reflecting the assumption that any signal in the data should 
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be smooth across consecutive datapoints. This measure is then compared with a 
null distribution generated by randomly shifting the signs of each participant’s 1D 
map (classifier information across spatial windows/sub-ROIs). This null 
distribution has the same variance and autocorrelation as the original signal. This 
shuffling procedure was applied 10,000 times. TFCE was computed using the 
MNE toolbox (Gramfort et al., 2013). 
 

4.3 Results 

4.3.1 Behavioral data 

To ensure that participants were paying attention to the stimulus sequences, we 
instructed them to pay attention to when the object would reappear after 
occlusion, and report the number of reappearances at the end of each block. As 
a measure of participants’ attention to the task, we used the Pearson’s correlation 
between their estimates and the correct number of reappearances for each run. 
This led to two participants being excluded outright due to their responses being 
negatively correlated with the true values (r = -0.59 and -0.46). Two further 
participants were then excluded due to their correlation being >2 standard 
deviations away from the sample mean. These participants’ correlation 
coefficients were close to zero: r = 0.07 and 0.15. The remaining (n = 30) 
participants’ responses were positively correlated with the true values (mean r = 
0.89, minimum = 0.39), with a majority (25/30) having correlations higher than 0.80, 
as shown in Figure 4.4. 

Figure 4.4. Pearson's correlation between true and estimated numbers of object 
reappearances for each included participant. 
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4.3.2 MVPA results - whole ROIs 

In our main analysis, we addressed the question of whether the expected object 
shape could be decoded from multivariate activity patterns in visual cortex, in the 
absence of visual stimulation. To be agnostic to the precise anatomical locus of 
this information, we first ran linear decoders on a wide ROI comprising much of 
the visual stream (Brodmann areas 17, 18, 19 and 37 - see Methods for details). 
We found that object shape could be decoded above chance in this macro-area 
(t(29) = 2.23, p = 0.0339, d = 0.41, 95% CI = [0.0, 0.1], Figure 4.5A), indicating 
that information about the expected shape was present in the visual system. In 
order to assess the robustness of our results to voxel inclusion, as well as to clarify 
their anatomical origin, we then split this ROI into two sub-ROIs, corresponding to 
low-level (BA 17/18) and high-level (BA 19/37) visual cortex. Two separate t-tests 
against chance revealed that BA 19/37 contained information about the expected 
object shape (t(29) = 2.90, pbonf = 0.014, d = 0.53, 95% CI = [0.02, 0.1]), while BA 
17/18 did not (t(29) = 1.24, pbonf = 0.451, d = 0.23, 95% CI = [-0.02, 0.1], Figure 
4.5B). We then further broke down the region showing significant above-chance 
decoding, BA 19/37, into its two constituent Brodmann areas. This analysis 
showed that the expected object shape could be decoded in BA 19 (t(29) = 2.69, 
pbonf = 0.023, d = 0.49, 95% CI = [0.01, 0.11]) and not in BA 37 (t(29) = 1.42, pbonf = 
0.333, d = 0.26, 95% CI = [-0.01, 0.06], Figure 4.5C). These results indicate that 
a representation of the occluded object’s proximal shape, updated consistently 
with the surrounding scene viewpoint, was present in the visual system. Moreover, 
it was primarily localized within the intermediate visual area BA 19. 
 

Figure 4.5. Results of the MVPA analysis on whole anatomical ROIs. Color and position 
indicate the left and right hemisphere, as illustrated at the top right. 
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4.3.3 MVPA results - sliding window analysis 

Our result indicated that information about the updated object shape was primarily 
found in mid-level visual area BA 19. As a confirmation that our results were 
primarily driven by intermediate levels of the visual stream, we conducted an 

Figure 4.6. Classifier information within a sliding window along the y-axis, for each 
hemisphere. MNI coordinates are the centers of the sliding windows. Asterisks indicate 
significance as measured with TFCE. * p < 0.05, ** p< 0.01, *** p < 0.001. 
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exploratory analysis, in which object shape was decoded from a sliding window 
along the posterior to anterior axis of the brain (MNI y-coordinate).  Inspecting the 
resulting plot (Figure 4.6), it can be seen how above-chance decoding emerges 
at intermediate coordinates within the left hemisphere (peak mean classifier 
information y = -68, pTFCE = 0.007) while no above-chance decoding could be 
found within the right hemisphere (peak mean classifier information y = -42, pTFCE 
= 0.140). 
 
4.3.4 MVPA results - voxel selection 

As a further check of the robustness of our results in BA 19, we cross-decoded 
object shape on sub-ROIs with an increasingly liberal threshold for voxel inclusion 
(see Methods for details). This analysis showed that the decoding of object shape 
in this ROI is robust to the inclusion of different numbers of voxels (pTFCE < 0.05 for 
all sub-ROIs, Figure 4.7). 
 
 
 

Figure 4.7.  Robustness of the results within BA19 to the inclusion of different numbers of 
voxels. 
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4.4 Discussion 
The present results provide evidence for predictions of a fully occluded object’s 
appearance from a new viewpoint, driven by contextual scene information. These 
predictions occur in the absence of an explicit task, and are reflected in sensory-
like representations in visual cortex. These findings suggest that internal object 
representations are automatically updated with the surrounding scene context, 
possibly providing a mechanism for predicting and tracking temporarily invisible 
objects in the real world. 
 In this study, we showed that the representations of occluded objects in 
visual cortex resemble those of visible objects, by using a multivariate cross-
decoding scheme. Several cognitive processes, such as attention (Peelen & 
Kastner, 2011; Battistoni et al., 2017), expectations (Kok et al., 2014; Hindy et al., 
2016), mental imagery (Dijkstra et al., 2019; Pearson, 2019) and working memory 
(Albers et al., 2013; Christophel et al., 2015; Gayet et al., 2018) are known to elicit 
visual-like cortical representations in the absence of perceptual input. These 
representations are believed to result from feedback connections to visual cortex, 
and to serve the purpose of disambiguating sensory information by comparing it 
with top-down signals (De Lange et al., 2018). The present study occupies an 
intermediate position between prior work investigating representations in the 
complete absence of visual input, and other studies looking at contextual 
modulation of visible stimuli (e.g. Murray et al., 2006; Heilbron et al., 2020). Our 
results show that, even when an object is fully invisible, it can still be influenced 
by contextual information, in accordance with the way objects and the scenes 
surrounding them change coherently in the real world. This seamless integration 
of visible and invisible information can be extremely useful in tracking objects 
across periods of invisibility, as often happens in daily life (Munton, 2022).  
 In our own previous work (Chapter 3), using a similar paradigm to the one 
used here, we investigated the role of scene-driven predictions in modulating the 
representations of visible objects. Specifically, we compared fMRI activity 
patterns, and behavioral performance in a perceptual task, between objects that 
were or were not rotated congruently with the surrounding scene after occlusion. 
We found that congruently rotated objects yielded higher behavioral accuracy and 
enhanced multivariate decodability in visual cortex. In the present work, we show 
that the expectation’s content can be directly decoded in the absence of visual 
input. This suggests that the previously reported behavioral and neural advantage 
might be the result of a comparison between this template-like representation and 
incoming sensory input. Interestingly, this comparison operation seemed to 
primarily occur in early visual cortex (EVC; corresponding to V1 and V2). While a 
precise anatomical localization of the expectation signal is beyond the scope of 
this study, here above-chance decoding of this signal was primarily found in mid-
level BA 19. One possibility is that this discrepancy is due to recurrent interactions 
between neighboring visual areas (Hochstein & Ahissar, 2002; Lee & Mumford, 
2003; Dijkstra et al., 2020), whereby the expectation signal represented in BA 19 
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is fed back to EVC to be compared with incoming visual input. Roelfsema & de 
Lange (2016) proposed that early retinotopic areas in the visual system might act 
as a ‘cognitive blackboard’ where spatially organized information is stored and 
manipulated during disparate cognitive operations. Areas with receptive field sizes 
that match the relevant spatial scale of the task at hand are flexibly recruited, with 
earlier areas being involved in finer-grained computations. In both our studies 
(Chapter 3 and the present one), we explicitly designed our stimuli to maximize 
global shape differences between the two possible outcomes of the rotation 
sequence (wide or narrow). Participants might have then generated a coarse-scale 
representation of the occluded object’s shape, involving an intermediate visual 
area (BA 19) with large receptive fields. In Chapter 3, since subjects were 
additionally engaged in a fine-grained visual discrimination task on the 
reappearing objects, this representation might have been fed back to EVC to 
facilitate visual processing.  
 While the present results indicate that information about the occluded 
object’s appearance is ‘filled in’ in the visual system, an open question is what the 
specific nature of this information is. Prior research in perceptual expectations has 
often used synthetic stimuli, consisting of a few basic visual features such as 
orientation and spatial frequency (e.g. Kok et al., 2012, 2014). In such an 
impoverished scenario, top-down visual expectations could provide a full 
description of the predicted stimulus. In the case of complex real-world scenes, 
this might not be the case. While some previous studies have reported that the 
neural completion of occluded scenes resembles a faithful description of the 
missing scene section (Smith & Muckli, 2010; Svanera et al., 2021), others have 
suggested that it might be more schematic (Morgan et al., 2019). Particularly in 
dynamic settings, in which objects need to be tracked in real time, it might not be 
viable to predict them in every aspect. A recent study on object tracking under 
occlusion found that only the object’s position could be decoded above chance 
in visual cortex during occlusion (Teichmann et al., 2022). In the training runs of 
our study, different object stimuli were grouped in miniblocks by their proximal 
shape (wide or narrow). We thus obtained prototypical object representations that 
collapsed across specific object exemplars, making it impossible to distinguish 
between a purely abstract representation of proximal shape and a richer pictorial 
representation. A future study using exemplar-level decoding (M. R. Johnson & 
Johnson, 2014; Wurm & Lingnau, 2015) or reconstruction approaches (Horikawa 
& Kamitani, 2017; Senden et al., 2019; Shen et al., 2019; Dado et al., 2022) could 
help adjudicate between these two possibilities.  
 Contrary to prior work investigating object tracking in space, in our study 
both the object’s position and identity (as revealed in the few reappearance trials) 
remained fixed behind the occluder. What varied was instead the object’s 3D 
orientation, and consequently its projected shape on the image plane. Is it still 
possible that an abstract representation of shape exclusively was being updated 
in visual cortex, rather than a detailed prediction of the object’s appearance? 
Mental rotation studies, in which participants are explicitly instructed to imagine 
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an object’s appearance from a new viewpoint (Shepard & Metzler, 1971) have 
found evidence that they manipulate an image-like representation in their minds 
(Cooper & Shepard, 1973; Shepard & Cooper, 1982; Koriat & Norman, 1984, 
1988). On the other hand, Graf (2006) proposed that spatial transformations, such 
as rotation and scaling, might not pertain exclusively to explicit mental rotation 
processes, but might be a general computation in object perception. Particularly, 
he highlighted that object recognition can be facilitated when the observer has set 
up an appropriate spatial reference frame for the object, e.g. with a background 
that matches its viewpoint (Humphrey & Jolicoeur, 1993). Setting up these 
reference frames differs from mental rotation in its being object-aspecific: rather 
than a picture-like prediction of a specific object in a specific orientation, it 
resembles an abstract representation of that orientation, which can have a 
facilitatory effect across different objects (Graf et al., 2005). It is possible that 
scene viewpoint information in our study was establishing a similar reference 
frame, eliciting a general prediction of a particular object orientation rather than a 
specific object exemplar. Behaviorally, this would predict the facilitatory effect we 
reported in Chapters 2 & 3 to hold across different objects. Graf (2006) also 
proposed that coordinate frames might be established in the visual system 
through feedback mechanisms conventionally associated with attentional 
modulation, compatible with our finding of the object shape being represented in 
visual cortex. Interestingly, a recent study (Gayet & Peelen, 2022) manipulated the 
distance at which participants were searching for objects in real-world scenes, 
and found, using fMRI, that their internal representation of the objects was 
“scaled” according to the object’s expected size. Similar to our study, the size-
specific object representation could be decoded in the visual system, despite the 
object not being visible. Our findings then raise the possibility that scene context 
might provide a reference frame for disparate object transformations, from scaling 
to rotation, and support object predictions automatically, even without an explicit 
task. Future research should investigate the question of whether this occurs 
through the generation of object-specific predictions, or through general 
transformation operations that generalize across objects (Ward et al., 2018). 
 To conclude, we found evidence for a representation of object shape in 
visual cortex that reflects the changed viewpoint of a surrounding 3D scene. This 
representation was reflected in multivariate activity patterns, and emerged in the 
absence of an explicit prediction task. These results indicate that predicting 
incomplete visual input in everyday scenes might capitalize on structured spatial 
relations, bridging our known ability to track occluded objects with the complexity 
of real-world environments. 
  



  

 



  

 
Chapter 5 
Automatic size scaling of object 
representations driven by scene 
context 
 
 
Abstract 
As our viewpoint varies in the real world, we see scenes changing in a coherent way. For 
example, as we move forward in a scene, the retinal size of all the objects in the scene will 
increase in accordance with the amount of forward motion. This regularity can be exploited 
to predict how an object will transform, allowing us to efficiently track objects in naturalistic 
contexts. While previous research has found that object orientation is automatically 
predicted based on the rotation of the surrounding scene, it is unknown whether this can 
generalize to other transformations beyond rotation. Here, in a series of online behavioral 
experiments (N = 151), we investigate whether participants automatically predict the retinal 
size of an object, based on the changing distance of the surrounding scene. We compare 
their responses in an orthogonal perceptual task, on an object that either matches the 
expected size or not. We find that scene-driven size expectations strongly influence task 
performance. The directionality of this effect remains consistent even when size 
expectations are violated on a majority of trials, suggesting that scene context elicits 
automatic predictions in line with real-world regularities, that cannot easily be overruled by 
short-term evidence. Together, these findings point to a general role of scenes in driving 
predictions of object transformations. 
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5.1 Introduction 
The appearance of objects constantly changes with our viewpoint. As we walk 
around an object, we see it rotating in depth. As we get closer or farther, we see 
its size increase or decrease. Predicting how these transformations affect the 
appearance of objects is crucial for navigating the world effectively. For this 
reason, it is believed that we generate internal representations of external objects 
which behave in correspondence to those objects (Shepard, 1984, 2001; Higgins 
et al., 2022). For example, we can mentally rotate the representation of an object, 
such that the rotated representation will correspond to the rotated object in the 
external world (Shepard & Metzler, 1971). 
 In most real-world situations, when objects undergo transformations, they 
do so coherently with their context. For example, as we walk through a room and 
our viewpoint changes, so does the orientation of the objects in the room, and 
that of its walls. This means that real-world scenes are highly redundant: all parts 
of a scene tend to simultaneously undergo similar transformations. The task of 
predicting object transformations is computationally challenging: it requires 
several inferences to be made. In the case of mental rotation, for example, the 
direction and amount of rotation to apply to the object must be determined 
(Hamrick & Griffiths, 2014). It would be advantageous, then, if we could exploit the 
redundancy of real-world scenes by mentally transforming objects coherently with 
their context. For at least some mental transformations, this seems to be the case; 
in the previous chapters, we have shown that internal object representations are 
rotated concurrently with the viewpoint of the surrounding scene, as reflected in 
both behavior (Chapter 2) and activation patterns in visual cortex (Chapters 3-4). 
An important question left unanswered by our previous work is to what extent the 
influence of scene context on mental transformations is a general phenomenon, 
or one that applies strictly to rotation. Prior research has shown that our minds 
are able to predict a wide variety of transformations beyond rotation. These 
include other rigid transformations, that leave objects’ shapes unaltered, such as 
translation and scaling (Bennett, 2002; Bundesen et al., 1983; Bundesen & Larsen, 
1975; Larsen & Bundesen, 1978, 1998; Schmidt et al., 2016; Sekuler & Nash, 
1972), and even non-rigid ones, that modify an object’s shape, such as deforming 
or tearing it apart (Hafri et al., 2022; Hahn et al., 2009; Kourtzi & Shiffrar, 2001; 
Spröte et al., 2016; Spröte & Fleming, 2016). This suggests that predicting object 
transformations might be a general cognitive capacity, encompassing several 
qualitatively different ways in which objects can change in the world. Can other 
transformations also be driven by scene context, in a way similar to rotation? 
 Here, to investigate the role of scene context in driving mental 
transformations beyond rotation, we focus on scaling, the predictable change in 
an object’s retinal size as a function of viewing distance. As objects rarely 
physically shrink or expand in the real world, their retinal size mostly varies with 
our distance from them: accordingly, behavioral evidence suggests that we 
generally perceive size changes as translations in depth (Bundesen et al., 1983; 
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Larsen & Bundesen, 2009). Because retinal size depends on distance, scene 
context should play a crucial role in influencing our representations of object size, 
as real-world scenes contain a rich variety of depth cues (Landy et al., 1995). 
Indeed, the perceived size of an object has long been known to be altered by 
pictorial depth cues in a scene, such that objects farther away are perceived as 
larger, reflecting their inferred real-world size (Leibowitz et al., 1969; Yildiz et al., 
2021). The influence of scene context on object size has been shown to generalize 
beyond perceived objects, affecting internally generated representations as well. 
A recent fMRI study (Gayet & Peelen, 2022) found that as observers prepared to 
search for objects at a given distance in a scene, they generated internal 
representations of those objects that were scaled consistently with the search 
distance. This shows that observers can adjust the size of internal object 
representations based on the scene context. Their task, however, explicitly 
informed participants about the upcoming distance, and generating 
corresponding preparatory object representations was beneficial for the task at 
hand (reporting the presence/absence of the object). This leaves open the 
question of whether the rescaling of object representations occurs during day-to-
day vision, when not imposed by task demands. Moreover, this study made use 
of static scene images, so it remains unknown whether object representations can 
be scaled dynamically, coherently with the changing viewpoint of a scene. Here, 
we address the questions of whether scene-driven scaling can occur 
automatically (without being imposed by task demands), and whether it can be 
elicited by the observed transformations of the scene. Answering these questions 
would provide insight into the way in which mental transformations, such as 
scaling, can guide perception in the real world, in the presence of rich contextual 
cues. 
 We ran a series of online behavioral experiments using a paradigm similar 
to the one described in Chapter 2, to determine whether scaling of internal object 
representations shares cognitive mechanisms with rotation, and is similarly 
influenced by scene viewpoint. On each trial, we showed participants an object 
placed within a realistic 3D scene (Figure 5.1). The viewpoint on the scene 
translated in depth, with the camera ‘zooming in’, and during this viewpoint shift, 
the object was concealed by an occluder. Then it reappeared, either with a size 
consistent with the new distance of the surrounding scene (Expected trials) or with 
an inconsistent size (Unexpected trials). Importantly, we varied the amount of 
scene viewpoint change from trial to trial, so that whether the object had been 
rescaled by the expected amount or not could only be determined by observing 
how the scene changed. Participants had to perform an orthogonal visual 
discrimination task on the reappeared object, a task that in principle did not 
require them to form an expectation of the object size or to take the scene’s 
viewpoint change into account. We compare their performance on this task 
between Expected and Unexpected trials, and find that expectations of object 
size, driven by the scene, substantially influence their responses. This suggests 
that scene context drives internal predictions of object size even in the absence 
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of any explicit instruction. Moreover, across three experiments, we manipulate the 
probability of the object appearing with a size matching the scene’s viewpoint. We 
find that even when scene-driven expectations are violated on a large proportion 
of trials, they still influence behavioral responses in a similar manner, showcasing 
the obligatory nature of the influence of scene context on object transformations. 
Altogether, these results indicate that mental scaling can be driven by scene 
context in an automatic way, analogously to rotation, pointing to a general role of 
scene viewpoint in driving transformations of object representations. 
 

5.2 Methods 
5.2.1 Participants 

All experiments were run online, hosted on Pavlovia and programmed in 
Javascript using JsPsych 6.3.0 (De Leeuw, 2015) and the jspsych-psychophysics 
library (Kuroki, 2021). Participants were recruited on Prolific (Palan & Schitter, 
2018) and had to satisfy the following criteria: reside in Europe or the UK, to ensure 
their timezone was the same as ours and they were participating during day hours; 
have participated in at least 10 previous studies on Prolific; and have a Prolific 
approval rate of at least 95%. Participants provided informed consent before the 
study and received monetary compensation for their participation. The study was 

Figure 5.1. Example of a trial - in this case, corresponding to a “Large” total translation of 
the scene, an “Expected” view of the object, and a “Different” trial: the second, rapidly 
shown probe is slightly smaller than the first (arrows added for illustration). 
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approved by the Radboud University Faculty of Social Sciences Ethics Committee 
(ECSW2017-2306-517). Participants were included in the analysis if a one-sided 
binomial test comparing their hit rate in our same/different task with 50% was 
significant (at alpha = 0.05), meaning that they were performing better than chance 
across all conditions. We continued data collection until the number of included 
participants reached 50 for each experiment. In Experiment 1, we excluded 47 
participants. Of the included 50 participants, 24 were female, 25 were male, and 
one participant’s demographic information was missing. and mean age was 27.1 
± 4.1. In Experiment 2, we excluded 37 participants. Of the included 50 
participants, 25 were female, 24 were male, and 1 participant’s information was 
missing. Mean age was 25.8 ± 4.8. In Experiment 3, we excluded 42 participants. 
Of the included 51 participants, 21 were female, and mean age was 26.7 ± 4.5.  
 The high exclusion rate was likely due to the difficulty of the task. The 
difference between probe stimuli was defined in 3D space (object position in 
depth), limiting the range of possible stimulus differences we could show. We 
wanted to make the difference between different object positions (and thus 
Expected and Unexpected positions) noticeable, so probe objects could appear 
at either very near or very far distances. We could thus not use the full range of 
distances available in the scene, and for far object positions, depth differences 
were very hard to notice. Moreover, we kept the presentation time short (200 ms) 
for each of the two target stimuli, in order to reduce the influence of deliberate 
judgment and investigate how scene-driven expectations influenced a primarily 
perceptual task. Importantly, however, all results reported here remained 
consistent with no participant exclusions. 
 
5.2.2 Stimuli 

The stimuli were based on 4 different indoor scenes modeled in Blender 2.92 and 
rendered using the Cycles rendering engine for realistic lighting. The scenes all 
had the same layout (floor, two walls at a right angle and a main object in the 
center) but the main object varied, as well as the objects present in the 
background (adjacent to the walls), and the textures on the walls and floor. The 
central object could be a couch or a bed: we chose large, immovable object 
categories that are generally expected to remain in a fixed position within a scene. 
For each scene, a sequence of different viewpoints was rendered by translating 
the camera gradually closer to the scene (zooming in). The main object was always 
fully included in the frame, while other background objects could go out of the 
frame. The main object was always presented with its longer side (front for the 
couch, side for the bed) facing the viewer. The height and pitch of the camera 
were chosen so that the main object would always remain at the center of the 
scene. All scene images had a resolution of 960 x 540 pixels. 
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5.2.3 Procedure 

Each trial (Figure 5.1) began with a fixation dot (which was always present during 
the trial, radius 5 pixels) for 500 ms, followed by the first view of the scene for 
2000 ms, the 3 intermediate views for 500 ms each, and the final view for a 
randomly jittered duration between 1500 and 2000 ms. The central object (couch 
or bed) was fully visible for the first and second view, and was occluded by a grey 
rectangle during the third, fourth and final view. The occluder had the height and 
width of the largest possible view of the object in a specific scene, plus a margin 
(horizontal margin: 110 pixels, vertical: 40 pixels) to ensure the object was fully 
covered and its shadow was not visible, which would have provided a cue to its 
size behind the occluder. 
 After the final view of the scene was shown, the occluder disappeared, 
briefly revealing the object (within the scene) twice, for 200 ms each, with a 100 
ms inter-stimulus interval in between. We will refer to these two brief presentations 
of the object as the probes. Participants’ task was to report whether the second 
probe was the ‘same’ as, or ‘different’ from, the first, by pressing the F or J key, 
respectively. After responding, they would receive feedback: the fixation dot 
would turn green following a correct answer, and red following an incorrect one, 
for 250 ms. They had a maximum of 2500 ms to respond, after which the fixation 
dot would turn black, the experiment would skip to the next trial and the current 
trial would be counted as missed. 
 Participants were explicitly told that their task would be on the final two 
views of the objects exclusively, but that they should also pay attention to the 
preceding sequence of images, to ensure they wouldn’t completely disengage 
during the seconds preceding the probes. The first probe was randomly sampled 
from a normal distribution centered around the Expected or Unexpected object 
viewpoint, to add a small amount of jitter. The second probe, on half of trials 
(‘same’ trials), was exactly the same as the first probe. On the other half of trials 
(‘different’ trials), it was translated in depth relative to the first (see Figure 5.1, 
bottom left), forward or backward with equal probability. 
 The depth difference between the two probes was defined in terms of 
distance in the virtual scene, using the default Blender unit. We henceforth refer 
to this measurement unit as arbitrary unit (a.u.). The depth difference was shown 
only on the ‘different’ trials, and was titrated using a 2-down 1-up staircase, to 
keep the task difficulty constant across participants and across experiments. 
Specifically, a single staircase was used across both Expected and Unexpected 
trials to ensure overall performance was around 70% correct (Wetherill & Levitt, 
1965) across conditions, while still allowing for accuracy differences between the 
Expected and Unexpected conditions. The depth difference was adjusted after 
both ‘same’ and ‘different’ trials. The starting value for the staircase was 1 a.u., 
step size was 0.05 a.u. (halved after 3 staircase reversals) and the minimum and 
maximum possible depth differences shown were 0.025 and 1 a.u., respectively. 
The means and standard deviations of the depth differences reached by the 
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staircase in the second half of trials, in each of the three experiments, were 0.68 
± 0.23, 0.72 ± 0.19, and 0.7 ± 0.20 a.u. respectively.  
 Each experiment lasted about 30 minutes in total, divided in N blocks, and 
participants were encouraged to take a short break after the end of each block. 
Before the experiment began, participants read the on-screen instructions, 
accompanied by demonstration images, at their own pace. Then they completed 
a short practice run. During the practice run, the presentation time of the two 
probes gradually decreased across trials, from 300 ms to the eventual 
presentation time that was used in the main experiment (200 ms). This allowed 
participants to familiarize with the task with an initially less challenging 
presentation time. 
 
5.2.4 Experimental design 

Trials varied along three different factors (Figure 5.2): Expectancy (Expected, 
Unexpected), Object Position relative to the scene (two possible distances from 
the observer, Near or Far), amount of Scene Translation (Small or Large), and 

Figure 5.2. Illustration of the experimental design, showing the initial position of the object 
relative to the scene (either Near or Far), and the final images (after the whole sequence and 
the occlusion period) resulting from a Small or Large translation on Expected or Unexpected 
trials. As highlighted by the color frames, the same image could appear as either Expected 
or Unexpected on different trials. 
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Scene (1 of 4 different exemplars). The overall proportion of Expected and 
Unexpected trials varied depending on the experiment (75% of total trials in Exp. 
1, 50% in Exp. 2, and 25% in Exp. 3). All the other factors were fully balanced 
within Expected and Unexpected trials, meaning that each of four partitions of the 
trials (variably assigned to either Expected or Unexpected depending on the 
experiment) were equally divided among each combination of Object Position, 
Scene Translation and Scene (2 x 2 x 4 = 16 conditions, each repeated 3 times, 
for each partition, resulting in 192 trials in total). All these trials were presented in 
randomized order throughout the experiment. 
 On Unexpected trials, at the end of the scene translation sequence, we 
showed the object in a position inconsistent with the one shown at the start of the 
trial: on Near trials, the object appeared in the Far position, and vice versa (Figure 
5.2). This way, the exact same image could be presented as Expected in the 
context of one trial, and Unexpected in another, avoiding any possible confounds 
due to visual differences between conditions. 
 
5.2.5 Data analysis 

In order to determine whether scene-driven expectations mostly affected 
observers’ sensitivity or bias, we computed d’ and criterion for each condition of 
interest (Expected and Unexpected trials). We consider ‘Same’ trials as noise, and 
‘Different’ as signal, meaning that criterion is a measure of bias towards 
responding ‘same’. We used the log-linear method (Hautus, 1995) to correct for 
the rare cases of 100% accuracy in a particular condition. 
 All analyses were conducted in Python using Pandas 1.2.5 (McKinney, 
2011), Numpy 1.20.2 (Harris et al., 2020), Pingouin 0.3.4 (Vallat, 2018), and Scipy 
1.6.2 (Virtanen et al., 2020), and results were visualized using Matplotlib 3.3.4 
(Hunter, 2007), and Seaborn 0.11.1 (Waskom, 2021). 
 
5.2.6 Post-experiment survey 

After completing the experiment, participants were asked three questions that 
would help us gauge their awareness of the expectation manipulation. The 
questions were: 
• “Your task was only on the final image, when the object changed or not. Did you 

also pay attention to the sequence of images before the task image?” - the 
response had to be indicated on a Likert scale from 1 (Not at all) to 7 (All the 
time). 

• “When the scene shifted, did you anticipate seeing the object in the correct 
viewpoint after it reappeared?” - the response also had to be indicated on a 1-
7 Likert scale. 

• “What percentage of objects were in line with your expectation? (They 
reappeared with the correct viewpoint)” - the response had to be a value in 
percentage, from 0 to 100%. 
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5.3 Results 
5.3.1 Experiment 1: 75% Probability 

In the first experiment, the object appeared in the expected view (given the scene 
context) on a majority (75%) of trials. Across conditions, participants’ mean 
accuracy (and SEM) was 0.69 ± 0.01, indicating that they were able to perform the 
task, and that the staircase successfully converged to the desired accuracy of 
~70%. Analyzing overall criterion, we found that it was significantly above zero 
(mean: 0.78, t(49) = 36.34, p < 0.001, d = 5.14, 95% CI = [0.74, 0.82]), indicating 
a strong general bias towards responding ‘same’, possibly due to the relatively 
small perceptual differences between the probes.  
 In comparing our central conditions, we found criterion to be significantly 
higher on Expected than Unexpected trials (means: 0.86 vs. 0.70; t(49) = 4.96, p 
< 0.001, d = 0.82, 95% CI = [0.09, 0.22]), as shown in Figure 5.3A. This indicates 
that when the object was shown with a size inconsistent with the surrounding 
scene’s transformation, participants had a tendency to respond ‘different’ more 
often, counteracting their overall bias. This result suggests that the scene-driven 
size expectation affected participants’ responses in the task, despite no explicit 

Figure 5.3. Results of Experiment 1. (A) Left – mean (and SEM) criterion for the Expected 
and Unexpected trials. Right – distribution of the differences between conditions 
(Expected – Unexpected) for each participant. (B) Same as in A, for d’. * p < 0.05, ** p < 
0.01, *** p < 0.001. 
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requirement to predict the object’s size. 
 Moreover, we found d’ to be significantly higher on Expected than 
Unexpected trials (means: 0.70 vs. 0.45; t(49) = 4.48, p < 0.001, d = 0.80, 95% CI 
= [0.14, 0.36]), as shown in Figure 5.3B. This indicates that scene-driven 
expectations, beyond influencing participants’ responses in the task, affected 
their perceptual sensitivity as well, possibly by enabling them to set up a visual 
‘template’ of the expected object size. 
 In this experiment, on a majority of trials, the object reappeared with a size 
that matched participants’ scene-driven expectations. Thus, the short-term 
expectations established during the experiment matched the long-term 
expectations derived from real-world regularities (the fact that objects are 
transformed coherently with the surrounding scene). In Experiment 2, we 
investigated whether the interference of long-term expectations in our task would 
be reduced when expected and unexpected object sizes appear with the same 
probability during the experiment. 
 
5.3.2 Experiment 2: 50% Probability 

In the second experiment, the object would appear in an expected or unexpected 
size (given the background scene’s viewpoint) with equal probability. Besides this 
probability manipulation, stimuli and experimental paradigm were the same as in 
Experiment 1. As in Experiment 1, participants were able to perform the task well 
above chance level (mean accuracy and SEM: 0.68 ± 0.01). Also consistently with 
the previous experiment, their criterion was significantly above zero (mean: 0.81, 

Figure 5.4. Results of Experiment 2. (A) Left – mean (and SEM) criterion for the Expected 
and Unexpected trials. Right – distribution of the differences between conditions (Expected 
– Unexpected) for each participant. (B) Same as in A, for d’. * p < 0.05, ** p < 0.01, *** p < 
0.001. 
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t(49) = 38.09, p < 0.001, d = 5.39, 95% CI = [0.77, 0.85]), meaning that they had a 
similarly strong bias towards reporting ‘same’ (i.e., no change between the two 
probes). 
 Comparing criterion between our main conditions of interest, we again 
found that it was higher on Expected than Unexpected trials (means: 0.87 vs. 0.76, 
t(49) = 3.28, p = 0.002, d = 0.57, 95% CI = [0.04, 0.17]), as shown in Figure 5.4A. 
This indicates that participants were still forming an expectation of the object size 
implied by the scene, and that this expectation still interfered with the context, 
despite the fact that it was not predictive of the actual stimuli that would be shown 
in the experiment.  
Interestingly, contrary to the previous experiment we found no significant 
difference in d’ between the Expected and Unexpected conditions (Figure 5.4B; 
means: 0.70 vs. 0.62, t(49) = 1.56, p = 0.126, d = 0.27, 95% CI = [-0.02, 0.18]). 
Thus, while the scene-driven expectation still influenced participants’ answers, its 
violation did not result in a decrease in perceptual sensitivity. We address why this 
might have been the case in the Discussion. 
 The results of this experiment indicate that even when the scene-driven 
expectation of object size was only predictive on 50% of trials, it still interfered 
with participants’ responses. Thus violating this expectation on a large proportion 
of experimental trials was still not sufficient to suppress it, providing evidence for 
its automaticity. In the following experiment, we asked whether further increasing 
the proportion of expectation violations, thereby making the scene context 
counterpredictive, would suppress (or reverse) participants’ predictions of object 
size.  

Figure 5.5. Results of Experiment 3. (A) Left – mean (and SEM) criterion for the Expected 
and Unexpected trials. Right – distribution of the differences between conditions 
(Expected – Unexpected) for each participant. (B) Same as in A, for d’. * p < 0.05, ** p < 
0.01, *** p < 0.001. 
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5.3.3 Experiment 3: 25% Probability 

In this experiment, the object would reappear with its expected size only on 25% 
of trials. Apart from this, stimuli and paradigm were the same as in the previous 
two experiments. As in the previous experiments, participants performed the task 
well above chance level (mean accuracy and SEM: 0.69 ± 0.01). Also consistently 
with the previous experiments, they showed a strong overall bias towards 
responding ‘same’, leading to a significantly positive criterion (mean: 0.82, t(50) = 
37.57, p < 0.001, d = 5.26, 95% CI = [0.78, 0.86]). 
 In comparing our central conditions, we again found a significant 
difference in criterion between Expected and  
Unexpected trials (Figure 5.5A; means: 0.88 vs. 0.76, t(50) = 3.84, p < 0.001, d = 
0.62, 95% CI = [0.06, 0.18]). This indicates that even when a  
majority of trials contained inconsistent object sizes (relative to the scene 
background), participants still processed these inconsistently sized objects as 

 Experiment 1 
Probability = 75% 

Experiment 2 
Probability = 50% 

Experiment 3  
Probability = 25% 

Attention to Sequence 
1-7 Likert scale 4.42 ± 0.19 4.30 ± 0.21 4.02 ± 0.23 

Correlation with criterion r = 0.07, p = 0.62, 
BF01 = 5.05 

r = 0.06, p = 0.68, 
BF01 = 5.23 

r = 0.08, p = 0.58, 
BF01 = 4.95 

Correlation with d’ r = 0.10, p = 0.47, 
BF01 = 4.40 

r = 0.04, p = 0.80, 
BF01 = 5.49 

r = -0.06, p = 0.68, 
BF01 = 5.26 

Object Prediction 
1-7 Likert scale 3.53 ± 0.24 3.76 ± 0.22 3.32 ± 0.24 

Correlation with criterion r = -0.01, p = 0.93, 
BF01 = 5.59 

r = 0.17, p = 0.23, 
BF01 = 2.79 

r = -0.12, p = 0.39, 
BF01 = 4.03  

Correlation with d’ r = 0.04, p = 0.76, 
BF01 = 5.35 

r = 0.17, p = 0.23, 
BF01 = 2.86  

r = -0.07, p = 0.63, 
BF01 = 5.10 

Probability Estimate 
Percentage 56.96 ± 2.45 54.50 ± 2.39 55.84 ± 2.94 

Correlation with criterion r = -0.07, p = 0.63, 
BF01 = 5.08 

r = 0.13, p = 0.36, 
BF01 = 3.79 

r = -0.11, p = 0.43, 
BF01 = 4.22 

Correlation with d’ r = 0.00, p = 0.99, 
BF01 = 5.68 

r = -0.23, p = 0.11, 
BF01 = 1.66 

r = 0.09, p = 0.53, 
BF01 = 4.81 

Table 5.1: Mean responses (and SEM) to our final survey questions, and Pearson’s r 
correlation with the behavioral effects (Expected – Unexpected trials) for both criterion and 
d’. 
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unexpected, leading to a response bias that is qualitatively similar to that of 
Experiments 1 and 2. 
 Comparing d’ between Expected and Unexpected trials, we found no 
significant difference (means: 0.73 vs. 0.68, t(50) = 0.90, p = 0.374, d = 0.15, 95% 
CI = [-0.07, 0.18]), unlike Experiment 1 but consistently with Experiment 2. While 
scene-driven expectations still influenced par’icipants' responses, then, they did 
not lead to a decrease in perceptual sensitivity, confirming that this was unique to 
the condition in which they appeared on a minority of trials (Experiment 1). 
 
5.3.4 Final survey data 

The purpose of the final survey questions was to assess to what extent 
participants were aware of the experimental manipulation: how much they paid 
attention to the sequence of scene viewpoints before the target object appeared, 
how much they actively tried to predict the final object viewpoint, and their 
estimate of the probability of the object appearing with the expected size (see 
Methods for the actual questions).  
 Table 5.1 reports participants’ mean responses for each of the questions, 
together with their correlations with the difference between Expected and 
Unexpected trials (in criterion and d’) across subjects. Between-subject Welch 
ANOVAs revealed that none of the two Likert survey items significantly differed 
across experiments (Attention to Sequence: F(2, 98.18) = 0.91, p = 0.406, η2 = 
0.013; Object Prediction: F(2, 97.67) = 0.96, p = 0.388, η2 = 0.012). This suggests 
that participants did not adopt a deliberate strategy of paying more or less 
attention to the scene, or actively trying to predict the object, depending on the 
probability of the prediction being accurate. Interestingly, their estimates of the 
probability of the object appearing with the expected size did not differ across 
experiments either (F(2, 98.11) = 0.26, p = 0.774, η2 = 0.003), indicating that they 
were not tracking how often the contextual expectation was respected or violated, 
despite this expectation’s impact on their responses. 
 Moreover, the responses of none of the survey questions correlated with 
the behavioral difference in either criterion or d’ (Table 5.1). The behavioral effects 
we found, then, did not seem to depend on participants’ awareness of the 
experimental manipulation or on their adoption of a specific behavioral strategy. 
 

5.4 Discussion 
Objects’ retinal size in the real world depends on the distance from which they are 
viewed. Scene context provides a reference frame to represent that distance, and 
thus has the potential to guide our predictions of object size transformations. In 
the present work, we found that participants’ responded differently in an 
orthogonal perceptual task, depending on whether the stimulus appeared with the 
size that was expected given the scene context. The influence of scene context 
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remained consistent even when the unexpected object size was shown on a 
majority of trials. This suggests that the effect was automatic, and primarily driven 
by expectations deriving from regularities of the real world, which overruled those 
observed during the experiment. 
 The effect of scene-driven size expectations, in our task, was reflected in 
a shift of criterion on trials in which the object did not match those expectations. 
While participants had a general bias towards reporting that the two probe views 
were the ‘same’ (possibly due to the generally small difference between them), 
this bias was reduced on Unexpected trials. Participants’ expectations of object 
size, then, influenced their responses in this orthogonal task. Crucially, 
participants were robustly above chance in all experiments, as this was a 
precondition for inclusion in the analysis. This indicates that they were doing the 
task they were instructed to do, and not actively trying to predict the upcoming 
object size. Nevertheless, this prediction seems to have occurred automatically, 
influencing their responses. The fact that this effect was still present in Experiment 
3 (25% Probability), when on most trials the scene-driven expectation was 
violated, provides further evidence that the formation of these expectations could 
not be overruled, even when the experimental setting rendered them counter 
predictive. In Experiment 1 (75% Probability), we additionally found that 
expectations affected perceptual sensitivity, with a significantly reduced d’ on 
Unexpected trials. This suggests that when unexpected object sizes were 
presented infrequently, they had a more detrimental effect on perceptual 
sensitivity. This was possibly due to their lower frequency rendering them more 
salient, thus capturing attention away from the task, consistently with prior reports 
of involuntary attention capture being dependent on task context (Folk et al., 1992; 
S. W. Han & Marois, 2014). Overall, these results speak to automatic predictions 
of object size being driven by scene context, exerting an influence on an 
orthogonal task.  
 In the previous chapters, we found evidence that the appearance of an 
object from a novel viewpoint is automatically predicted based on scene cues. In 
those studies, similarly to the present one, the existence of scene-driven 
expectations was inferred from their influence on an orthogonal perceptual task. 
In both cases, the dimension along which the scene varied during the trial 
sequence was the same as the one along which the two probe views could vary 
in the task. In the previous studies, it was orientation around the vertical axis; in 
the present one, distance in depth. An interesting question for future research will 
be to clarify whether task interference only occurs when the overall change in the 
scene and the behavioral comparison happen along the same dimension. In 
explicit mental transformation studies, evidence suggests that participants 
manipulate an image-like representation in their minds (Cooper & Shepard, 1973; 
Koriat & Norman, 1984, 1988; Shepard & Cooper, 1982). If in our studies 
participants were actually creating a ‘mental image’ of the object at the expected 
size, we might expect task interference to generalize to other features of the object 
as well. On the other hand, it is possible that their predictions were more abstract, 
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only extrapolating along the changing feature of the scene and object. Research 
investigating object tracking under occlusion has found that only the location of 
the object is represented behind the occluder (Scholl & Pylyshyn, 1999; 
Teichmann et al., 2022). Given that tracking and prediction in motion and other 
feature spaces seem to share mechanisms (Blaser et al., 2000; Blaser & Sperling, 
2008; Makin & Bertamini, 2014; Makin & Chauhan, 2014), it would be interesting 
to determine whether tracking features such as object orientation and scale can 
similarly involve an abstract prediction of the changing feature exclusively. In the 
real world, the way objects change with our viewpoint is not generally reducible 
to simple changes in retinotopic location: instead, it leads to complex 
transformations of the retinal image. It is therefore not trivial that these 
transformations could be ‘abstracted away’ from the representation of a particular 
object, similarly to changes in retinotopic location. A representation of visual 
transformations that abstracts away from specific object exemplars would allow 
to efficiently track and predict objects, while reducing the load on working 
memory, which is limited in the number of features it can track (Y. Xu & Franconeri, 
2015). While there is evidence that we represent spatial transformations in a way 
that generalizes across specific objects (Ward et al., 2018; Mocz et al., 2021), 
whether these object-agnostic transformations underlie object tracking in 
naturalistic scenes will be an intriguing question for future research. 
 A theoretical idea closely related to that of object-agnostic spatial 
transformations is that of coordinate transformations as a ubiquitous process in 
visual cognition (Graf, 2006). According to Graf (2006), mental rotation, translation 
and scaling, beyond being involved in mental imagery-like tasks, are also involved 
in setting up reference frames for object perception across different orientations, 
positions and sizes. Once an observer has established an appropriate reference 
frame, for example of a specific orientation or size, recognition is facilitated for 
any object appearing with that orientation (Graf et al., 2005) or size (Larsen & 
Bundesen, 1978). Most relevantly to our findings, these spatial reference frames 
can be established by scene context (G. E. Hinton & Parsons, 1988; Humphrey & 
Jolicoeur, 1993; Christou et al., 2003). Our findings of scene-driven predictions of 
both orientation and size, then, could be explained by similar reference frame 
transformations. In the present study, only in Experiment 1 did we find a difference 
in perceptual sensitivity across Expected and Unexpected object sizes. Instead, 
scene-driven predictions consistently resulted in involuntary interference with task 
performance, with expectation violations influencing participants’ response bias. 
A recent study (Gayet & Peelen, 2019) also found that perceived object size, driven 
by the depth cues in a scene, could capture participants’ attention, providing 
further evidence that scene context can establish reference frames in an 
automatic way. Further research would be needed to determine how this 
automatic computation interacts with the structure of the task, leading to 
involuntary interference in some cases, and changes in perceptual sensitivity in 
others. 
 In conclusion, the present results show that beyond rotation, scene 
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viewpoint information can automatically drive predictions of object size, or 
translation in depth. This suggests that scene context might play a general role in 
providing a reference frame for different mental transformations of objects. Given 
the highly structured nature of our everyday environments, this might be an 
important mechanism supporting tracking and predicting objects in naturalistic 
vision. 
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In the previous four chapters, I have described an experimental paradigm 
designed to investigate the nature of humans’ internal representations of objects, 
and their interaction with external context. While this paradigm is clearly a very 
simplified ‘little world’ relative to the complexity of real-world environments and 
tasks, it exemplifies several interesting requirements for object representations to 
support everyday perception. I have discussed these in detail in the Introduction, 
but it is perhaps worth repeating them here, in light of our experimental findings: 
a. Representations should behave like the objects they represent: it should be 

possible to predict external objects’ transformations by transforming their 
internal representations. Here, we used 3D rotation as an example of a 
common spatial transformation that leads to non-trivial changes in an object’s 
retinal image, and has been studied extensively in prior literature. In Chapter 
5, to test the generality of our findings, we also looked at translation in depth 
(which leads to scaling of the retinal image). 

b. Representations should be ‘out there’ in the world, seamlessly integrated with 
the visual scene rather than being projected on a mental canvas. As dealing 
with occluded objects is an ubiquituous example of this integration in the real 
world, we used occluded objects in our paradigm. 

c. Representations should interact with the surrounding context in a way that 
mirrors the interactions between objects in the external world. We chose the 
ubiquitous constraint that objects tend to rotate or translate coherently with 
the scene that surrounds them. 

In the Introduction, I mentioned two additional, more speculative points as 
possible directions for future research. I will return to them later. But first, I will 
examine some of the implications of our results, and the questions they leave 
unanswered. 
 

6.1 Structure vs. Views 
The distinction between structure-based and view-based models is a long-
standing one in both visual object perception and spatial cognition. I have already 
discussed it in the Introduction and in Chapters 2 & 3, so I will not repeat it in 
detail here. Broadly, structure-based models posit that humans represent objects 
(and scenes) in terms of parts and the relationships between them, more or less 
independently of the observer’s viewpoint (Ayzenberg & Behrmann, 2022; 
Biederman, 1987; Biederman & Gerhardstein, 1993; Hummel, 2000; Mou & 
McNamara, 2002; Rieser, 1989). According to view-based models, on the other 
hand, our representations are more akin to collections of views (Bülthoff & 
Edelman, 1992; Gillner & Mallot, 1998; Gootjes-Dreesbach et al., 2017; Tarr & 
Pinker, 1989; S. Ullman, 1998).  
 How is this debate related to our findings? These two classes of accounts 
could both underlie the influence of scene context on object transformations that 
we described. According to a structure-based account, invariant structural 
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relations, such as the relative orientation of the object with the scene’s main axes 
could be extracted by observers, and the perceived distinction between Expected 
and Unexpected trials would be a violation of these relations, in a viewpoint-
invariant fashion. In a view-based account, instead, participants would represent 
different viewpoints of the scene fundamentally as a collection of images, and 
would extrapolate to unseen views using a mental rotation-like operation (Tarr & 
Pinker, 1989). While we did not explicitly design our studies to investigate this 
distinction, a comparison, in Chapter 2, between object orientations that were 
aligned with the scene or not, revealed no difference in the magnitude of the 
expectancy effect on behavior. If participants were primarily relying on the 
orientation of the object relative to one of the scene’s main axes (Mou & 
McNamara, 2002), objects that were aligned with those axes should show a 
stronger expectancy effect. Moreover, in the fMRI studies (Chapters 3 & 4), we 
found that the scene-driven expectation was reflected in decoding accuracy for 
the object’s proximal shape. This provides substantial evidence that a viewer-
centered representation was involved in participants’ scene-driven predictions 
(although it might not have been the only representation involved). 
 Does this mean, then, that participants represent scenes as holistic, 
unstructured views? In fact, computational work has shown that it is at least 
possible, in principle, to perform a variety of tasks such as predicting novel views 
of a scene by representing scenes as single ‘blocks’, without any notion of 
individual objects or their relationships (Eslami et al., 2018; Muryy et al., 2020; 
Rosenbaum et al., 2018). However, given what we know about how humans parse 
the world into objects (Kahneman et al., 1992; Peters & Kriegeskorte, 2021), this 
‘fully unstructured’ account seems unrealistic. If studies on the tracking of moving 
objects under occlusion are any indication, we likely maintain a representation of 
the object behind the occluder as a separate, stable unit (Scholl & Pylyshyn, 1999; 
Scholl & Flombaum, 2010; Green & Quilty-Dunn, 2020), albeit one that interacts 
with its context.  
 How can the scene representation be simultaneously structured and 
image-like? As for the original debates in object perception and spatial cognition, 
the answer here might be a combination of the two accounts. Several hybrid 
models have been proposed in which viewer-centered features are organized into 
structured, graph-like representations (G. Hinton, 1979; Hummel & Stankiewicz, 
1998; Edelman & Intrator, 2001; D. Bear et al., 2020). These representations 
combine the best of both worlds: they can be directly extracted from visual input, 
while supporting compositional generalization (e.g. the notion that a circle is still 
a circle whether it is above or below a square, and that the relationship ‘below’ is 
the same whether it involves a circle below a square or vice versa). Moreover, 
while they contain information about distal relationships between objects in the 
scene, these representations remain bound to retinotopic locations in the visual 
field (something I will return to in the next section).  
 Our studies were designed to test for the existence of scene-driven object 
predictions, rather than their precise format or the mechanisms by which they 
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arise. This will be an interesting question for future research: how our 
representations balance the need to extract abstract, compositional scene 
structure and the need to infer this structure from visual cues, and bind it to 
locations in the visual field. We hope that our paradigm will be helpful in that, but 
also that more clever ones will be designed, and that more will be learned by 
comparing the predictions of different computational models. For example, 
different mechanisms for inferring scene structure from image cues might lead to 
unique distortions of the visual space representation (e.g. Svarverud et al., 2012) 
or parse the scene in systematically different ways depending on particular cues 
(such as cast shadows in humans, Yonas et al., 1978; Mamassian et al., 1998). 
More recent models specifically designed to parse visually rich real-world scenes 
(e.g. Bear et al., 2020) are of particular interest here. 
 

6.2 Images vs. Reference frames 
It is worth noting that the distinction between structure- and view-based models 
is distinct from the question of the content of scene-driven predictions. As 
mentioned in several of the previous chapters, our experimental designs do not 
allow to precisely determine what information about the object is predicted. 
Several studies investigating the tracking of occluded objects, for example, have 
found that only the object’s location is represented (Scholl & Pylyshyn, 1999; 
Teichmann et al., 2022) leading some to believe that spatiotemporal information 
plays a unique role as a reference frame to bind other features to specific objects 
(Flombaum et al., 2009; Mitroff & Alvarez, 2007). While the special role of location 
has been called into question (Gordon et al., 2008; Quilty-Dunn & Green, 2021; 
Zhou et al., 2010), the consensus is that not all of an object’s features are tracked 
during occlusion. 
 In a separate relevant line of research, Graf (2006) distinguished between 
the use of spatial transformations (such as rotation) in manipulating a specific 
object image (as in classical mental rotation studies, Shepard & Metzler, 1971; 
Shepard & Cooper, 1982; Koriat & Norman, 1984, 1988) and in establishing an 
abstract reference frame, that can facilitate processing of any object that is aligned 
with it (e.g. Graf et al., 2005; Jolicoeur, 1990; Larsen & Bundesen, 1978). He 
remained agnostic as to whether these processes happened in object- or viewer-
centric reference frames. While, as explained above, tentative evidence points 
towards viewer-centered representations being involved in our studies, this does 
not necessarily equal a rich, picture-like representation encompassing all object 
features.  
 Our studies cannot distinguish between these two accounts: in the 
behavioral studies (Chapters 2 & 5), we did not investigate whether the behavioral 
difference between expected and unexpected object views generalizes to 
different object exemplars or categories. And in the training runs of the fMRI 
studies (Chapters 3 & 4) we grouped together objects by their proximal shape, to 
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maximize the power for detecting an expectation. This means that we could not 
test whether the prediction was object-specific, or an abstract reference frame 
(predicting any object with that shape). A recent study that, similarly, investigated 
the role of scene context in providing a spatial reference frame for internally 
generated object representations (Gayet & Peelen, 2022) found evidence for both 
the object’s category and its size being represented. In that study, however, 
participants were engaged in an active visual search task, which might have led 
them to deliberately create an imagery-like template. In our studies, on the other 
hand, participants were not explicitly instructed to predict the object’s 
appearance, and had to perform a task that, at least in principle, did not depend 
on doing so.  
 An intriguing question for future research will be to distinguish an image-
like or reference-frame-like account of our findings, and more in general clarify 
how these two representations are used in making predictions based on scene 
structure in realistic scenarios. A particularly interesting possibility, already 
described in the Introduction, is that specific object features (those that can be 
‘explained away’ by tracking the context, such as position and orientation) could 
be constrained to facilitate detection of scene changes along other dimensions. 
Something similar is believed to occur, for example, in object tracking (Bahrami, 
2003; Flombaum & Scholl, 2006): when location can be successfully tracked, 
changes in features such as color can be more successfully detected. 
 

6.3 Cognitive blackboards and ‘out-there-ness’ 
In Chapters 3 & 4, we found that scene-driven object predictions were primarily 
reflected in early, retinotopic regions of visual cortex (early visual cortex, EVC). Is 
it possible that these regions play a specific role in representing the kind of 
predictions we observed? And what might this ‘kind’ be? While several areas in 
EVC, and particularly V1, have been implicated in several expectation- and 
context-related effects (e.g. Albers et al., 2013; Bosch et al., 2014; Christophel et 
al., 2015; Heilbron et al., 2020; Hindy et al., 2016; Kok et al., 2012; Murray et al., 
2006; Smith & Muckli, 2010), others have reported effects primarily in higher-level 
object-selective cortex (e.g. Brandman & Peelen, 2017; Gayet & Peelen, 2022; 
Kaiser et al., 2021; Stokes et al., 2009). What might be the difference between 
these two groups of studies? Clearly, the dissociation might be related to 
idiosyncratic design choices due to the use of fMRI (Coutanche et al., 2016) or 
classes of stimuli particularly suited to studying one or the other level of 
processing (e.g. gratings vs. objects). However, another possibility is that these 
different tasks require different representational formats.  
 EVC is topographically organized in a way that mirrors the spatial 
organization of the retina. While this organization is somewhat maintained at 
higher levels of processing as well, and might in fact constitute a general 
organizing principle in the brain (Groen et al., 2022), EVC provides a particularly 



General Discussion 

 124 

detailed map of visual space. This had led some researchers to propose the idea 
of a ‘cognitive blackboard’ (Roelfsema & de Lange, 2016; Van Der Velde & De 
Kamps, 2002, 2006): EVC might store the intermediate results of cognitive 
operations that can benefit from spatially-organized representations. Locations in 
the visual field, then, could be ‘tagged’ with additional information resulting from 
downstream operations, such as figure-ground segmentation (e.g. Roelfsema et 
al., 2002). This extra information could be maintained separately from retinal 
bottom-up information, for example, by residing in different cortical layers (Self et 
al., 2013; Lawrence et al., 2018; Iamshchinina et al., 2021).  
 There is one aspect of this cognitive blackboard model that is of particular 
interest to the topics discussed here, and that to the best of my knowledge has 
not been previously discussed. A common spatial organization for external stimuli 
and internally generated signals seems ideal for the ‘out-there-ness’ I discussed 
in the Introduction. It provides a way for them to be seamlessly integrated, such 
that ‘internal’ representations can actually be ‘out there’ in the environment. 
Indeed, some of the tasks that I have highlighted as examples of this out-there-
ness, such as object tracking under occlusion, have been found to involve 
retinotopically specific signals (e.g. Erlikhman & Caplovitz, 2017). Whether the 
predictions we observed here, deriving from high-level scene structure, also 
involve retinotopically specific representations, will be an interesting question for 
future studies, for example using retinotopic mapping in fMRI (Warnking et al., 
2002; Wandell & Winawer, 2011). Moreover, techniques such as topographic 
connectivity (Knapen, 2021) could be used to determine whether retinotopic 
organization is a fundamental organizing principle in the interactions between 
brain areas that give rise to scene-driven predictions. This would provide insights 
into the mechanisms by which internal representations can be placed out there in 
the world, and interact with contextual information. 
 

6.4 Linear and non-rigid transformations 
While in our fMRI studies, through a decoding approach, we have analyzed the 
outcome of a predictive process (the expected object shape), we have not 
investigated the transformations that lead to that outcome. One important idea 
that I mentioned in the introduction was the conversion of behaviorally relevant 
transformations in the world into linear transformations in representational space. 
For example, neuroimaging work has found that object representations in visual 
cortex can be translated or scaled through a linear transformation (Ward et al., 
2018; Mocz et al., 2021). This is not trivial, since these transformations lead to 
highly non-linear changes in pixel space. Moreover, transformations were found 
to generalize across objects, providing evidence for disentanglement of object 
identity from spatial transformations. By using similar techniques, future work 
could investigate whether object transformations are also represented as linear in 
our paradigm. Encoding scenes into a representation that transforms linearly 
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bears some resemblance to the structure-based models described for object 
perception: the reference frame is fundamentally scene-centric, and is thus 
abstracted away from viewer-centered space. An interesting question, then, is 
whether and how the advantages of representations that are bound to locations 
in retinotopic space can be combined with the ease of prediction and 
generalization afforded by linear transformations. This could be done by analyzing 
the representations learned by recent models that maintain binding to image-
centered locations (such as Bear et al., 2020) to determine whether they are able 
to (approximately) represent complex scene transformations, such as rotations in 
3D, as linear. This would provide a proof of principle that it is at least possible to 
combine the strengths of these two kinds of representations, while empirical work 
should investigate whether they are combined in the brain, or one or the other is 
preferably used depending on the task. 
 A separate question, also concerning transformations, is how interactions 
between scenes and objects can generalize to transformations beyond the simple, 
rigid ones studied here. In Chapter 5, we have found that translation in depth, or 
scaling, can be driven by scene context in a manner similar to rotation. In the case 
of non-rigid transformations, however, the relationship between objects and their 
context is less straightforward. While objects generally do rotate and translate 
coherently with the surrounding scene, the same can hardly be said about 
deformations, or changes in physical state, such as melting. It is worth 
considering, then, what realistic interactions between objects and context might 
look like for those transformations in the real world. Take the example of an object 
breaking into pieces. This kind of transformation is generally the result of local 
interventions, applied to a single object at a time, such as when someone pushes 
a vase off the table, causing it to break. These interactions (between the hand and 
the vase, and the vase and the floor) are localized, rather than involving the entirety 
of the scene. Moreover, breaking causes the object’s parts to separate (while 
other non-rigid transformations, such as deformation, cause them to change their 
relative positions).  
 This calls for a fundamentally different representation from rigid 
transformations, in which objects are not represented as single units, but 
separated into parts. In fact, similar representations of objects in terms of 
connected parts have been found to be the best models of human observers’ 
ability to predict physical dynamics (Bear et al., 2021; Han et al., 2022). An 
intriguing question for future research, then, is how representations of objects and 
their interactions switch according to the transformations that need to be 
predicted in a given task or context. Previous research has found that observers 
can flexibly switch between different representations of objects, for example 
according to whether an object is perceived as deformable or not (Kourtzi & 
Shiffrar, 2001) or whether the task involves predicting its physical dynamics or 
recognizing its shape (Y. Li et al., 2022). In general, evidence suggests that in 
predicting the dynamics of the world, humans have a remarkable ability to use the 
most efficient representation to only predict what is necessary (Ullman et al., 
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2017). Understanding what the mechanisms underlying this representational 
switching are, and how it can go beyond single objects to the level of whole 
scenes, will be a crucial step towards generalizing the results presented here to 
more complex, realistic scenarios. 
 

6.5 Coda: scene graphs 
We are now close to the end of this Discussion, and of this thesis. But we still 
haven’t addressed the last two points mentioned in the Introduction: 
 
d. A representation known in computer graphics as the scene graph is 

particularly well-suited for a ubiquitous structure in real-world scenes: 
hierarchical part-whole relations. Much work in AI has addressed the problem 
of how this kind of representation can be learned from data. It remains 
unknown, however, whether it provides a model of how humans represent 
complex scenes, although some tentative evidence goes in that direction. 

e. What are these representations for? Scene graphs were developed for the 
goal of accurately, and efficiently, simulating complex scenes. But our brains 
do not serve the purpose of generating a perfectly accurate simulation of the 
world. Internal representations should ultimately support behavior in real-
world tasks. I have argued that the purpose of scene graph-like 
representations is the real-time tracking of hierarchically structured scenes. 

 
How do the results presented in the previous chapters fit into this picture? Let’s 
start with point (d). Our studies stripped down the real world to a simple world that 
only comprises a main object and a background scene. It is thus not possible to 
tell whether participants in our studies represented scenes as part-whole 
hierarchies, with the object as part of the scene, or as ‘flat’ relations, for example 
representing that the walls or background objects should rotate together with the 
object. Relatedly, we do not know whether these contextual effects on predictions 
are contingent on showing extended scenes, or whether any contextual 
information can similarly drive predictions. The long list of contextual influences 
on predictions reviewed in the Introduction (e.g. Shepard & Zare, 1983; Kim et al., 
2012; Little & Firestone, 2021; Heptulla Chatterjee et al., 1996; He & Nakayama, 
1994) shows that what constitutes a ‘context’ can be extremely flexible. One 
advantage of hierarchical graph representations is that they can accommodate 
such flexibility. What constitutes an ‘object’ in such a representation, for example, 
depends on the way that the scene is parsed hierarchically (Feldman, 2003). In 
whichever way participants perceptually organized the scenes in our studies, then, 
this representation might from that of scenes with a deeper hierarchical structure. 
Whether there exists a unified representational format that can accommodate 
these different situations will be a key question for future experimental, 
computational and theoretical work. 
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 Regarding point (e), again, the little world we used in our paradigm was 
too simplified to investigate how the context-driven prediction of object 
transformations can aid real-world behavior. In the Introduction, I have speculated 
that the main role of hierarchical scene representations is to support dynamic 
tracking in complex, structured scenes. So far, the main line of evidence for the 
use of structured representations in dynamic scenes comes from studies of 
tracking in hierarchical motion displays (H. Xu et al., 2017; Bill et al., 2020, 2021). 
An exciting avenue for future studies could be to devise paradigms that combine 
realistic scenes, like the ones we have used here, with similar dynamic tasks. By 
leveraging tools such as game engines, for example, it would be possible to 
dynamically vary different properties of hierarchical scenes to clarify the content 
of humans’ internal representations of these scenes. In parallel, computational 
work would enable us to make specific predictions as to how specific 
implementations of the general principles outlined here affect behavior in these 
dynamic tasks. Overall, I hope that the little world presented in this thesis was one 
little step towards clarifying how humans represent complex, real-world scenes. 
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Appendix A  
Nederlandse samenvatting 
 
De wereld om ons heen bestaat niet uit geïsoleerde objecten: dingen om ons heen 
zijn altijd verweven in een web van relaties. Als ik om me heen kijk, zie ik een tafel 
met daarop een fles, ik zie dat de wind de bladeren van de boom doet schudden, 
ik zie mijn eigen handen deze woorden typen op een toetsenbord. Een nuttig 
model van deze wereld, dat ons in staat stelt te voorspellen hoe dingen zich zullen 
gedragen en hoe ze eruit zullen zien, moet rekening houden met deze complexe 
interacties.  
 We weten, uit eerder onderzoek, dat de manier waarop we objecten zien 
sterk afhangt van hun context. Bijvoorbeeld, objecten kunnen beter worden 
herkend als ze op een plek verschijnen waar ze worden verwacht: een auto op een 
weg en een boot op zee is makkelijker te herkennen dan een auto op zee en een 
boot op een weg. Menselijk zicht behandelt objecten dus niet als geïsoleerde 
entiteiten. We weten echter nog niet waar ons brein deze contextuele informatie 
voor kan gebruiken: helpt deze contextuele informatie alleen om objecten te 
herkennen, of ook om te voorspellen hoe deze objecten zullen veranderen?  
 In dit proefschrift heb ik geprobeerd een antwoord te geven op die vraag. 
Om te bestuderen hoe context voorspellingen beïnvloedt in de echte wereld, heb 
ik ruimtelijke transformaties bestudeerd binnen 3D omgevingen: zo heb ik 
gekeken naar de manier waarop het uiterlijk van objecten verandert als we ze 
vanuit een andere hoek bekijken, en de manier waarop de grootte van objecten 
toe- of afneemt naarmate we dichterbij of verder weg zijn. Een halve eeuw aan 
onderzoek heeft aangetoond dat het menselijke brein in staat is om dit soort 
transformaties (schalen, roteren) te ‘simuleren’: bijvoorbeeld, we kunnen 
voorspellen hoe objecten eruit zullen zien vanuit een nieuwe hoek, en deze 
voorspelling neemt meer tijd in beslag naarmate de hoek toeneemt, alsof we het 
object in onze geest roteren.  
 Deze mogelijkheid om objecten mentaal te transformeren wordt 
verondersteld een rol te spelen bij het maken van voorspellingen terwijl we naar 
de wereld kijken. Maar in de echte wereld, hangt de manier waarop objecten 
veranderen meestal ook af van hun context. Als ik me bijvoorbeeld door een kamer 
beweeg, zal ik zien dat het meubilair in de kamer en de muren gezamenlijk (en 
coherent) bewegen. Een tafel die in de tegenovergestelde richting beweegt van 
de rest van de kamer is vrij onwaarschijnlijk, dus het zou nuttig zijn om gebruik te 
maken van deze regelmatigheden bij het maken van voorspellingen. Eerdere 
experimenten met mentale transformaties, die deelnemers meestal vroegen om 
geïsoleerde objecten mentaal te transformeren, zijn in deze zin niet representatief 
voor waarneming in de echte wereld.  
 Om deze kloof te dichten, hebben we een experimenteel paradigma 
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ontworpen dat precies dit soort situaties modelleert: je ziet een kamer met daarin 
een object, die samen bewegen, zoals je zou verwachten wanneer je in die kamer 
zou rondlopen. Het object wordt dan plotseling afgeschermd, waardoor je alleen 
de omliggende kamer nog ziet bewegen. In een reeks experimenten hebben we 
geprobeerd te achterhalen of mensen het verborgen object in hun geest blijven 
'zien', en of ze het object dan ook zien meeveranderen met de bewegende kamer. 
Als de kamer bijvoorbeeld roteert naar een bepaalde draaihoek, zou het object op 
dezelfde manier moeten roteren als de kamer; en als de kamer dichterbij komt, 
zou het object -in het geestesoog - groter moeten worden. Om deze 
voorspellingen te toetsen, hebben we twee technieken gebruikt: 
gedragsexperimenten en functionele MRI (fMRI), een beeldvormingstechniek 
waarmee indirect hersenactiviteit kan worden gemeten.  
 In Hoofdstuk 2 hebben we getest of deelnemers een object mentaal 
roteren in samenspraak met de rotatie van de kamer, door hun gedrag te meten 
in twee situaties: één situatie waarin het afgeschermde object weer verscheen in 
een oriëntatie die overeenkomt met de rotatie van de kamer (congruente conditie), 
en een andere situatie waarin het object weer verscheen in een oriëntatie die niet 
overeenkomt met de rotatie van de kamer (incongruente conditie). Deelnemers 
moesten een eenvoudige en orthogonale visuele taak op het object uitvoeren: Het 
object dat weer verscheen werd tweemaal kort achter elkaar getoond, en 
participanten moesten aangeven of het object in die twee beelden precies 
hetzelfde georiënteerd was, of een nét verschillende oriëntatie had. Om deze taak 
te doen, hoefden participanten niet te voorspellen hoe het object eruit zou zien 
gegeven de nieuwe orientatie van de kamer; de taak was immers puur gebaseerd 
op de laatste twee beelden van het verschenen object zelf. Als participanten 
echter een mentale weergave van het object bijhouden, dan zou een object dat 
overeenkomt met die weergave nauwkeuriger moeten zijn waargenomen. We 
ontdekten dat dit inderdaad het geval was: deelnemers waren beter in het 
uitvoeren van de visuele taak wanneer het verschijnende object overeenkwam met 
de oriëntatie van de geroteerde kamer, dan wanneer het object verscheen in een 
oriëntatie die niet overeenkwam met de kamer. Een kritiek aspect is dat exact 
dezelfde beelden werden getoond in de congruente en incongruente condities; 
het enige verschil tussen deze condities betrof of de uiteindelijke oriëntatie van 
het object in de kamer overeenkwam met de initiële oriëntatie van het object in de 
kamer. De enige verklaring van dit resultaat is dan ook dat participanten 
automatisch de veranderende oriëntatie van de kamer gebruikten om de oriëntatie 
van het object te voorspellen. 
 Interessant genoeg kon dit effect worden waargenomen bij een 
verscheidenheid aan verschillende objecten en oriëntaties, wat suggereert dat we 
objecten flexibel kunnen roteren en niet alleen specifieke beelden met elkaar 
associëren. Bovendien was het effect nog steeds aanwezig wanneer contextuele 
verwachtingen frequent werden geschonden tijdens het experiment (bijvoorbeeld 
als het object in 50% of zelfs 75% van de gevallen in een incongruente oriëntatie 
verscheen). Dit suggereert dat de voorspellingen die mensen maken voortkomen 
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uit kennis van hoe objecten zich gedragen in de echte wereld (objecten bewegen 
doorgaans coherent met hun omgeving), en deze voorspellingen niet gemakkelijk 
kunnen worden overschreven. Al met al leveren deze gedragsbevindingen sterk 
bewijs voor het menselijk vermogen om interne objectrepresentaties automatisch 
coherent met de context te transformeren. 
 In Hoofdstuk 3 gebruikten we fMRI om de hersenactiviteit van 
deelnemers te meten terwijl ze een taak uitvoerden die vergelijkbaar was met die 
van het vorige hoofdstuk. We maakten gebruik van zogenaamde multivariate 
patroonanalyse (MVPA), een techniek die het mogelijk maakt om de mentale 
representaties in een bepaald hersengebied te achterhalen met behulp van een 
classificatie-algoritme. De classifier wordt getraind op een serie voorbeelden van 
hersenactiviteit die is opgewekt door het tonen van verschillende stimuli, en leert 
zo onderscheid te maken tussen situaties waarin de participant de ene of de 
andere stimuluscategorie heeft gezien, puur op basis van de hersenactiviteit. In 
ons geval trainden we de classifier om onderscheid te maken tussen objecten 
(bankstel of bed) die vanuit een bepaald standpunt smal of breed leken (afhankelijk 
van hoe ze geroteerd waren). De classifier werd vervolgens getest op objecten die 
congruent of incongruent waren met de rotatie van de kamer, zoals omschreven 
in Hoofdstuk 2. Als de representatie van congruente objecten in het visuele 
systeem inderdaad nauwkeuriger is, zoals de gedragsresultaten lijken te 
suggereren, zou de classifier de oriëntatie (smal of breed) beter kunnen 
achterhalen door hersenactiviteit in de congruente conditie (waar de interne 
representatie van het object dezelfde oriëntatie heeft als het object op het scherm) 
dan in de incongruente conditie (waar de oriëntaties van de interne representaties 
en het waargenomen object niet overeenkomen). 
 Dit bleek inderdaad het geval. De classifier kon de oriëntatie van 
congruente objecten beter classificeren dan van incongruente objecten. 
Verrassend genoeg werd dit verschil in classificatie alleen gevonden in de 
vroegste niveaus van het visuele systeem, de gebieden V1 en V2 (de primaire en 
secundaire visuele hersenschors), maar bijvoorbeeld niet in LOC, een gebied in 
de laterale occipitale hersenschors dat gespecialiseerd is in het verwerken van 
objecten. Dit zou verband kunnen houden met de aard van de voorspellingen die 
werden opgeroepen door de context: omdat deelnemers een heel specifieke 
voorspelling konden maken van hoe het object er na de rotatie uit kwam te zien 
(en er geen abstracte representatie van hoefden te maken), waren vroege visuele 
gebieden wellicht beter geschikt om een mentale representatie van het object te 
maken. Omdat onze analysemethode echter specifiek was afgestemd op het 
achterhalen van dit soort concrete verschillen tussen representaties (smal versus 
breed), kunnen we niet uitsluiten dat er andere informatie over de voorspelde 
objecten elders in de hersenen werd gerepresenteerd. 
 De congruente en incongruente condities verschilden niet alleen in hoe 
goed we de oriëntatie van het object konden classificeren op basis van de 
hersenactiviteit, ze verschilden ook in de algehele hoeveelheid veroorzaakte 
hersenactiviteit. We vonden dat over het algemeen de hersenen sterker reageren 
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op incongruente objecten, met name ook in gebieden die betrokken zijn bij het 
verwerken van verrassende of onverwachte stimuli. Dit resultaat suggereert dat 
congruente objectoriëntaties werden waargenomen als 'standaard', terwijl 
incongruente oriëntaties verrassend waren. Dit is een verdere indicatie van de 
automatisering van het congruentie-effect. Bovendien is het consistent met 
verschillende eerdere bevindingen over de invloed van verwachtingen op 
waarneming. Eerdere studies hebben namelijk aangetoond dat verwachte stimuli 
met hogere precisie worden gerepresenteerd in het visuele systeem, terwijl ze 
lagere algehele niveaus van hersenactiviteit teweegbrengen; dit duidt op een 
verscherpte, efficiëntere representatie van de visuele informatie. Eerder bewijs 
voor deze effecten van verwachtingen op waarneming werden echter voornamelijk 
gevonden met sterk vereenvoudigde stimuli (bijvoorbeeld lijnpatronen): onze 
resultaten suggereren dat vergelijkbare mechanismen betrokken kunnen zijn bij 
complexe natuurgetrouwe afbeeldingen van objecten en scènes. 
 In de vorige hoofdstukken hebben we de context-gedreven 
voorspellingen van objecten telkens indirect gemeten, door de respons te meten 
op daadwerkelijk getoonde objecten die dan wel congruent dan wel incongruent 
waren met de context-gedreven voorspellingen. In Hoofdstuk 4, probeerden we 
deze verwachtingen in het visuele systeem direct te observeren. We gebruikten 
opnieuw fMRI en MVPA, zoals in Hoofdstuk 3, maar in dit geval probeerden we 
de oriëntatie (smal versus breed) van het voorspelde object te classificeren 
vóórdat het op het scherm verscheen. Deelnemers zagen opnieuw een roterende 
kamer waarin het centrale object was afgeschermd, maar in de meeste gevallen 
bleef het object tot het eind afgeschermd en verscheen het niet meer. 
Participanten deden hier een veel simpelere taak; ze hoefden alleen maar te tellen 
hoe vaak het object wel weer tevoorschijn kwam, en dit aan het einde van elk blok 
te melden. Wij vroegen ons af of we de voorspelde oriëntatie van het object (smal 
versus breed) konden reconstrueren, alleen op basis van de hersenactiviteit die 
werd veroorzaakt door de geroteerde kamer met het afgeschermde object. Als dit 
zou lukken, zou dit aantonen dat participanten een mentale representatie van het 
object creëren, die correspondeert met de rotatie van de kamer. Net als in het 
voorgaande hoofdstuk, werd de classifier getraind om onderscheid te maken 
tussen hersenactiviteit die werd opgeroepen door daadwerkelijk waargenomen 
(smalle versus brede) objecten, in een los onderdeel van het experiment. 
 We vonden dat de oriëntatie van het object inderdaad kon worden 
achterhaald aan de hand van activiteit in het visuele systeem, ondanks dat het 
object niet op het scherm was getoond. De context-gedreven object-
representaties, die we ook al waarnamen in het vorige hoofdstuk,, komen dus niet 
alleen tot uiting in de waarneming van zichtbare objecten, maar bestaan ook op 
zichzelf, wanneer er (nog) geen object zichtbaar is. In tegenstelling tot het vorige 
hoofdstuk, waar de context-gedreven objectrepresentaties voornamelijk in de 
vroege verwerkingsgebieden van het visuele systeem werden gevonden, vonden 
we deze in het huidige experiment in hoger gelegen visuele gebieden; gebieden 
die mogelijkerwijs objecten representeren op een meer abstract niveau. Dit kan te 
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maken hebben met het feit dat de verwachtingen worden gerepresenteerd op een 
meer abstract niveau, passend bij de grotere receptieve velden die in deze 
gebieden worden gevonden. Deze gebieden omvatten echter ook delen van de 
dorsale visuele stroom, gespecialiseerd in het verwerken van beweging. Een 
andere mogelijkheid is daarom dat de verwachting van het objectbeeld 
voornamelijk wordt aangedreven door de bewegingspatronen van de 
scèneachtergrond. Een recente studie heeft gevonden dat visuele 
bewegingspatronen het gedrag van deelnemers in een mentale rotatietaak konden 
voorspellen, wat suggereert dat visuele gebieden die beweging verwerken een rol 
spelen bij verschillende ruimtelijke transformaties van objectrepresentaties. Het 
verduidelijken van de verbanden tussen deze verschillende processen zal een 
belangrijk vraag zijn voor toekomstig onderzoek. 
 Samengevat hebben we in dit hoofdstuk gevonden dat context-gedreven 
verwachtingen van objectoriëntatie zowel direct als indirect kunnen worden 
gedecodeerd in het menselijk visuele systeem. Bovendien lijken de verwachtingen 
zelf in een later stadium van het visuele systeem gepresenteerd te worden dan 
hun modulerend effect, wat suggereert dat het effect dat in Hoofdstuk 3 werd 
gevonden het resultaat is van feedback van deze latere visuele gebieden. 
 In het laatste experimentele hoofdstuk, Hoofdstuk 5, onderzochten we of 
automatische voorspellingen van nieuwe objectstandpunten uit contextuele 
informatie gevonden kunnen worden voor andere transformaties dan rotatie. In de 
vorige hoofdstukken gebruikten we rotatie vanwege de alomtegenwoordigheid 
ervan in het dagelijks leven, de complexe manieren waarop het het uiterlijk van 
objecten transformeert, en de vele eerdere onderzoeken naar mentale rotatie. De 
mentale transformatievaardigheden van mensen zijn echter niet beperkt tot 
rotatie: eerder onderzoek heeft bewijs gevonden voor verschillende andere 
transformaties, waaronder mentale translatie en schaling. In Hoofdstuk 5 
onderzochten we daarom of we een vergelijkbaar verwachtingseffect konden 
vinden voor scènes en objecten die in de diepte bewogen (dichter bij de 
waarnemer kwamen) in plaats van roteerden. 
 De resultaten toonden aan dat translatie een soortgelijk 
verwachtingseffect oproept als rotatie, waarbij de deelnemers verschillend 
presteerden op objecten die congruent of incongruent waren met de omliggende 
scène. Dit verschil werd echter alleen weerspiegeld in visuele gevoeligheid en 
nauwkeurigheid wanneer het object meestal (75% van de gevallen) in de 
congruente positie werd getoond. Wanneer de congruente objectpositie slechts 
op 50% of 25% van de gevallen werd getoond, had congruentie alleen een 
algemeen effect op hoe deelnemers beslissingen namen. Denk terug aan de 
orthogonale taak die al in Hoofdstuk 2 werd gebruikt. Na het verschijnen van het 
object in een congruente of incongruente grootte, moesten de deelnemers 
aangeven of het object veranderde. We vonden dat deelnemers eerder aangaven 
dat het object veranderde wanneer het object incongruent was, maar zonder dat 
ze nauwkeuriger werden in de taak. Wellicht dat deelnemers de neiging hadden 
om 'verschillend' te antwoorden wanneer hun verwachting werd geschonden in 
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plaats van wanneer de teststimuli daadwerkelijk verschillend waren. Een 
interessante vraag is hoe dit interferentie-effect gerelateerd is aan de effecten op 
nauwkeurigheid die we waarnamen in Hoofdstuk 2, en of dit verschil te wijten is 
aan de verschillende onderzochte transformaties (rotatie vs. translatie). 
 Over het algemeen tonen deze resultaten echter aan dat deelnemers nog 
steeds automatisch objectrepresentaties transformeren samen met de context, 
ook in het geval van translatie. Dit suggereert dat het cognitieve proces dat in de 
vorige hoofdstukken werd onderzocht, generaliseert naar verschillende 
objecttransformaties.  
 We zijn nu aan het einde gekomen van het experimentele deel van dit 
proefschrift. Ik zou nu een stap terug willen doen en vragen: wat betekent dit 
allemaal? Zijn de effecten die we hebben onderzocht beperkt tot zeer specifieke 
laboratoriumsituaties, of kunnen ze ons iets vertellen over perceptie in de echte 
wereld? In Hoofdstukken 1 & 6 reflecteer ik op de theoretische betekenis van 
deze empirische bevindingen. Het werk in dit proefschrift is een eerste stap naar 
het karakteriseren van hoe ons vermogen om mentaal objecten te transformeren 
nuttig kan zijn tijdens het navigeren in de wereld. Door interactie met contextuele 
informatie 'daarbuiten' in de wereld, kunnen onze representaties 'hierbinnen' in 
ons hoofd in real-time worden bijgewerkt en direct worden vergeleken met wat we 
zien. De experimenten die we hebben uitgevoerd zijn een voorbeeld van dit 
proces: de zichtbare informatie van de achtergrondscène stuurt de mentale rotatie 
of translatie van het object. Deze interactie tussen externe stimuli en interne 
representaties volgt dezelfde regels als die de interactie tussen dingen in de 
externe wereld bepalen, bijvoorbeeld dat objecten over het algemeen coherent 
samen bewegen. 
 In het algemeen denk ik dat ons vermogen om de buitenwereld in onze 
gedachten te simuleren het nuttigst is bij het dynamisch volgen van objecten, 
omdat we hierdoor kunnen interacteren in een steeds veranderende omgeving. 
Hoe dit uitpakt in meer realistische situaties zal een vraag zijn voor toekomstig 
onderzoek - hier hebben we slechts één kleine wereld bestudeerd. 
 
(Thanks to ChatGPT, Surya Gayet and Marius Peelen for the translation) 
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This research followed the applicable laws and ethical guidelines. Research Data 
Management was conducted according to the FAIR principles. The paragraphs 
below specify in detail how this was achieved. 
 
Ethics 

This thesis is based on the results of human studies, which were conducted in 
accordance with the principles of the Declaration of Helsinki. The Ethical 
Committee of the faculty of Social Sciences (ECSS) has given a positive advice to 
conduct these studies to the Dean of the Faculty, who formally approved the 
conduct of these studies (ECSW2017-2306-517). This research was funded by the 
European Research Council (ERC) under the European Union’s Horizon 2020 
research and innovation program (grant agreement no. 725970).  
 
Findable, Accessible 

The table below details where the data and research documentation for each 
chapter can be found on the Donders Repository (DR), the Open Science 
Framework (OSF) and Github. All data archived as a Data Sharing Collection 
remain available for at least 10 years after termination of the studies. 
 

Chapter DAC RDC OSF Github 
2 2020.00041_240 2020.00041_697 WNEFH GAldegheri/scenecontext-

transforms 
3 2019.00114_057 2019.00114_952 - - 
4 2018.00091_503 2018.00091_612 - - 
5 2020.00041_240 2020.00041_697 - - 

 
DAC = Data Acquisition Collection, RDC = Research Documentation Collection, 
OSF = Open Science Framework 
 
 
 For Chapters 3 and 4, research data have also been stored on the 
Donders project drive (respectively, project 3018040.05 and 3018040.07). These 
data were accessible to all members involved in the project. The publication 
resulting from these chapters is still in preparation. Upon publication, the 
respective data will be made publicly available under the RU-DI-HD-1.0 license as 
it contains potentially identifiable data, and will be removed from the project 
drives.  
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 Informed consent for Chapters 3 and 4 was obtained on paper, and for 
Chapters 2 and 5 digitally, following the Centre procedure. The forms are archived 
in the central archive of the Centre for 10 years after termination of the studies. 
 
Interoperable, Reusable 

The raw data are stored in the DAC in their original form. For RDC and DSC long-
lived file formats (e.g. .csv, .nii, .mat) have been used ensuring that data remains 
usable in the future. The data of the RDC and DSC are organized according to the 
BIDS standards, with concomitant README files. Results are reproducible by 
providing a description of the experimental setup, raw data (DAC and OSF), and 
code for running the experiment and analyzing the data (RDC and Github). Also, 
the used software including version numbers is specified. 
 
Privacy 

The privacy of the participants in this thesis has been warranted using random 
individual subject codes. A pseudonymization key linked this random code with 
the personal data. This pseudonymization key was stored on a network drive that 
was only accessible to members of the project who needed access to it because 
of their role within the project. The pseudonymization key was stored separately 
from the research data. The pseudonymization key of Chapter 2 was destroyed 
within one month after finalization of the project. The keys of Chapters 3, 4 and 5 
are still stored on a dedicated restricted network drive and will be destroyed within 
one month after finalization. Data in Chapters 2 and 5 are not identifiable and 
shared without restrictions. MRI data of Chapters 3 and 4, upon publication, will 
be defaced and shared under the restricted license RU-DI-HD-1.0, which provides 
extra statements for the protection of the identity of the participants.
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