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A B S T R A C T

Tumor budding (TB), the presence of single cells or small clusters of up to 4 tumor cells at the
invasive front of colorectal cancer (CRC), is a proven risk factor for adverse outcomes. International
definitions are necessary to reduce interobserver variability. According to the current international
guidelines, hotspots at the invasive front should be counted in hematoxylin and eosin (H&E)-stained
slides. This is time-consuming and prone to interobserver variability; therefore, there is a need for
computer-aided diagnosis solutions. In this study, we report an artificial intelligence-based method
for detecting TB in H&E-stained whole slide images. We propose a fully automated pipeline to
identify the tumor border, detect tumor buds, characterize them based on the number of tumor
cells, and produce a TB density map to identify the TB hotspot. The method outputs the TB count in
the hotspot as a computational biomarker. We show that the proposed automated TB detection
workflow performs on par with a panel of 5 pathologists at detecting tumor buds and that the
hotspot-based TB count is an independent prognosticator in both the univariate and the multivariate
analysis, validated on a cohort of n ¼ 981 patients with CRC. Computer-aided detection of tumor
buds based on deep learning can perform on par with expert pathologists for the detection and
quantification of tumor buds in H&E-stained CRC histopathology slides, strongly facilitating the
introduction of budding as an independent prognosticator in clinical routine and clinical trials.

© 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY license (http://creativecommons.org/

licenses/by/4.0/).
Introduction

Colorectal cancer (CRC) is among the most common cancers,
responsible for almost 2,000,000 new cases yearly and over
900,000 deaths globally.1 Staging of CRC is based on invasion
depth (T), number of involved lymph nodes (N), and the presence
of distant metastases (M).2 However, to accurately predict the
disease progression of individual patients, this staging system is
insufficient and additional biomarkers are required to decide on
therapeutic strategies and prevent possible under- and over-
treatment. Among the most promising histologic biomarkers in
CRC are tumor budding (TB)3 and poorly differentiated clusters
(PDCs).4 TB is defined as isolated single cells or small clusters of up
to 4 tumor cells located at the invasive tumor front. In contrast,
the United States& Canadian Academy of Pathology. This is an open access article
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clusters of 5 or more tumor cells without gland formation are
defined as PDCs. Both biomarkers are associated with lymph node
and distant metastasis and increased patient mortality in CRC.5

International harmonization of TB scoring was achieved by the
International Tumor Budding Consensus Conference (ITBCC) rec-
ommendations in 20163: identification of the budding hotspot
(measuring 0.785 mm2) at the invasive front of the tumor and
counting of the number of buds results in a score that can be
classified as Bd1 (0-4 buds, low budding), Bd2 (5-9 buds, inter-
mediate budding) or Bd3 (10 or more buds, high budding).
Although pan-cytokeratin immunohistochemical (IHC) staining
might be helpful in recognizing TB, the definition is based on
hematoxylin and eosin (H&E) slide scoring. Despite these clear
definitions, the interobserver agreement is moderate to
substantial.6

In recent years, the application of machine learning ap-
proaches based on deep learning has increased the accuracy,
reproducibility, and efficiency of histopathologic slide analysis.7

When presented with sufficient high-quality annotated training
data, convolutional neural networks, a special type of deep
learning based on artificial neural networks, can learn complex
histologic patterns from structured data such as medical images.
Current applications of artificial intelligence in computational
pathology include recognition, segmentation, and classification of
morphologic structures in digital pathology whole slide images
(WSIs), such as tumor (peripheral) regions or the detection and
classification of several types of cells, including tumor cells, to be
used as a base for the development of computational biomarkers.8

Despite advances in the field of current applications of artificial
intelligence in computational pathology, computer-aided detec-
tion of tumor buds in H&E remains a challenging task, mostly due
to the following: (1) the small size of the objects to detect (ie, the
tumor buds), (2) a possible variation in phenotype due to an
epithelial-to-mesenchymal transition,9 and (3) the very hetero-
geneous composition of the microenvironment in which they are
located. In addition, observer variability in identifying individual
buds makes the collection of a large training set of TB and PDC
challenging. To the best of our knowledge, to date, most of the
(semi-)automatic TB detection methods work on immunohis-
tochemically stained slides (reviewed in Studer et al10), and only a
few H&E-based algorithms have been proposed,11,12 either based
on single-center slides,11 limiting their generalizability, or not
distinguishing TB from PDC.12

In this study, we developed a novel, fully automated pipeline
for computer-aided detection and quantification of tumor buds in
WSIs from H&E-stained CRC specimens. Following the recom-
mendations of the ITBCC, our method automatically identifies the
tumor-invasive front, detects tumor buds, and quantifies them in a
hotspot-driven fashion. We compared the detection performance
of our computer-aided detection model with a panel of 5 pa-
thologists and analyzed the prognostic value of our computer-
based hotspot-derived TB count on a large external independent
cohort or CRC cases.
Materials

This section describes the data sets used in this work,
namely (1) a single-center model development data set con-
taining H&E slides with manual annotations used to train a
deep learning algorithm to segment epithelial regions; (2) a
multicentric technical validation data set used to validate the
tumor-bud detection performance of the developed method;
and (3) a multicentric clinical validation data set used to assess
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the prognostic value of the automated TB count produced by
the presented method.
Model Development Data set

Between 1 and 5 slides from patients with CRC (n ¼ 37) with
the presence of TB reported during the initial sign-out were
collected from the Radboud University Medical Center (Radbou-
dumc), Nijmegen (The Netherlands). In total, 60 slides were
included. Only slides where the invasive front was clearly visible
were selected, stained with H&E, digitized, and subsequently
restained with a cytokeratin 8-18 (CK8-18) IHC marker after
scanning, according to our established protocol,13 resulting in 2
versions of the same slide that were digitized using the Pan-
noramic P250 Flash II scanner (3D-Histech), at 40 X magnification
(spatial resolution of 0.24 mm/px). On each slide, regions of in-
terest (ROI) near the invasive front were manually selected and
transferred to CK8-18 slides, where all positive cells were delin-
eated. These annotations were transferred back to H&E slides and
removed when no bud was visible in the H&E slide. Subsequently,
the remaining nonepithelium pixels within the ROI were labeled
as either necrosis or background. Annotations were made using
the in-house developed open-source software ASAP (https://
github.com/computationalpathologygroup/ASAP). The data set
was randomly split into a training (n ¼ 42) and validation set (n ¼
18). We will refer to this data set as Dev. An overview of the
annotating procedure can be found in Figure 1A.
Technical Validation Data set

For technical validation, ie, the comparison between the
detection performance of the proposed computer aided diagnosis
(CAD) system and a panel of pathologists, we included a set of n ¼
15 WSIs selected from 4 different centers, including Dublin Uni-
versity Hospital (Dublin, Ireland), Bayreuth University Hospital
(Bayreuth, Germany), Bern University, Institute of Pathology
(Bern, Switzerland), and Mount Sinai Hospital (Toronto, Canada).
Cases were selected based on the presence of high budding re-
ported in the original diagnostic report. Glass slides were stained
with H&E at the pathology laboratory of each center, therefore
generating variation in the H&E staining, scanning, restaining
with CK8-18 IHC marker, and rescanning at Radboudumc using a
Pannoramic P250 Flash II scanner (3D-Histech), at 40 X magnifi-
cation. Manual annotations were made as described above. We
will refer to this data set as Val-t.
Clinical Validation Data Set

For clinical validation, ie, the analysis of the prognostic value of
an automated TB score, n ¼ 557 patients with CRC from Rad-
boudumc and n ¼ 568 patients with CRC from Mount Sinai Hos-
pital, Toronto (Canada) were included. Based on the pathologists'
assessment of multiple sections, the clinical validation set was
established by visualizing a single slide per case in line with the
ITBCC guidelines. Radboudumc slides were scanned using the
same 3DHistech scanner used in Val-t; the Canadian cases were
scanned with the Aperio AT2 scanner (Leica Biosystems). All slides
were scanned at 40 X magnification, yielding a spatial resolution
of 0.24 mm/px. In the Canadian cohort, a tumor bud count was
established by an expert, according to ITBCC recommendations;
n ¼ 144 patients received neoadjuvant treatment and were
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Figure 1.
Schematic overview of model development. (A) Within corresponding hematoxylin and eosin (H&E)-stained and cytokeratin (CK)-stained images, manual regions of interest
(ROI) were selected. Within the ROIs, all CK-positive cells were annotated as either Bud or Tumor in the CK-stained image. These were subsequently checked in the H&E-stained
tissue and removed if not visible or modified to follow the border in H&E. (B) Manual annotations were used to train the deep learning network, after which the network was
applied to the training and validation set to identify hard-negatives and false-positives. In the next training session, we sampled more of these difficult objects. IHC,
immunohistochemical.
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therefore excluded from this study. As a result, n ¼ 981 patients
with CRC were included in the clinical validation for a total of n ¼
1125 WSIs.

We will refer to these sets in the clinical validation data set as
cohorts C and D for the Canadian and Radboudumc cohorts,
respectively.
Methods

Our deep learning pipeline for automated quantification of
tumor buds in H&E WSIs consisted of 4 steps (Fig. 2). First, we
determined the region of the invasive front of the tumor; second,
we identified all the epithelial regions in the proximity of the
invasive front via segmentation of epithelial structures at high
resolution; third, we detected and characterized TB and PDC by
detecting and counting neoplastic cell nuclei within the
segmented epithelium compartments. Fourth, we computed the
density of TBs in the entire invasive front and reported the TB
count as the number of TBs in the hotspot. All steps of the pro-
posed pipeline are described in the next sections.
Step 1: Find the Tumor Border

In the ITBCC guidelines, tumor buds are quantified within the
region of the invasive front of the tumor. For this reason, the first
step of our approach consisted of the fully automated delineation
of the tumor border, which we achieved in 3 steps.
3

First, we segmented the entire WSI into multiple morphologic
categories by applying a multiclass tissue segmentation algorithm
previously developed by our group.14 In brief, a U-Net deep
learning model was trained to segment n ¼ 14 different
morphologic regions in the entire WSI, namely (1) normal glands,
(2) low-grade dysplasia, (3) high-grade dysplasia/tumor, (4) sub-
mucosal stroma, (5) desmoplastic stroma, (6) stroma lamina
propria, (7) mucus, (8) necrosis and debris, (9) lymphocytes, (10)
erythrocytes, (11) adipose tissue, (12) muscle, (13) nerve, and (14)
background. The model was trained to operate at 10� magnifi-
cation to guarantee a fast yet accurate interpretation of the slide
morphology. Additional details about this model can be found in
Bokhorst et al.14

Second, we identified the tumor bulk region by running a
convex-hull algorithm on the tumor segmentation mask obtained
by considering regions segmented as tumors by the multiclass
algorithm. As a result, a polygon identifying the tumor bulk border
was obtained. Third, following the approach proposed by Galon
et al,15 we defined the border as the region within 500 mm from
the outer side of the tumor borderline.
Step 2: Segment Epithelial Regions

Once the tumor border region was defined, we restricted our
focus to epithelial regions within the invasive front area. For this,
we developed a binary segmentation model based on the U-Net
architecture16 with an EfficientNetB417 to segment epithelial
regions in H&E at the maximum resolution available, ie, 0.24 mm/
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px (40 X magnification) to differentiate between very small
epithelial regions, potentially containing tumor buds, and non-
epithelium particles, such as activated fibroblasts to construct a
binary map of all epithelial regions, which was then intersected
with the invasive tumor map to generate potential candidates of
TB and PDC. An overview of the training procedure can be found
in Supplementary 1.
Step 3: Find Tumor Buds Via Nuclei Detection

Within epithelial regions segmented inside the tumor-invasive
front, we identified TBs and PDCs by detecting neoplastic cell
nuclei. For this purpose, we used the nuclei segmentation method
based on the HoVerNet model presented by Graham et al.18 This
network can segment and classify cell nuclei from 6 different cell
types, including neoplastic cells. Here, we processed HoVerNet
only in epithelial regions in the invasive front and only considered
neoplastic cells within epithelial regions. In this way, we defined
TBs as connected components of epithelial regions containing up
to 4 neoplastic cells and the rest as PDCs. This approach allowed us
to (1) use HoVerNet efficiently, solely running it in selected re-
gions, guaranteeing a fast inference time; and (2) enable the
analysis of the role of different number of tumor cells in TBs and
their potential impact on prognosis. Step 4: Count the buds and
find the hotspot.
Step 4: Find the Tumor Budding Hotspot

The final step of our method consisted of finding the hotspot of
tumor buds in the entire slide and producing both the location and
TB count in the hotspot. For this, we first move a circular region of
0.785 mm2 over every location (within the tumor border). For
each location, we considered the TBs inside the circle and asso-
ciated the TB count with the central location of the circle within
the invasive front. As a result, a TB densitymapwithin the invasive
front was obtained (Fig. 3C).
Reader Study

In order to assess the performance of the proposed framework
at the level of TB detection, we involved 5 pathologists in a reader
study and asked them to manually mark TBs within predefined
hotspots. The goal was to use the results of this study to assess
human performance and interobserver variability at the specific
task of TB detection and compare our CAD systemwith a panel of
experienced pathologists (A.L., M.V., R.K., S.O., and A.E.), with an
average of 10 years of experience in the field of TB in both clinical
and research setting.

We asked each pathologist to manually mark each tumor bud
in the manually predefined hotspots of each WSI in the Val-t data
set (n ¼ 15). The hotspots were selected in line with the ITBCC
guidelines and contained a high number of tumor buds. Addi-
tionally, more difficult regions were also selected (ie, regions with
high inflammation). Slides were uploaded to the Reader Study
section of the grand-challenge.org platform, and pathologists
Figure 2.
Overview of the workflow of the algorithm. First, the input whole slide image is segmente
drawn on both sides of the edge of the tumor. Within the invasive front, we identify each n
objects with more than 4 nuclei. Based on the detected buds, we can create a density ma
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were shown both the H&E slide and the corresponding CK8-18
slide side by side.
Statistical Analysis

Statistical analyses for clinical validation were performed
after entry in an anonymized database using R 4.1.2 (R Foun-
dation for Statistical Computing19). Both patient cohorts were
analyzed separately. The relationship of TB with the outcome
(overall survival [OS] and disease-free survival [DFS]) was
performed using Kaplan-Meier curves and Cox regression
analysis. A complete overview of the patient information can
be found in the Table.

Cut-off values for TB categories were adjusted because of the
increased numbers compared to manual counting. To create 3 risk
categories, we used the 30th and 60th percentiles from cohort C,
which was subsequently validated in cohort D. A P value of.05 was
considered significant.

The comparison of manual and automatic scoring was evalu-
ated by Cox’s regression analysis in combination with the Akaike
Informational Criterion (AIC, based on the log-likelihood of the
model). The AIC score is a number that describes how the models
compare in terms of performance given a certain data set. When
comparing 2 methods, this value helps to identify how identical
the models are.
Results

The performance of the epithelium segmentation algorithm
was assessed on data set Val-t using the Dice coefficient. We
applied the algorithm to the 15 WSIs and calculated the Dice
scores on the manually annotated regions. A Dice coefficient of
0.86 and 0.97 was found for the epithelium and nonepithelium
classes, respectively. Some examples of the segmented epithelium
are shown in Figure 3A.
Validation of the Tumor Bud Detection Pipeline

To evaluate the performance of the full detection pipeline, we
compared the results to the manual detections made by the 5
observers. Because pathologists' annotations may vary, we
calculated the recall, precision, and F1 scores of all observers (the
algorithm considered observer 5) relative to each other in a one-
vs-one fashion. The algorithm had an F1 value of 0.58 at
maximum and recall of 0.95, but precisionwas suboptimal (Fig. 4),
with, on average, an amount of detected TB 7 times as the other
observers. An example of manual vs computer outputs can be
found in Figure 3D.

In addition, we determined per hotspot how many TBs were
missed by the algorithm (false negative number) compared with
cumulative TB annotations of all 5, all 5 minus 1, all 5 minus 2,
etc, observers. In this way, we found a recall percentage of 1.0,
0.90, and 0.84 for objects that have been TB annotated by at least
5, 4, and 3 observers, respectively.
d into 14 tissue types. Based on the detected tumor, a 500 mm invasive front border is
ucleus and segment all epithelium. After combining the 2 outputs, we can discard all
p to show the regions with the most tumor budding.

http://grand-challenge.org


Figure 3.
(A) An example of the output of the epithelium segmentation network (left) and the combined results (right). (B) Manually (5 observers) and per algorithm obtained tumor bud
(TB) counts per hotspot. The manually obtained TB range is shown from minimum to maximum with median values (marked in red), boxed by 25th and 75th percentile values.
For the algorithm, detected numbers are shown as blue dots. The hotspots are sorted according to the degree of spread, from low (left) to high (right). (C) An example of a density
heatmap generated based on automatic TB detections. (D) An example of technical validation results with hematoxylin and eosin-stained image with manual annotations (left),
corresponding immunohistochemistry image (middle), and the segmented epithelium in blue (right).
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Table
Clinicopathologic characteristics of cohorts C and D

Feature Cohort C Cohort D

n % n %

Age, y

<65 226 57 425 66

>65 169 43 219 34

Sex

M 215 54 339 53

F 180 46 305 47

Invasion depth

T1 27 7 18 3

T2 74 19 90 14

T3 218 55 402 62

T4 76 19 134 21

Nodal status

N0 224 57 371 58

Nþ 171 43 273 42

Synchronous metastases

M0 351 89 618 96

M1 44 11 26 4

Perineural invasion

No 83 21 n/a n/a

Yes 312 79 n/a n/a

Grade

Low grade 350 89 462 71

High grade 45 11 182 29

Recurrence

No 318 81 502 78

Yes 77 19 142 22

Death

No 292 74 414 64

Yes 103 26 230 36
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The Size of Tumor Buds

For each patient group, we determined the size of TBs present
(Fig. 5) and compared this with the manual TB annotations on the
Val-t data set. In the algorithm groups, there was an over-
representation of single-cell TB in all groups; however, in the
manual scores, fewer single-cell TBs were scored. Two-cell TBs
(45%) and 3-cell TBs (28%) were more common in the manual
scoring. There was no effect of TB size on the outcome.
Hotspot Overlap

We visually evaluated cases to ensure that the automatically
chosen hotspots were in regions that could be used for clinical
Figure 4.
F1 scores (A), precision (B), and recall (C) in a one-vs-one setup. For every score, one obs
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assessment according to the ITBCC guidelines. We discovered that
in roughly 4 out of 5 cases, the top 5 automatically identified
hotspots were on the invasive front. In the other cases, the top 5
hotspots were incorrectly located. For example, they were not
located in the invasive front but on the luminal side of the WSI.
Clinical Validation: Prognostic Value of Tumor Budding

The presence of low TB was associated with better DFS, both in
the manual scoring (cohort C: HR, 2.1; 95% CI, 1.6-2.8) and the
automatic scoring (cohort C: HR, 1.8; 95% CI, 1.2-2.6; cohort D: HR,
1.3; 95% CI, 1.0-1.6). In the multivariable analysis, after we cor-
rected for age, sex, T-stage, N-stage, M-stage, histologic grade, and
perineural invasion status for cohort C, the prognostic value of TB
was still retained (cohort C manual: HR, 1.8; 95% CI, 1.3-2.5; cohort
C automatic: HR, 1.6; 95% CI, 1.03-2.4; cohort D: HR, 1.2; 95% CI,
0.9-1.6) (Fig. 6).

Similarly, improved OS was observed in patients with low TB,
both in the manual scoring (cohort C: HR, 2.0; 95% CI, 1.6-2.6) and
the automatic scoring (cohort C: HR, 2.6; 95% CI, 1.7-3.8; cohort D:
HR, 1.3; 95% CI, 1.1-1.5). In the multivariable analysis, after we
corrected for age, sex, T-stage, N-stage, M-stage, and histologic
grade, the prognostic value of TB was still retained (cohort C
manual: HR, 1.3; 95% CI, 1.0-1.7; cohort C automatic: HR, 1.5; 95%
CI, 1.0-2.3; cohort D: HR, 1.2; 95% CI, 1.0-2.3).

To compare the manual and automatic scoring systems, we
used the AIC of cohort C. For both DFS and OS, the AIC was slightly
lower in the manual group (790 vs 806 and 1145 vs 1148).
Discussion

In this study, we used a convolutional neural network for the
segmentation of epithelium in WSIs in combination with a nuclei
detection network to develop a new deep learning-based auto-
mated TB assessment tool for H&E-stained WSIs, which we
compared to the ITBCC recommended method of TB assessment,
performed by 5 gastrointestinal pathologists from different
countries in an initial validation setting. We showed that our
method is technically sound and clinically relevant. As such, our
method is not yet optimized for clinical use and could be further
improved for the time-efficient processing of slides. One of the
main improvements that can be made is increasing the efficiency
of the epithelium segmentation and nuclei detection part of the
pipeline. For example, both networks are currently applied to the
invasive front at the maximum image resolution, ie, 40 X magni-
fication. Future work will be dedicated to investigating lowering
the resolution (eg, to 20 X) for some parts of the pipeline
erver was set as a reference and compared with the other observers þ algorithm.



Figure 5.
The absolute number of 1, 2, 3, and 4 cell tumor buds found by the algorithm per patient risk group in cohorts C (left) and D (right).
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(eg, epithelium segmentation) without reducing overall perfor-
mance, which would reduce processing time.

The evident benefit of automatic assessment is standardization
and minimization of interobserver variability.10 Interobserver
variability for TB is considerable,5 evenwhen single objects should
be graded.20 In the current study, variationwas observed between
the observers for both sensitivity/recall and specificity/precision.
The algorithm was in line with the 2 observers who had the
highest degree of interobserver agreement.
Figure 6.
Kaplan-Meier curves on disease-free survival for (A) automatic tumor bud count in cohort
cohort C with cut-off values according to the International Tumor Budding Consensus Confe
the 30th and 60th percentiles of cohort C.

8

The determination of the invasive front remains a point of
discussion between pathologists and, consequently, the applica-
tion of the algorithm. In this study, we opted for a fully automated
selection of the tumor border to reduce the possible observer
variability in hotspot selection. Although in most of the cases the
hotspot was in a region pathologists would use for tumor bud
scoring, the automatically selected hotspot is, in some cases, not in
the correct location. A practical approach to circumvent this issue
is a visual assessment of TB heatmaps (as shown in Fig. 4C) to
C with 30th and 60th percentiles as cut-off values. (B) Manual tumor bud counts in
rence. (C) Automatic tumor bud counts in cohort D, with cut-off values determined by
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determine the adequacy of the selected hotspot and manual
correction.

The ITBCC guidelines define 3 different budding grades
based on H&E slides, which consist of 0-4 (BD1), 5-9 (BD2),
and 10 or more (BD3) buds in a hotspot. Three categories are
essential since, for different clinical questions, different cut-off
levels are required. For example, high risk in pT1 CRC is
characterized by BD2 and BD3. In contrast, only BD3 is an
indication for adjuvant therapy in stage II CRC. We also
assessed 3-tier classifications for TB (Supplemental data) with
similar results to the 2-tiered classification (Fig. 6). The formal
TB score, according to the guidelines, is manual for H&E slides.
For IHC, other cut-off levels likely need to be defined, such as
for automatic scoring. A recent addition to the 3-tiered score is
the BD0 category,21 characterized by the complete absence of
TB and very good outcomes. Because we trained our algorithm
on TB-containing slides and might overcall TB compared with
manual scoring, we cannot guarantee adequate automatic BD0
detection. Additional testing on cases in this part of the spec-
trum is necessary.

TB is defined based on size, varying between 1 and 4 tumor
cells. Automatic detection shows an overrepresentation of
single-cell TB (45% of TB), partly explaining the difference in the
total number of TB on manual scoring. Previous studies have
indicated that TB detection in IHC generates approximately 3 to 6
times more TB than TB detection in H&E,22 most likely because of
higher numbers of single-cell TB. In line, semi-automatic and
automatic detection methods, mainly based on IHC, report
higher TB.10 With the high sensitivity of our detection tool, we
detected, on average, about 7 times as much TB as the
gastrointestinal pathologists per hotspot. This can be expected
because we annotated our H&E slides based on cytokeratin
staining patterns. However, the increased TB can also be attrib-
uted to so-called pseudobudding6 that occurs in areas with
inflammation and necrosis. These areas are avoided by pathol-
ogists. Proper segmentation is necessary to overcome this
problem, illustrating that we need a combined approach in
which the algorithm considers the TB microenvironment.

Indeed, the overcalling of TBmight be responsible for the slight
loss of information when comparing manual versus automatic TB
assessment, as is evident from the AIC. However, our clinical vali-
dation confirms the prognostic value of automated TB count using
the proposed algorithm in 2 different cohorts with different (local)
staining protocols. TB has independent prognostic value for both
DFS and OS. Larger cohorts are required to determine the prog-
nostic value when correcting for more extensive clinicopathologic
parameters (eg, mismatch repair status and extramural venous
invasion).

The proposed pipeline for automated tumor bud detection
opens the door to validate the role of TB in different stages or
clinicopathologic parameters on large multicentric cohorts.
Furthermore, it might help to understand the budding phenom-
enon better, as we can now start to investigate the dynamics with
the surrounding macrosystem and the spatial distribution
throughout a single or multiple section(s). This is now possible
because we can identify TB in larger fields compared with the
current detection area of 0.785 mm2.

In conclusion, TB is an independent and relevant prognostic
factor in CRC that can be assessed by automatic methods. High TB
scores show a lowmiss rate by the algorithm, but precision might
be improved by considering the TB microenvironment and
ignoring parts with pseudobudding. However, the application of
novel scoring methodology requires a reevaluation of current
definitions and cut-off values.
9
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