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Abstract

The Oslofjord subsea road tunnel is a unique environment in which the typically anoxic marine deep subsurface is exposed to oxy-
gen. Concrete biodeterioration and steel corrosion in the tunnel have been linked to the growth of iron- and manganese-oxidizing
biofilms in areas of saline water seepage. Surprisingly, previous 16S rRNA gene surveys of biofilm samples revealed microbial com-
munities dominated by sequences affiliated with nitrogen-cycling microorganisms. This study aimed to identify microbial genomes
with metabolic potential for novel nitrogen- and metal-cycling reactions, representing biofilm microorganisms that could link these
cycles and play a role in concrete biodeterioration. We reconstructed 33 abundant, novel metagenome-assembled genomes (MAGs)
affiliated with the phylum Planctomycetota and the candidate phylum KSB1. We identified novel and unusual genes and gene clusters
in these MAGs related to anaerobic ammonium oxidation, nitrite oxidation, and other nitrogen-cycling reactions. Additionally, 26 of
33 MAGs also had the potential for iron, manganese, and arsenite cycling, suggesting that bacteria represented by these genomes
might couple these reactions. Our results expand the diversity of microorganisms putatively involved in nitrogen and metal cycling,

and contribute to our understanding of potential biofilm impacts on built infrastructure.
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Introduction

The marine deep biosphere comprises a significant part of life on
Earth (Bar-On et al. 2018), but it is still largely unexplored. The
Oslofjord subsea tunnel in Norway is a unique environment in
which the marine deep subsurface, typically comprised of anoxic
sediments and jointed rock mass, is exposed to oxygen in the tun-
nel. This subsea road tunnel has a maximum depth of 134 m be-
low sea level and is covered by sprayed concrete, employed di-
rectly onto the rock mass, reinforced with steel fibers for rock
support of the tunnel structure. However, cracks in the bedrock
allow seepage of saline water from the overlying water column
through the bedrock and across the sprayed concrete layer. In ar-
eas of the tunnel with water seepage, a biofilm has developed on
the sprayed concrete surface, causing biodeterioration of the con-
crete with associated steel fiber corrosion (Karacic¢ et al. 2018). The
biofilm consists of an outer orange to brown layer, rich in amor-
phous iron hydroxide (ferrihydrite), and an inner black layer, rich
in manganese oxide biominerals (Na-buserite, todorokite, and bir-
nessite) (Hagelia 2007, 2011). Reduction of these iron hydroxides,
manganese oxides and, additionally, sulfate, has been detected in
some biofilms (Hagelia 2011, Karaci¢ et al. 2018).

Biotic and abiotic reactions within the biofilm lead to acidifi-
cation of the saline water from pH 7.5-8 to 5.5-6.5 at low water
flow rates (Hagelia 2011). A likely responsible mechanism for the
acidification is microbial oxidation of Fe?* and Mn?* with oxygen,
which, upon precipitation of Fe*+ and Mn** biominerals, releases
H* (Manahan 2000). However, these reactions can also occur at
circumneutral pH (Emerson 2000). Additionally, the penetration of
chloride and the deposition of Mn-oxides is known to cause pit-
ting corrosion on steel (Dickinson et al. 1997, Olesen et al. 2001,
Hagelia 2011). The acidic water causes deep disintegration and en-
hances the porosity of the cement paste matrix due to dissolution
of portlandite and calcium silicate hydrate, leading to formation
of carbonates, thaumasite sulfate attack and magnesium attack
(Hagelia 2011, Karacic et al. 2018).

Based on these previous studies, metal-cycling microorganisms
were expected to be abundant in biofilms. However, when the 16S
rRNA gene diversity of biofilm samples collected from three tun-
nel areas was analyzed (Karaci¢ et al. 2018), microbial commu-
nities were surprisingly dominated by putative nitrogen-cycling
members: the most abundant amplicon sequence variant (ASV)
across 64 biofilm samples was affiliated with the ammonium-
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oxidizing archaeon Nitrosopumilus. Other highly abundant ASVs
were affiliated with betaproteobacterial ammonium-oxidizing Ni-
trosomonadaceae, marine nitrite-oxidizing Nitrospina, nitrifying Ni-
trospira, and marine anaerobic ammonium-oxidizing (anammox)
Candidatus Scalindua (Karacic¢ et al. 2018). Additionally, a follow-
up metagenomics study identified in these biofilms a novel family
of anammox bacteria named Ca. Anammoxibacteraceae (Suarez
et al. 2022). These results suggested that novel microorganisms
enriched in Oslofjord tunnel biofilms could perform metabolic re-
actions linking nitrogen and metal biogeochemical cycling.

Here, we reconstructed metagenome-assembled genomes
(MAGS) from Oslofjord tunnel biofilm samples representing abun-
dant community members affiliated with novel taxa. This study
aimed to identify the metabolic potential for novel nitrogen- and
metal-cycling reactions, thus expanding the known diversity of
microorganisms with the potential of linking these cycles. This
resulted in the selection of 33 MAGs affiliated with the phylum
Planctomycetota and candidate phylum KSB1, which were interro-
gated with respect to their potential biogeochemical repertoire.
Typically, both phyla have broad metabolic potential and are im-
plicated in heterotrophic lifestyles. Planctomycetota are frequently
described as extremely diverse bacteria with unusual cell bi-
ology and aerobic or facultative anaerobic, chemoheterotrophic
metabolism (Elshahed et al. 2007, Spring et al. 2018, Wiegand et al.
2018), with the exception of the anaerobic lithoautotrophic anam-
mox bacteria (Kartal et al. 2012). Similarly, while no representa-
tives of the candidate phylum KSB1 have been cultured to date,
MAG analyses indicate that these microorganisms are likely in-
volved in organic carbon degradation and fermentation in estuar-
ine (Baker et al. 2015) and hydrothermal sediments (Dombrowski
et al. 2017), harboring genes encoding multiple carbohydrate-
active enzymes (Lopez-Mondéjar et al. 2022) and potentially novel
isopropanol dehydrogenases (Dalcin Martins et al. 2019).

In particular, we searched for both canonical and divergent
marker genes involved in nitrogen cycling pathways. These in-
cluded anaerobic ammonium oxidation via a reductive hydrox-
ylamine oxidoreductase-encoding gene (hao) for nitrite reduction
to nitric oxide (Ferousi et al. 2021), hydrazine synthase (hzsABC)
for ammonium oxidation coupled to nitric oxide reduction, pro-
ducing hydrazine (Dietl et al. 2015a), and hydrazine dehydroge-
nase (hdh), for hydrazine oxidation to dinitrogen gas (Maalcke et
al. 2016). A gene encoding hydroxylamine oxidase (hox), with un-
known physiological function but conserved in anammox bacte-
ria (Kartal and Keltjens 2016), was included in our analyses. We
also searched for genes in aerobic (complete) nitrification (van
Kessel et al. 2015) via ammonium monooxygenase (amoABC), for
ammonium oxidation to hydroxylamine, hydroxylamine oxidore-
ductase (hao), for hydroxylamine oxidation to nitrite, and nitrite
oxidoreductase (nxrABC) for nitrite oxidation to nitrate (Daims et
al. 2016a). Genes in the denitrification pathway (Philippot 2002)
comprised both membrane-bound (narGHI) and periplasmic (na-
pAB) nitrate reductases for nitrate conversion to nitrite, nitrite re-
ductase for nitrite reduction to nitric oxide (nirk and nirS) or to
ammonium (nrfAH), nitric oxide reductase for nitric oxide conver-
sion to nitrous oxide (norB), and nitrous oxide reductase for the
last step in denitrification, nitrous oxide reduction to dinitrogen
gas (nosz).

Additionally, we searched for genes encoding manganese- and
iron-cycling proteins: the manganese oxidase-encoding genes
mnxG and mcoA (Geszvain et al. 2013), moxA (Ridge et al. 2007), and

cotA (Su et al. 2013), the iron oxidase-encoding gene cyc2 (McAllis-
ter et al. 2020), and several genes encoding iron reductase com-
plexes (Garber et al. 2020), such as (outer membrane) c-type cy-
tochromes (Omc) and porin-cytochrome ¢ (PCC) complexes. Mi-
croorganisms that reduce iron can frequently reduce manganese,
in some instances using the same proteins, such as OmcS and
OmcZ (Richter et al. 2012) and MtrCAB (Szeinbaum et al. 2014).
Therefore, in this study, MAGs with potential for iron reduction
could also represent microorganisms capable of reducing man-
ganese, and therefore are referred to as presenting general metal-
cycling potential.

Materials and methods

The Oslofjord subsea tunnel is part of road E134 near Drgbak in
Norway (59.66 472 N, 10.61 306 E). Biofilms in two areas of the tun-
nel wall, referred to as pump station and test site, were sampled
four times in total in 2016, 2017, 2019, and 2020. Biofilm sampling,
DNA extractions, and shotgun metagenomic sequencing were per-
formed as previously described (Karaci¢ et al. 2018, Suarez et al.
2022). Briefly, lllumina NovaSeq6000 sequencing generated 150 bp
paired-end reads, which were normalized to 100 x coverage using
BBNorm in the BBTools package 38.61b (https://sourceforge.net/
projects/bbmap) and co-assembled with Megahit 1.2.9 (Li et al.
2015). Reads were mapped to the assembly with Bowtie v2.3.5.1
(Langmead and Salzberg 2012), which was binned with MetaBAT?2
v2.15 (Kang et al. 2019) and BinSanity v0.5.3 (Graham et al. 2017).
MAGs were dereplicated with DASTool v1.1.2 (Sieber et al. 2018)
and retained only if less than 10% contaminated and more than
50% complete, as determined with CheckM (Parks et al. 2015). Ad-
ditionally, MAGs were inspected for chimerism and contamination
with GUNC v1.05 (Orakov et al. 2021). MAGs were classified with
GTDB-Tk v1.5.0 (Chaumeil et al. 2019) with the GTDB 07-RS207
taxonomy (Parks et al. 2020), and their relative abundances were
calculated with coverM v0.6.1 (https://github.com/wwood/Cover
M) with the relative_abundance parameter in genome mode us-
ing BWA-MEM (Li 2013). Metagenome reads and MAGs from the
Oslofjord tunnel biofilms are publicly available in the NCBI Bio-
Project PRINA755678.

MAGs were annotated with DRAM v1.0 (Shaffer et al. 2020) with
default options, except -min_contig size 1000, and most genes
of interest were searched in annotation files. Additionally, some
genes were identified via complementary methods: genes encod-
ing proteins involved in anammox metabolism were searched
both via annotation files and via blastp analyses using previously
identified reference sequences from Ca. Kuenenia stuttgartiensis
(de Almeida et al. 2016, Kartal and Keltjens 2016), and iron cycling-
related genes were detected with FeGenie (Garber et al. 2020). Phy-
logenetic trees were built with FastTree v2.1.10 (Price et al. 2010)
and visualized in iToL v6 (Letunic and Bork 2021), with the excep-
tion of the tree containing UBA1845 MAGs from this study and
reference genomes, which was built with IQ-TREE v2.2.0 (Minh
et al. 2020) from an alignment of 74 single copy genes done with
GToTree v1.7.00 (Lee 2019). Heat maps were generated in RStudio
v4.2.1 using the vegan package v2.6-4 (Oksanen et al. 2019). Gene
clusters were identified and visualized in R with the standard
gggenomes workflow (https://github.com/thackl/gggenomes). Di-
vergent sequence similarity analyses were performed with HH-
pred (https://toolkit.tuebingen. mpg.de/tools/hhpred). All figures
were edited in Adobe Illustrator.
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Results and discussion

Planctomycetota- and KBS1-affiliated MAGs were
abundant across biofilm samples.

We analyzed our MAG dataset (NCBI BioProject PRINA755678) for
metabolic potential regarding novel nitrogen- and metal-cycling
reactions. Upon MAG inspection for accuracy of assembly and
binning, 33 MAGs were selected for this study, of which 24 had
high quality (>90% completeness and < 5% contamination) and
9 had medium quality (here, >75% completeness and < 8% con-
tamination) (Bowers et al. 2017). Individually, the MAGs selected
for this study reached up to 2.5% of relative abundance in the
biofilm community, summing 1.7%-7.6% of the community across
biofilm samples (Fig. 1), which were collected in four instances be-
tween 2016 and 2020 from two tunnel areas: the pump site, with
sprayed concrete since 1999 for permanent rock support, and the
test site, with sprayed concrete since 2010 to test concrete dura-
bility (Hagelia 2011). The retrieved MAGs could not be easily clas-
sified beyond the phylum level: all four of the candidate phylum
KSB1-affiliated MAGs belonged to the putative family ‘CR04bin15’.
Furthermore, only 6 of 29 MAGs within the phylum Planctomycetota
could be classified beyond the putative family level (Supplemen-
tary Table 1). Next, based on taxonomic novelty, we focused on
searching for genes involved in nitrogen and metal cycling.

Genes with sequence similarity to hydrazine
synthase subunits were present in several
phycisphaerae MAGs.

Anaerobic ammonium oxidation (anammox) is an important pro-
cess in the nitrogen cycle and is catalyzed by the enzyme hy-
drazine synthase, encoded by three genes (hzsABC) used as mark-
ers for this metabolism (Harhangi et al. 2012). We identified 21
genes that had blastp hits with a bitscore >40 to hzsABC from Ca.
Kuenenia stuttgartiensis across 17 genomes in this study (Sup-
plemental Table 1), hereafter referred to as hzs-like genes. While
a minimum bitscore value of 60 is the default used for DRAM an-
notations (Shaffer et al. 2020), we used this low bitscore threshold
to allow for the identification of divergent sequences.

Several important genes potentially implicated in anammox
metabolism were detected in seven MAGs affiliated with the class
Phycisphaerae, within the putative family UBA1845: OFTMS, 174,
250, 285, 286, 321, and 371 (Figs. 2 and 3). These included 10
hzsABC-like genes with blastp-derived bitscore values ranging
from 89 to 163 (in the annotation range) against hzsABC from
Ca. Kuenenia stuttgartiensis (Fig. 2), as well as similar values
when hzsABC sequences from Ca. Scalindua or Ca. Anammox-
ibacter were used. In these Phycisphaerae MAGs, hzsB- and hzsC-
like genes were fused, as it has been observed in marine anam-
mox Ca. Scalindua species (van de Vossenberg et al. 2013a, Di-
etl et al. 2015b), and had an hzsA-like gene encoded immedi-
ately upstream (Supplementary Table 1, Fig. 2). Similarly, we found
hzsABC-like genes in three reference genomes (GCA_016 208 685.1,
GCA_020 344 555.1 and GCA_022 563 615.1) affiliated with Phy-
cisphaerae UBA1845, with hzsA immediately upstream of fused
hzsBC-like subunits (Fig. 2). Additionally, we identified in these
MAGs genes annotated as hydroxylamine oxidoreductases (hao
and, only in OFTMS5, also hox), nitrate/nitrite oxidoreductases
(narGHI or nxrABC), R/b complex genes, ETM subunit 1 and 2-
encoding genes, and other nitrogen cycle-related genes (Fig. 3 for
a summary and Supplementary Table 1 for each gene annotation
in each MAG). However, no hydrazine dehydrogenase- or nitrite
reductase-encoding genes (hdh, nirK, or nirS) were identified in any
genomes from this study. Furthermore, genes encoding subunits
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of oxygen reductases were detected in five of these seven MAGs,
and genes encoding a nitric oxide reductase, periplasmic nitrate
reductase, manganese, and iron oxidases were prevalent in Phy-
cisphaerae genomes (Fig. 3). Analyses of reference genomes related
to Phycisphaerae UBA1845 MAGs in our study indicated that these
microorganisms are present in marine sediments and groundwa-
ter, as well as in wastewater and drinking water treatment plants
(Fig. 4).

Based on these results, we hypothesize that these seven Phycis-
phaerae MAGs within the family UBA 1845 could represent novel
anammox bacteria outside the order ‘Ca. Brocadiales’, which
holds all currently described and hypothesized anammox taxa
(Kartal et al. 2012, Suarez et al. 2022, Zhao et al. 2022), re-
quiring future experimental validation by enrichment cultures
and N isotope studies. The missing hydrazine dehydrogenase-
encoding gene of the new MAGs could be too divergent to be de-
tected based on sequence similarity or, alternatively, the identified
hydroxylamine oxidoreductase could be involved in hydrazine ox-
idation to dinitrogen gas, an activity previously shown in vitro
in Ca. Kuenenia stuttgartiensis (Maalcke et al. 2016), relying on
a cross-linked active site heme (REF). Oxygen reductase genes
present in these genomes might support the function of oxygen
tolerance or detoxification, which has been recently described in
anammox bacteria in bioreactors (Yang et al. 2022) and aquifer
ecosystems (Mosley et al. 2022). Furthermore, MAGs comprising a
novel clade II group of Ca. Brocadiae, likely anammox bacteria,
were reconstructed from oxygenated aquifer samples and also
lacked a hydrazine dehydrogenase-encoding gene (Mosley et al.
2022), asinour study. Finally, nitrate-dependent iron oxidation has
been reported in Ca. Brocadia and Ca. Scalindua enrichment cul-
tures (Oshiki et al. 2013), and metal oxide respiration has been
described in Ca. Kuenenia stuttgartiensis, Ca. Brocadia, and Ca.
Scalindua species (van de Vossenberg et al. 2013b, Strous et al.
2006, Oshiki et al. 2016), supporting the potential for metal-cycling
metabolism detected in these Phycisphaerae MAGs that could rep-
resent novel anammox bacteria. Other MAGs in this study were
not considered to represent potentially novel anammox because
hzsABC-like genes in these MAGs had a low bitscore value (40—
60) from blastp analyses using Ca. K. stuttgartiensis reference se-
quences, hzsA was not immediately upstream or downstream of
hzsBC, and few anammox metabolism genes were identified in
these genomes.

Novel nitrate/nitrite oxidoreductase genes were
present in planctomycetota-affiliated genomes.

In total, 37 genes encoding nitrate/nitrite oxidoreductases were
identified in this study (Fig. 5). Phylogenetic analyses of alpha
subunit-encoding genes (NarG/NxrA) in combination with refer-
ence sequences revealed two major clades (Fig. 5). One contained
reference sequences from anammox bacteria, nitrite oxidizers af-
filiated with Nitrospirota, Nitrospinota, and Betaproteobacteria (Ca.
Nitrotoga fabula), the nitrate reducers Ca. Methanoperedens sp.
BLZ1 (archaea) and Thermogutta terrifontis (Plantomycetota), and 19
sequences from this study that were poorly annotated (i.e. as
‘molybdopterin oxidoreductase’, Supplementary Table 1) but had
strong blastp hits (bitscore > 1000) to Ca. Kuenenia stuttgartiensis
NxrA, a subunit of a bidirectional nitrite oxidoreductase (Chicano
et al. 2021). The second cluster contained 18 well-annotated se-
quences from our MAGs, reference sequences from fifteen species
of nitrate reducers (lower clade in Fig. 5), and five sequences from
nitrite oxidizers affiliated with Chloroflexota (Nitrolancea hollandica)
and Proteobacteria (Nitrobacter winogradskyi and Nitrococcus mobilis)
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Figure 1. Relative abundance of MAGs in pump station (P) and test site (T) samples collected from the Oslofjord tunnel in four years (2016-2020).

Values are provided in Supplementary Table 1.
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Figure 2. Phylogenetic tree of hzsB and hzsC(-like) genes (concatenated protein sequences unless indicated as fused genes. Bold indicates reference
sequences retrieved from NCBI with respective accession numbers, while the other sequences were obtained from this study. Only sequences with an
hzsA gene located upstream of hzsBC were included in the tree. Bitscore values were obtained from blastp hits (Supplementary Table 1) to Ca.
Kuenenia stuttgartiensis HzsB and HzsC sequences, respectively, present in the tree. The tree was rooted in the Brocadiales (upper) clade.

and the methane oxidizer Ca. Methylomirabilis oxyfera. All of
these genes were part of NarGHI/NxrABC clusters in our MAGs, in-
dicating that they likely encode novel nitrate/nitrite oxidoreduc-
tases.

While we could not assign a reaction direction (nitrite oxida-
tion or nitrate reduction) based on our sequence analyses, we
hypothesize that sequences in the first cluster (orange in Fig. 5)

could represent NxrA, given the prevalence of nitrite oxidizers
in this cluster and the widespread presence of genes encoding
oxygen reductases, hydrogenases, and formate dehydrogenases
in the 19 MAGs in this cluster (Fig. 3 and Supplementary Ta-
ble 1). On the other hand, we hypothesize that 18 sequences in
the second cluster (green in Fig. 5) could represent NarG, given
the prevalence of nitrate reducers in this cluster. We hypoth-
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OFTM250 Phycisphaerae UBA1845 96.6 0.6

OFTM285 Phycisphaerae UBA1845  87.1 1.1

OFTM286 Phycisphaerae UBA1845 88.6 1.1

OFTM321 Phycisphaerae UBA1845 88.8 1.1

OFTM371 Phycisphaerae UBA1845 100 17

OFTMS Phycisphaerae UBA1845 90.8 1.2

OFTM77 Planctomycetota 100 46

OFTM341 Planctomycetota PLA2 97.7 34

OFTM22 Planctomycetaceae 97.7 1.1

OFTM348 Pireliulaceae 97.5 3.5

OFTM389 Bythopireliula 76.9 0.1

OFTM39 Bythopirellula 96.2 1.6

OFTM151 Bythopirellula 97.6 23

OFTM182 Phycisphaerae UBA1845 95.4 2.8

OFTM188 Phycisphaerales UBA1924 75.6 0

OFTM209 Phycisphaerae UBA1845  92.1 23

OFTM220 Planctomycetota UBA1135 98.9 23

OFTM236 Phycisphaerae UBA1845  83.3 121

OFTM248 Planctomycetota JO58 925 7.6

OFTM33 Phycisphaerales SM1A02 97.7 2.8

OFTM393 Planctomycetota JO58 95.2 22

OFTM8 Phycisphaerales UBA1924 95.5 0

OFTMS Planctomycetota B15-G4 93.2 1.1

OFTM94 Planctomycetota B129-G9  98.9 2.3

OFTM153 KSB1 phylum 97.7 1.1

OFTM177 KSB1 phylum 93.3 1.1

OFTM356 KSB1 phylum 96.6 55

OFTM72 KSB1 phylum 96.6 4.4

OFTM205 Planctomycetota 90.8 145

OFTM316 Planctomycetota UBA8B742 94.3 23

OFTM320 Planctomicrobium 82.8 0

OFTM43 Planctomycetota UBA1135 97.9 22

Figure 3. Summary of metabolic potential identified in MAGs in this study. MAGs representing organisms with potential for anammox metabolism are
highlighted in orange, for nitrite oxidation in yellow, and for other reactions in nitrogen and metal cycling in green. The presence of genes encoding
proteins involved in nitrogen (N), oxygen (O,), sulfur (S), and metals (iron and manganese) or metalloid (arsenic) cycling is indicated by the
corresponding metabolic group colors, while the absence of genes is indicated by grey. Proteins are as follows: HzsABC-like, genes with sequence
similarity to subunits of hydrazine synthase; Hao, hydroxylamine oxidoreductase; Hcp, hydroxylamine reductase; NarGHI, putative membrane-bound
nitrate reductase; NxrABC, putative membrane-bound nitrite oxidoreductase; NorB, nitric oxide reductase; NapAB, periplasmic nitrate reductase;
CoxABCD, low-affinity cytochrome c oxidase/oxygen reductase; CydAB, high-affinity cytochrome bd ubiquinol oxidase/oxygen reductase; Sulfhyd.;
sulfhydrogenase/elemental sulfur reductase; MnOx, manganese oxidase; AOXAB; arsenite oxidase; Cyc2, iron oxidase; DFE, Desulfovibrio ferrophilus-like
flavin-based extracellular electron transfer complex for iron reduction; Omc, outer membrane cytochrome c for iron reduction; porin, porin involved in

iron reduction; PCC, porin-cytochrome ¢ complex for iron reduction.

esize that these putative nitrate reducers could have a role in
the observed steel fiber corrosion in the tunnel, as the activity
of nitrate-reducing bacteria has been previously linked to metal
corrosion, potentially via extracellular electron transfer (Miller et
al. 2018, Iino et al. 2021). Out of 19 Planctomycetota MAGs with
putative novel Nrx-type nitrite oxidoreductase-encoding genes,
six MAGs (Planctomycetota OFTM77, Planctomycetota PLA2 OFTM341,
Pirellulaceae OFTM348, Planctomycetaceae OFTM22, Bythopirellula
OFTM389, and Bythopirellula OFTM39) also had putative Nar-type
nitrate reductase-encoding genes (Fig. 3 and 5), similar to the
Chloroflexota-affiliated nitrite oxidizer Ca. Nitrocaldera robusta,
which harbors two types of Nar/Nxr (Spieck et al. 2020).

Most putative nxr-harboring MAGs had low- and/or high-
affinity oxygen reductase genes and, frequently, norB, napAB, and
hao (Fig. 3 and Supplementary Table 1). We infer that these MAGs
could represent putatively novel nitrite oxidizers with metabolic
versatility to oxidize alternative substrates coupled to a variety
of terminal electron acceptors (oxygen, nitrate, nitric oxide, and
ferric iron). Given that previously described nitrite oxidizers affil-
iate to the phyla Proteobacteria, Chloroflexota, Nitrospirota, and Ni-

trospinota (Daims et al. 2016b), this is the first report of putative
nitrite oxidation potential in the phylum Planctomycetota. Genes
encoding manganese, arsenite or iron oxidases were present in
12 of the 19 MAGs with putative novel nxr genes, indicating po-
tential for metabolic versatility related to metal(loid) oxidation in
these organisms (Fig. 3). Such potential agrees with versatility in
substrate oxidation previously reported for nitrite oxidizers of the
genus Nitrospira (Koch et al. 2015, Bayer et al. 2021) and expands
the potential for metabolic versatility in putative nitrite oxidizers.

Clusters of genes encoding proteins likely
involved in nitrogen cycling were conserved
acCross genomes.

We identified a conserved gene cluster together with putative ni-
trogen cycling-involved proteins across several genomes (Fig. 6).
In 13 instances (Supplementary Table 1), putative Nar-encoding
genes were present upstream of a six-gene cluster encoding (1)
a multi-heme c-type cytochrome (MHC) with, most frequently,
five heme-binding motifs (SMHC in Fig. 6), (2) a 4Fe-4S dicluster
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- - - -GCA_003597935.1 Subsurface aquifer fluids | USA: South Dakota

- - -GCA_016860685.1 Anammox granular sludge reactor | Japan: Higashihiroshima city
- - -GCA_015075705.1 Partial-nitration anammox reactor sludge | China:Hong Kong SAR
- - -GCA_013360585.1 Partial denitrification and anammox bioreactor | China:NandJing

- - -GCA_008933925.1 Biomass on anode of bioreactor | Netherlands:Ooijpolder

- - -GCA_008363155.1 Artificial municipal wastewater | China: Beijing

fffff GCA_016929015.1 Freshwater sediment | USA: Anadarko, OK, Zodletone Spring
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- - - -GCA_016208685.1 Groundwater | USA: California, Middletown

- - - -GCA_005240095.1 Alpine spring water | Italy: Trento, Comano Thermal Spring
- - -GCA_016200265.1 Groundwater | USA: California, Calistoga

- - -GCA_016178855.1 Groundwater | USA: California, Lower Lake

- - - -GCA_022563615.1 Sediment | Pacific Ocean: Mariana Trench

- - - -GCA_022563355.1 Sediment | Pacific Ocean: Mariana Trench

- - - -GCA_020344555.1 Sediment | China: Pearl river estuary

- - -GCA_022561415.1 Sediment | Pacific Ocean: Mariana Trench

Figure 4. Biogeography of Phycisphaerae MAGs affiliated to the family UBA1845. The phylogenetic tree was built using an alignment of 74 single-copy
genes (see methods) in MAGs retrieved from this study in combination with reference genomes retrieved from NCBI, as indicated by accession
numbers. The order Ca. Brocadiales was used as outgroup. Black circles indicate branches with >95% ultrafast bootstrap support.

domain-containing protein frequently fused to a molybdopterin
oxidoreductase (mbd in Fig. 6), (3) a polysulphide reductase
NrfD-type putative membrane subunit, (4) an alternative com-
plex III transmembrane subunit actD, (5) a cbbs-type cytochrome
c oxidase transmembrane subunit ccoP, and (6) a transmem-
brane quinol:cytochrome c oxidoreductase quinone-binding sub-
unit 2 (ccoll). This gene cluster had the architecture of an ion-
translocating energy-transducing membrane complex containing
an NrfD-like subunit, but did not match any previously described
complexes (Calisto and Pereira 2021). Therefore, based on HH-
pred divergent sequence similarity analyses and on the presence
of upstream putative Nar-encoding genes, we hypothesize that it
could represent a novel membrane-bound NrfAH-like nitrite re-
ductase, which converts nitrite to ammonium. Alternatively, these
genes could encode for a protein part of the respiratory electron
transport chain, given that, in five instances, oxygen reductase
genes were downstream of the gene cluster (Fig. 6). Additionally,
we identified in two MAGs (OFTM8 and OFTM33) a similar gene
cluster, missing the molybdopterin oxidoreductase, ccoP, and ccoll,
downstream of Nap- and putative Nxr-encoding genes, and, in one
MAG (OFTM248), a similar gene cluster downstream of a porin-
cytochrome c complex for iron reduction (Fig. 6). This further sug-
gests a potential role for proteins encoded by this gene cluster in
respiratory electron transfer.

Potential for high metabolic versatility was
detected in MAGs affiliated with the phyla KSB1
and planctomycetota.

We identified a variety of genes encoding proteins involved in ni-
trogen, oxygen, sulfur, and metal(loid) cycling in MAGs in this
study (Supplementary Table 1), suggesting potential for high
metabolic versatility in the microorganisms represented by these
MAGs (Fig. 3). All four KSB1-affilated MAGs (OFTM72, 153,177, and

356) had respiratory potential, with genes encoding nitrate, oxy-
gen, and iron reductases, as well as sulfhydrogenase genes for ele-
mental sulfur reduction to sulfide with dihydrogen gas production
(Fig. 3). Only one nosZ gene was detected in this study, in OFTM356
(Supplementary Table 1). Additionally, the KSB1 MAGs had genes
encoding arsenite and iron oxidases, hydroxylamine oxidoreduc-
tase, and genes with low sequence similarity to hzsABC from Ca.
Kuenenia stuttgartiensis (Fig. 3 and Supplemental Table 1).

These results provide further evidence for the role of KSB1
bacteria in nitrogen cycling and expand the potential for high
metabolic versatility in the KSB1 phylum. A recent, comprehen-
sive analysis of 44 nonredundant, high-quality KSB1 MAGs recon-
structed from groundwater, bioreactors, and marine ecosystems
previously identified metabolic potential for carbohydrate and hy-
drocarbon degradation potentially coupled to oxygen and nitro-
gen respiration (narG, nrfA, nosZ, and cydAB genes) in KSB1 bacteria
(Li et al. 2022). Given the low sequence similarity to canonical en-
zymes and the lack of an operon structure, we infer that hzsABC-
like genes in our KSB1 MAGs are unlikely to encode a hydrazine
synthase. Instead, we hypothesize that the prevalence of hzs-like
genes with low sequence similarity to canonical anammox genes
in MAGs from this study indicates that hydrazine synthase-like
enzymes may comprise a broader, widespread enzymatic family
with potential for activity with alternative substrates.

While all MAGs in our study had potential for nitrogen cy-
cling, 26 of 33 MAGs also had potential for metal(loid) cycling, sug-
gesting that bacteria represented by these genomes might couple
these reactions. Of 29 Planctomycetota MAGs, 15 had genes encod-
ing manganese oxidases, 3 encoding arsenite oxidases, and 5 en-
coding iron oxidases, which might be coupled to nitrate or oxy-
gen respiration in these microorganisms (Fig. 3). Additionally, iron
reduction potential was detected in four Planctomycetota MAGs.
A coupling of iron oxidation and nitrate reduction has been ob-
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Figure 5. Midpoint-rooted phylogenetic tree of NarG/NxrA-encoding genes. Reference sequences were retrieved from NCBI and start with accession
numbers. Other sequences were obtained from this study and are provided with DRAM annotations as well as bitscore values from blastp hits
(Supplementary Table 1) to the Ca. Kuenenia stuttgartiensis NarG/NxrA sequence present in the tree. The two main clades are color coded in orange

and green.

served before in the family Gallionellaceae (He et al. 2016) and the
DTB120 candidate phylum (McAllister et al. 2021), and this study
suggests that it might also occur in Planctomycetota.

To our knowledge, this is the first report of potential for man-
ganese and iron cycling in nonanammox bacteria in the phylum
Planctomycetota (Wiegand, Jogler and Jogler 2018, Kappler et al.
2021). However, 16S rRNA gene analyses of microbial mats from
an iron-rich thermal spring (Selvarajan et al. 2018), deep sea iron
hydroxide deposits (Storesund and @vreds 2013), and metallifer-

ous deposits from hydrothermal vents (Storesund et al. 2018) have
previously identified abundant Planctomycetota groups, including
Ca. Brocadiales and Phycisphaerae UBA1845. Additionally, the Planc-
tomycetota bacterium Bythoypirellula goksoyri was isolated on or-
ganic carbon sources under oxic conditions from deep sea iron
hydroxide deposits (Storesund and @vreds 2013). In our study, one
of three MAGs affiliated with Bythoypirellula had a Cyc2-encoding
gene, indicating potential for iron oxidation in these microorgan-
isms, which aligns with their isolation source. These results ex-
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Figure 6. Genomic regions representative of common gene clusters potentially encoding novel ion-translocating energy-transducing membrane
complexes containing an NrfD-like subunit in MAGs from this study. Genes in the molybdopterin (mbd) oxidoreductase (oxr)-containing gene cluster
are color coded in orange and are abbreviated as follows: MHC, multi-heme c-type cytochrome (cyt c), with the number of heme-binding motifs
indicated ahead; 4Fe4S, 4Fe-4S dicluster domain-containing protein frequently fused to the molybdopterin oxidoreductase subunit and unless
indicated; nrfD, a polysulphide reductase NrfD-type putative membrane subunit; actD, alternative complex III transmembrane subunit D; ccoP,
cbbs-type cytochrome c oxidase transmembrane subunit P; ccoll, transmembrane quinol:cytochrome c oxidoreductase quinone-binding subunit 2;
barrel, Cupin domain PF07883. Genes encoding subunits of low-affinity oxygen reductases (cox), periplasmic nitrate reductase (nap), putative
membrane-bound nitrate reductase (nar), and putative nitrite oxidoreductase (nxr) are color-coded in purple, green, blue, and yellow, respectively.
Some genes of interest upstream or downstream of gene clusters are included: FeTF, Iron-dependent transcriptional regulator; norB, nitric oxide
reductase; s70 or s54, regions interacting with these sigma factors; flgS, two-component system sensor kinase of the NtrC family; ctaA, heme a
synthase; sco, synthesis of cytochrome c oxidase protein; porin and porin-cytochrome c (PCC) complexes, iron reductases.

pand the phylogenetic diversity of microorganisms putatively in-
volved in metal cycling. Together with Zetaproteobacteria, which
has been previously detected in Oslofjord tunnel biofilms (Karaci¢
et al. 2018), these bacteria affiliated with Planctomycetota and KSB1
could contribute to iron oxidation in the Oslofjord tunnel, poten-
tially contributing to steel fiber corrosion. Finally, such microor-
ganisms could play a role in microbially-induced corrosion of built
infrastructure in other marine environments.

Conclusions

The deep biosphere remains largely unexplored due to sam-
pling costs and challenges. However, microbial communities in
these ecosystems may harbor untapped potential for novel bio-
geochemical reactions in the nitrogen cycle and biotechnologi-
cal applications. This study took advantage of samples from a
unique, oxygenated deep marine ecosystem, the Oslofjord tun-
nel, to explore the potential for such novel metabolic capabilities
in microorganisms enriched in concrete-degrading biofilms. We
identified potential for nitrogen and metal cycling in novel taxa
within the phyla Planctomycetota and KSB1, hypothesizing that
these microorganisms might be previously unrecognized anam-
mox, nitrite-oxidizing, and nitrogen- and metal-cycling bacteria.
These results expand the known diversity of microorganisms pu-
tatively involved in these important biogeochemical reactions,

and contribute to our understanding of potential biofilm impacts
on built infrastructure.
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MAX computational infrastructure. Assembly and binning were
done with resources provided by SNIC through UPPMAX under the
projects SNIC 2021-22-112 and 2021-23-111.
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