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Abstract 

The Oslofjord subsea road tunnel is a unique environment in which the typically anoxic marine deep subsurface is exposed to oxy- 
gen. Concrete biodeterioration and steel corrosion in the tunnel have been linked to the growth of iron- and manganese-oxidizing 
biofilms in areas of saline w ater see pa ge. Surprisingl y, pr evious 16S rRNA gene surveys of biofilm samples r ev ealed micr obial com- 
munities dominated by sequences affiliated with nitrogen-cycling microor ganisms. This stud y aimed to identify microbial genomes 
with metabolic potential for novel nitrogen- and metal-cycling r eactions, r e pr esenting biofilm micr oorganisms that could link these 
cycles and play a role in concrete biodeterioration. We reconstructed 33 abundant, novel metagenome-assembled genomes (MAGs) 
affiliated with the phylum Planctomycetota and the candidate phylum KSB1. We identified novel and unusual genes and gene clusters 
in these MAGs related to anaerobic ammonium oxidation, nitrite oxidation, and other nitr ogen-cycling r eactions. Additionall y, 26 of 
33 MAGs also had the potential for iron, manganese, and arsenite cycling, suggesting that bacteria r e pr esented by these genomes 
might couple these reactions. Our results expand the diversity of microorganisms putatively involved in nitrogen and metal cycling, 
and contribute to our understanding of potential biofilm impacts on built infr astructure . 

Ke yw ords: nitrogen cycling, anammox bacteria, nitrite oxidizers, metal cycling, Planctomycetota , KSB1 phylum 
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Introduction 

The marine deep biosphere comprises a significant part of life on 

Earth (Bar-On et al. 2018 ), but it is still lar gel y unexplor ed. The 
Oslofjord subsea tunnel in Norway is a unique environment in 

which the marine deep subsurface, typically comprised of anoxic 
sediments and jointed r oc k mass, is exposed to oxygen in the tun- 
nel. This subsea road tunnel has a maximum depth of 134 m be- 
low sea le v el and is cov er ed by sprayed concrete, employed di- 
r ectl y onto the r oc k mass, r einforced with steel fibers for r oc k 
support of the tunnel structure. Ho w ever, cracks in the bedrock 
allow seepage of saline water from the overlying water column 

through the bedrock and across the sprayed concrete layer. In ar- 
eas of the tunnel with water seepage, a biofilm has de v eloped on 

the spr ayed concr ete surface, causing biodeterior ation of the con- 
crete with associated steel fiber corrosion (Kara ̌ci ́c et al. 2018 ). The 
biofilm consists of an outer orange to bro wn lay er , rich in amor - 
phous iron hydroxide (ferrihydrite), and an inner black layer, rich 

in manganese oxide biominerals (Na-buserite , todorokite , and bir- 
nessite) (Hagelia 2007 , 2011 ). Reduction of these ir on hydr oxides,
manganese oxides and, additionally, sulfate, has been detected in 

some biofilms (Hagelia 2011 , Kara ̌ci ́c et al. 2018 ). 
Recei v ed 30 Mar c h 2023; revised 2 June 2023; accepted 7 June 2023 
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Biotic and abiotic reactions within the biofilm lead to acidifi-
ation of the saline water from pH 7.5–8 to 5.5–6.5 at low water
ow rates (Hagelia 2011 ). A likely responsible mechanism for the
cidification is microbial oxidation of Fe 2 + and Mn 

2 + with oxygen,
hic h, upon pr ecipitation of Fe 3 + and Mn 

4 + biominer als, r eleases
 

+ (Manahan 2000 ). Ho w e v er, these r eactions can also occur at
ircumneutral pH (Emerson 2000 ). Additionally, the penetration of 
hloride and the deposition of Mn-oxides is known to cause pit-
ing corrosion on steel (Dickinson et al. 1997 , Olesen et al. 2001 ,
agelia 2011 ). The acidic water causes deep disintegration and en-
ances the porosity of the cement paste matrix due to dissolution
f portlandite and calcium silicate hydrate, leading to formation 

f carbonates, thaumasite sulfate attack and magnesium attack 
Ha gelia 2011 , Kar a ̌ci ́c et al. 2018 ). 

Based on these pr e vious studies, metal-cycling micr oor ganisms
ere expected to be abundant in biofilms. Howe v er, when the 16S

RNA gene diversity of biofilm samples collected from three tun-
el areas was analyzed (Kara ̌ci ́c et al. 2018 ), microbial commu-
ities were surprisingly dominated by putative nitrogen-cycling 
embers: the most abundant amplicon sequence variant (ASV) 

cross 64 biofilm samples was affiliated with the ammonium- 
ights r eserv ed. For permissions, please e-mail: 
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xidizing archaeon Nitrosopumilus . Other highly abundant ASVs
ere affiliated with betaproteobacterial ammonium-oxidizing Ni-

rosomonadaceae , marine nitrite-oxidizing Nitrospina , nitrifying Ni-
rospira , and marine anaerobic ammonium-oxidizing (anammox)
andidatus Scalindua (Kara ̌ci ́c et al. 2018 ). Additionally, a follow-
p metagenomics study identified in these biofilms a novel family
f anammox bacteria named Ca. Anammoxibacteraceae (Suarez
t al. 2022 ). T hese results suggested that no v el micr oor ganisms
nriched in Oslofjord tunnel biofilms could perform metabolic re-
ctions linking nitrogen and metal biogeochemical cycling. 

Her e, we r econstructed meta genome-assembled genomes
MAGs) from Oslofjord tunnel biofilm samples r epr esenting abun-
ant community members affiliated with no vel taxa. T his study
imed to identify the metabolic potential for novel nitrogen- and
etal-cycling reactions, thus expanding the known diversity of
icr oor ganisms with the potential of linking these cycles . T his

esulted in the selection of 33 MAGs affiliated with the phylum
lanctomycetota and candidate phylum KSB1, which were interro-
ated with respect to their potential biogeochemical repertoire.
ypicall y, both phyla hav e br oad metabolic potential and ar e im-
licated in heter otr ophic lifestyles. Planctom ycetota ar e fr equentl y
escribed as extr emel y div erse bacteria with unusual cell bi-
logy and aerobic or facultative anaerobic, chemoheterotrophic
etabolism (Elshahed et al. 2007 , Spring et al. 2018 , Wiegand et al.

018 ), with the exception of the anaerobic lithoautotrophic anam-
ox bacteria (Kartal et al. 2012 ). Similarl y, while no r epr esenta-

ives of the candidate phylum KSB1 have been cultured to date,
AG analyses indicate that these microorganisms are likely in-

olved in organic carbon degradation and fermentation in estuar-
ne (Baker et al. 2015 ) and hydrothermal sediments (Dombrowski
t al. 2017 ), harboring genes encoding multiple carbohydrate-
ctive enzymes (López-Mondéjar et al. 2022 ) and potentially novel
sopr opanol dehydr ogenases (Dalcin Martins et al. 2019 ). 

In particular, we searched for both canonical and divergent
arker genes involved in nitrogen cycling pathwa ys . T hese in-

luded anaerobic ammonium oxidation via a reductive hydrox-
lamine oxidoreductase-encoding gene ( hao ) for nitrite reduction
o nitric oxide (Ferousi et al. 2021 ), hydrazine synthase ( hzsABC )
or ammonium oxidation coupled to nitric oxide r eduction, pr o-
ucing hydrazine (Dietl et al. 2015a ), and hydrazine dehydroge-
ase ( hdh ), for hydrazine oxidation to dinitrogen gas (Maalcke et
l. 2016 ). A gene encoding hydro xylamine o xidase ( hox ), with un-
nown physiological function but conserved in anammox bacte-
ia (Kartal and Keltjens 2016 ), was included in our analyses. We
lso searched for genes in aerobic (complete) nitrification (van
essel et al. 2015 ) via ammonium monooxygenase ( amoABC ), for
mmonium oxidation to h ydroxylamine, h ydr oxylamine oxidor e-
uctase ( hao ), for hydroxylamine oxidation to nitrite, and nitrite
xidoreductase ( nxrABC ) for nitrite oxidation to nitrate (Daims et
l. 2016a ). Genes in the denitrification pathway (Philippot 2002 )
omprised both membrane-bound ( narGHI ) and periplasmic ( na-
AB ) nitr ate r eductases for nitr ate conv ersion to nitrite, nitrite r e-
uctase for nitrite reduction to nitric oxide ( nirK and nirS ) or to
mmonium ( nrfAH ), nitric oxide reductase for nitric oxide conver-
ion to nitrous oxide ( norB ), and nitrous oxide reductase for the
ast step in denitrification, nitrous oxide reduction to dinitrogen
as ( nosZ ). 

Additionally, w e sear ched for genes encoding manganese- and
r on-cycling pr oteins: the manganese oxidase-encoding genes
nxG and mcoA (Geszvain et al. 2013 ), moxA (Ridge et al. 2007 ), and
otA (Su et al. 2013 ), the iron oxidase-encoding gene cyc2 (McAllis-
er et al. 2020 ), and se v er al genes encoding ir on r eductase com-
lexes (Garber et al. 2020 ), such as (outer membrane) c -type cy-
oc hr omes (Omc) and porin-cytoc hr ome c (PCC) complexes. Mi-
r oor ganisms that reduce iron can frequently reduce manganese,
n some instances using the same pr oteins, suc h as OmcS and
mcZ (Richter et al. 2012 ) and MtrCAB (Szeinbaum et al. 2014 ).
her efor e, in this study, MAGs with potential for iron reduction
ould also r epr esent micr oor ganisms ca pable of r educing man-
anese, and ther efor e ar e r eferr ed to as pr esenting gener al metal-
ycling potential. 

aterials and methods 

he Oslofjord subsea tunnel is part of road E134 near Drøbak in
orway (59.66 472 N, 10.61 306 E). Biofilms in two areas of the tun-
el wall, r eferr ed to as pump station and test site, were sampled
our times in total in 2016, 2017, 2019, and 2020. Biofilm sampling,
NA extr actions, and shotgun meta genomic sequencing wer e per-

ormed as pr e viousl y described (Kar a ̌ci ́c et al. 2018 , Suar ez et al.
022 ). Briefly, Illumina NovaSeq6000 sequencing generated 150 bp
air ed-end r eads, whic h wer e normalized to 100 × cov er a ge using
BNorm in the BBTools pac ka ge 38.61b ( https://sourceforge.net/
rojects/bbmap ) and co-assembled with Megahit 1.2.9 (Li et al.
015 ). Reads wer e ma pped to the assembl y with Bowtie v2.3.5.1
Langmead and Salzberg 2012 ), which was binned with MetaBAT2
2.15 (Kang et al. 2019 ) and BinSanity v0.5.3 (Graham et al. 2017 ).
AGs were dereplicated with DASTool v1.1.2 (Sieber et al. 2018 )

nd r etained onl y if less than 10% contaminated and more than
0% complete, as determined with Chec kM (P arks et al. 2015 ). Ad-
itionall y, MAGs wer e inspected for chimerism and contamination
ith GUNC v1.05 (Or ak ov et al. 2021 ). MAGs were classified with
TDB-Tk v1.5.0 (Chaumeil et al. 2019 ) with the GTDB 07-RS207

axonomy (Parks et al. 2020 ), and their r elativ e abundances wer e
alculated with coverM v0.6.1 ( https://github.com/wwood/Cover
 ) with the r elativ e_abundance par ameter in genome mode us-

ng BWA-MEM (Li 2013 ). Metagenome reads and MAGs from the
slofjord tunnel biofilms are publicly available in the NCBI Bio-
roject PRJNA755678. 

MAGs were annotated with DRAM v1.0 (Shaffer et al. 2020 ) with
efault options, except -min_contig_size 1000, and most genes
f interest were searched in annotation files. Additionally, some
enes were identified via complementary methods: genes encod-
ng pr oteins involv ed in anammox metabolism wer e searc hed
oth via annotation files and via blastp analyses using previously

dentified r efer ence sequences fr om Ca. Kuenenia stuttgartiensis
de Almeida et al. 2016 , Kartal and Keltjens 2016 ), and iron cycling-
elated genes were detected with FeGenie (Garber et al. 2020 ). Phy-
ogenetic tr ees wer e built with FastTr ee v2.1.10 (Price et al. 2010 )
nd visualized in iToL v6 (Letunic and Bork 2021 ), with the excep-
ion of the tree containing UBA1845 MAGs from this study and
 efer ence genomes, whic h was built with IQ-TREE v2.2.0 (Minh
t al. 2020 ) from an alignment of 74 single copy genes done with
T oT ree v1.7.00 (Lee 2019 ). Heat maps were generated in RStudio
4.2.1 using the v egan pac ka ge v2.6–4 (Oksanen et al. 2019 ). Gene
lusters were identified and visualized in R with the standard
ggenomes w orkflo w ( https:// github.com/thackl/ gggenomes ). Di-
 er gent sequence similarity anal yses wer e performed with HH-
r ed ( https://toolkit.tuebingen.mpg.de/tools/hhpr ed ). All figur es
ere edited in Adobe Illustrator. 

https://sourceforge.net/projects/bbmap
https://github.com/wwood/CoverM
https://github.com/thackl/gggenomes
https://toolkit.tuebingen.mpg.de/tools/hhpred
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Results and discussion 

Planctomycetota - and KBS1-affiliated MAGs were 

abundant across biofilm samples.
We analyzed our MAG dataset (NCBI BioProject PRJNA755678) for 
metabolic potential regarding novel nitrogen- and metal-cycling 
reactions. Upon MAG inspection for accuracy of assembly and 

binning, 33 MAGs were selected for this study, of which 24 had 

high quality ( > 90% completeness and < 5% contamination) and 

9 had medium quality (here, > 75% completeness and < 8% con- 
tamination) (Bo w ers et al. 2017 ). Individually, the MAGs selected 

for this study r eac hed up to 2.5% of r elativ e abundance in the 
biofilm community, summing 1.7%–7.6% of the community across 
biofilm samples (Fig. 1 ), which were collected in four instances be- 
tween 2016 and 2020 from two tunnel areas: the pump site, with 

spr ayed concr ete since 1999 for permanent r oc k support, and the 
test site , with spra yed concrete since 2010 to test concr ete dur a- 
bility (Hagelia 2011 ). The retrieved MAGs could not be easily clas- 
sified beyond the phylum le v el: all four of the candidate phylum 

KSB1-affiliated MAGs belonged to the putative family ‘CR04bin15’.
Furthermor e, onl y 6 of 29 MAGs within the phylum Planctomycetota 
could be classified beyond the putative family level (Supplemen- 
tary Table 1). Next, based on taxonomic novelty, we focused on 

searching for genes involved in nitrogen and metal cycling. 

Genes with sequence similarity to hydrazine 

synthase subunits were present in several 
phycisphaerae MA Gs. 
Anaerobic ammonium oxidation (anammox) is an important pro- 
cess in the nitrogen cycle and is catalyzed by the enzyme hy- 
drazine synthase, encoded by three genes ( hzsABC ) used as mark- 
ers for this metabolism (Harhangi et al. 2012 ). We identified 21 
genes that had blastp hits with a bitscore > 40 to hzsABC from Ca.
Kuenenia stuttgartiensis across 17 genomes in this study (Sup- 
plemental Table 1), hereafter referred to as hzs -like genes. While 
a minim um bitscor e v alue of 60 is the default used for DRAM an- 
notations (Shaffer et al. 2020 ), we used this low bitscore threshold 

to allow for the identification of div er gent sequences. 
Se v er al important genes potentially implicated in anammox 

metabolism were detected in seven MAGs affiliated with the class 
Phycisphaerae , within the putative family UBA1845: OFTM5, 174,
250, 285, 286, 321, and 371 (Figs. 2 and 3 ). These included 10 
hzsABC -like genes with blastp-derived bitscore values ranging 
from 89 to 163 (in the annotation range) against hzsABC from 

Ca. Kuenenia stuttgartiensis (Fig. 2 ), as well as similar values 
when hzsABC sequences from Ca. Scalindua or Ca. Anammox- 
ibacter were used. In these Phycisphaerae MAGs, hzsB - and hzsC - 
like genes were fused, as it has been observed in marine anam- 
mox Ca. Scalindua species (van de Vossenberg et al. 2013a , Di- 
etl et al. 2015b ), and had an hzsA -like gene encoded immedi- 
atel y upstr eam (Supplementary Table 1, Fig. 2 ). Similarl y, we found 

hzsABC -like genes in three reference genomes (GCA_016 208 685.1,
GCA_020 344 555.1 and GCA_022 563 615.1) affiliated with Phy- 
cisphaerae UBA1845, with hzsA immediately upstream of fused 

hzsBC -lik e subunits (Fig. 2 ). Ad ditionally, we identified in these 
MAGs genes annotated as hydroxylamine oxidoreductases ( hao 
and, only in OFTM5, also hox ), nitrate/nitrite oxidoreductases 
( narGHI or nxrABC ), R/b complex genes, ETM subunit 1 and 2- 
encoding genes, and other nitrogen cycle-related genes (Fig. 3 for 
a summary and Supplementary Table 1 for each gene annotation 

in each MAG). Ho w ever, no h ydrazine deh ydrogenase- or nitrite 
reductase-encoding genes ( hdh , nirK , or nirS ) were identified in any 
genomes from this study. Furthermore, genes encoding subunits 
f oxygen reductases were detected in five of these se v en MAGs,
nd genes encoding a nitric oxide reductase, periplasmic nitrate 
eductase , manganese , and iron oxidases were prevalent in Phy-
isphaerae genomes (Fig. 3 ). Analyses of reference genomes related
o Phycisphaerae UBA1845 MAGs in our study indicated that these

icr oor ganisms ar e pr esent in marine sediments and gr oundwa-
er, as well as in w astew ater and drinking water treatment plants
Fig. 4 ). 

Based on these results, we hypothesize that these se v en Phycis-
haerae MAGs within the family UBA 1845 could represent novel
nammox bacteria outside the order ‘ Ca. Br ocadiales’, whic h
olds all curr entl y described and hypothesized anammox taxa 

Kartal et al. 2012 , Suarez et al. 2022 , Zhao et al. 2022 ), re-
uiring future experimental validation by enrichment cultures 
nd 

15 N isotope studies . T he missing hydrazine dehydrogenase-
ncoding gene of the new MAGs could be too divergent to be de-
ected based on sequence similarity or, alternativ el y, the identified
ydro xylamine o xidoreductase could be involved in hydrazine ox-

dation to dinitrogen gas, an activity previously shown in vitro
n Ca. Kuenenia stuttgartiensis (Maalcke et al. 2016 ), relying on
 cross-link ed acti ve site heme (REF). Oxygen reductase genes
resent in these genomes might support the function of oxygen 

olerance or detoxification, which has been recently described in 

nammox bacteria in bioreactors (Yang et al. 2022 ) and aquifer
cosystems (Mosley et al. 2022 ). Furthermore, MAGs comprising a
ov el clade II gr oup of Ca. Br ocadiae, likel y anammox bacteria,
er e r econstructed fr om oxygenated aquifer samples and also

ac ked a hydr azine dehydr ogenase-encoding gene (Mosley et al.
022 ), as in our study . Finally , nitr ate-dependent ir on oxidation has
een reported in Ca. Brocadia and Ca. Scalindua enrichment cul-
ures (Oshiki et al. 2013 ), and metal oxide respiration has been
escribed in Ca. Kuenenia stuttgartiensis, Ca. Brocadia, and Ca.
calindua species (van de Vossenberg et al. 2013b , Strous et al.
006 , Oshiki et al. 2016 ), supporting the potential for metal-cycling
etabolism detected in these Phycisphaerae MAGs that could rep- 

 esent nov el anammox bacteria. Other MAGs in this study were
ot considered to represent potentially novel anammox because 
zsABC -like genes in these MAGs had a low bitscore value (40–
0) from blastp analyses using Ca. K. stuttgartiensis r efer ence se-
uences, hzsA was not immediately upstream or downstream of 
zsBC , and few anammox metabolism genes were identified in
hese genomes. 

o vel nitr a te/nitrite oxidoreductase genes w ere 

resent in planctomycetota -affiliated genomes.
n total, 37 genes encoding nitrate/nitrite oxidoreductases were 
dentified in this study (Fig. 5 ). Phylogenetic analyses of alpha
ubunit-encoding genes (NarG/NxrA) in combination with refer- 
nce sequences r e v ealed two major clades (Fig. 5 ). One contained
 efer ence sequences fr om anammox bacteria, nitrite oxidizers af-
liated with Nitrospirota , Nitrospinota , and Betaproteobacteria ( Ca.
itrotoga fabula), the nitrate reducers Ca. Methanoperedens sp.
LZ1 (archaea) and Thermogutta terrifontis ( Plantomycetota ), and 19
equences from this study that were poorly annotated (i.e. as
mol ybdopterin oxidor eductase’, Supplementary Table 1) but had 

trong blastp hits (bitscore > 1000) to Ca. Kuenenia stuttgartiensis
xrA, a subunit of a bidirectional nitrite oxidoreductase (Chicano 
t al. 2021 ). The second cluster contained 18 well-annotated se-
uences from our MAGs, reference sequences from fifteen species 
f nitr ate r educers (lo w er clade in Fig. 5 ), and five sequences from
itrite oxidizers affiliated with Chloroflexota ( Nitrolancea hollandica ) 
nd Proteobacteria ( Nitrobacter winogradskyi and Nitrococcus mobilis ) 
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Figure 1. Relative abundance of MAGs in pump station (P) and test site (T) samples collected from the Oslofjord tunnel in four years (2016–2020). 
Values are provided in Supplementary Table 1. 

Figure 2. Phylogenetic tree of hzsB and hzsC (-like) genes (concatenated protein sequences unless indicated as fused genes. Bold indicates reference 
sequences r etrie v ed fr om NCBI with r espectiv e accession numbers, while the other sequences wer e obtained fr om this study. Onl y sequences with an 
hzsA gene located upstream of hzsBC were included in the tree. Bitscore values were obtained from blastp hits (Supplementary Table 1) to Ca. 
Kuenenia stuttgartiensis HzsB and HzsC sequences, r espectiv el y, pr esent in the tree . T he tree was rooted in the Brocadiales (upper) clade. 
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nd the methane o xidizer Ca. Methylomirabilis o xyfera. All of
hese genes were part of NarGHI/NxrABC clusters in our MAGs, in-
icating that they likely encode novel nitrate/nitrite oxidoreduc-
ases. 

While we could not assign a reaction direction (nitrite oxida-
ion or nitrate reduction) based on our sequence analyses, we
ypothesize that sequences in the first cluster (orange in Fig. 5 )
ould r epr esent NxrA, giv en the pr e v alence of nitrite oxidizers
n this cluster and the widespread presence of genes encoding
xygen r eductases, hydr ogenases, and formate dehydr ogenases
n the 19 MAGs in this cluster (Fig. 3 and Supplementary Ta-
le 1). On the other hand, we hypothesize that 18 sequences in
he second cluster (green in Fig. 5 ) could r epr esent NarG, giv en
he pr e v alence of nitr ate r educers in this cluster. We hypoth-
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Figure 3. Summary of metabolic potential identified in MAGs in this study. MAGs r epr esenting or ganisms with potential for anammox metabolism ar e 
highlighted in orange, for nitrite oxidation in y ello w, and for other reactions in nitrogen and metal cycling in green. The presence of genes encoding 
pr oteins involv ed in nitr ogen (N), oxygen (O 2 ), sulfur (S), and metals (iron and manganese) or metalloid (arsenic) c ycling is indicated b y the 
corresponding metabolic group colors, while the absence of genes is indicated by grey. Proteins are as follows: HzsABC-like, genes with sequence 
similarity to subunits of hydrazine synthase; Hao, hydroxylamine oxidoreductase; Hcp, hydroxylamine reductase; NarGHI, putative membrane-bound 
nitr ate r eductase; NxrABC, putativ e membr ane-bound nitrite oxidor eductase; NorB, nitric oxide r eductase; Na pAB, periplasmic nitr ate r eductase; 
CoxABCD, lo w-affinity c ytoc hr ome c o xidase/o xygen r eductase; CydAB, high-affinity cytoc hr ome bd ubiquinol o xidase/o xygen reductase; Sulfhyd.; 
sulfhydrogenase/elemental sulfur reductase; MnOx, manganese oxidase; AoxAB; arsenite oxidase; Cyc2, iron oxidase; DFE, Desulfovibrio ferrophilus -like 
flavin-based extr acellular electr on tr ansfer complex for ir on r eduction; Omc, outer membr ane cytoc hr ome c for ir on r eduction; porin, porin involv ed in 
ir on r eduction; PCC, porin-cytoc hr ome c complex for ir on r eduction. 
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esize that these putativ e nitr ate r educers could hav e a r ole in 

the observed steel fiber corrosion in the tunnel, as the activity 
of nitr ate-r educing bacteria has been pr e viousl y linked to metal 
corr osion, potentiall y via extr acellular electr on tr ansfer (Miller et 
al. 2018 , Iino et al. 2021 ). Out of 19 Planctomycetota MAGs with 

putativ e nov el Nrx-type nitrite oxidor eductase-encoding genes,
six MAGs ( Planctomycetota OFTM77, Planctomycetota PLA2 OFTM341, 
Pirellulaceae OFTM348, Planctomycetaceae OFTM22, Bythopirellula 
OFTM389, and Bythopirellula OFTM39) also had putative Nar-type 
nitr ate r eductase-encoding genes (Fig. 3 and 5 ), similar to the 
Chloroflexota -affiliated nitrite oxidizer Ca. Nitr ocalder a r obusta,
which harbors two types of Nar/Nxr (Spieck et al. 2020 ). 

Most putative nxr -harboring MAGs had low- and/or high- 
affinity oxygen reductase genes and, frequently, norB, napAB , and 

hao (Fig. 3 and Supplementary Table 1). We infer that these MAGs 
could r epr esent putativ el y nov el nitrite oxidizers with metabolic 
versatility to oxidize alternativ e substr ates coupled to a variety 
of terminal electron acceptors (oxygen, nitrate, nitric oxide, and 

ferric ir on). Giv en that pr e viousl y described nitrite oxidizers affil- 
iate to the phyla Proteobacteria , Chloroflexota , Nitrospirota , and Ni- 
rospinota (Daims et al. 2016b ), this is the first report of putative
itrite oxidation potential in the phylum Planctomycetota . Genes 
ncoding manganese, arsenite or iron oxidases were present in 

2 of the 19 MAGs with putativ e nov el nxr genes, indicating po-
ential for metabolic versatility related to metal(loid) oxidation in 

hese organisms (Fig. 3 ). Such potential agrees with versatility in
ubstr ate oxidation pr e viousl y r e ported for nitrite o xidizers of the
enus Nitrospira (Koch et al. 2015 , Bayer et al. 2021 ) and expands
he potential for metabolic versatility in putative nitrite oxidizers.

lusters of genes encoding proteins likely 

nvolved in nitrogen cycling were conserved 

cross genomes.
e identified a conserved gene cluster together with putative ni-

rogen c ycling-inv olved proteins across several genomes (Fig. 6 ).
n 13 instances (Supplementary Table 1), putative Nar-encoding 
enes wer e pr esent upstr eam of a six-gene cluster encoding (1)
 multi-heme c -type cytochrome (MHC) with, most frequently,
ve heme-binding motifs (5MHC in Fig. 6 ), (2) a 4Fe-4S dicluster
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Figure 4. Biogeogr a phy of Phycisphaerae MAGs affiliated to the family UBA1845. The phylogenetic tree was built using an alignment of 74 single-copy 
genes (see methods) in MAGs r etrie v ed fr om this study in combination with r efer ence genomes r etrie v ed fr om NCBI, as indicated by accession 
numbers . T he order Ca . Brocadiales was used as outgroup. Black circles indicate branches with > 95% ultrafast bootstrap support. 
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omain-containing pr otein fr equentl y fused to a mol ybdopterin
xidoreductase (mbd in Fig. 6 ), (3) a polysulphide reductase
rfD-type putative membrane subunit, (4) an alternative com-
lex III tr ansmembr ane subunit actD , (5) a cbb 3 -type cytoc hr ome
 oxidase tr ansmembr ane subunit ccoP , and (6) a transmem-
r ane quinol:cytoc hr ome c oxidor eductase quinone-binding sub-
nit 2 ( ccoII ). This gene cluster had the arc hitectur e of an ion-
r anslocating ener gy-tr ansducing membr ane complex containing
n NrfD-like subunit, but did not matc h an y pr e viousl y described
omplexes (Calisto and Per eir a 2021 ). Ther efor e, based on HH-
r ed div er gent sequence similarity anal yses and on the pr esence
f upstream putative Nar-encoding genes, we hypothesize that it
ould r epr esent a nov el membr ane-bound NrfAH-like nitrite r e-
uctase , which con verts nitrite to ammonium. Alternatively, these
enes could encode for a protein part of the r espir atory electr on
r ansport c hain, giv en that, in fiv e instances, oxygen r eductase
enes were downstream of the gene cluster (Fig. 6 ). Additionally,
e identified in two MAGs (OFTM8 and OFTM33) a similar gene

luster, missing the molybdopterin oxidoreductase, ccoP, and ccoII ,
ownstream of Nap- and putative Nxr-encoding genes, and, in one
AG (OFTM248), a similar gene cluster downstream of a porin-

ytoc hr ome c complex for iron reduction (Fig. 6 ). This further sug-
ests a potential role for proteins encoded by this gene cluster in
 espir atory electr on tr ansfer. 

otential for high metabolic versatility was 

etected in MAGs affiliated with the phyla KSB1 

nd planctomycetota .
e identified a variety of genes encoding pr oteins involv ed in ni-

rogen, oxygen, sulfur, and metal(loid) cycling in MAGs in this
tudy (Supplementary Table 1), suggesting potential for high
etabolic versatility in the microorganisms represented by these
AGs (Fig. 3 ). All four KSB1-affilated MAGs (OFTM72, 153, 177, and
56) had r espir atory potential, with genes encoding nitr ate, oxy-
en, and ir on r eductases, as well as sulfhydrogenase genes for ele-
ental sulfur reduction to sulfide with dihydrogen gas production

Fig. 3 ). Only one nosZ gene was detected in this study, in OFTM356
Supplementary Table 1). Additionally, the KSB1 MAGs had genes
ncoding arsenite and iron o xidases, hydro xylamine o xidoreduc-
ase, and genes with low sequence similarity to hzsABC from Ca.
uenenia stuttgartiensis (Fig. 3 and Supplemental Table 1). 

These results provide further evidence for the role of KSB1
acteria in nitrogen cycling and expand the potential for high
etabolic versatility in the KSB1 phylum. A r ecent, compr ehen-

iv e anal ysis of 44 nonr edundant, high-quality KSB1 MAGs r econ-
tructed fr om gr oundwater, bior eactors, and marine ecosystems
r e viousl y identified metabolic potential for carbohydrate and hy-
r ocarbon degr adation potentiall y coupled to oxygen and nitr o-
en r espir ation ( narG , nrfA , nosZ , and cydAB genes) in KSB1 bacteria
Li et al. 2022 ). Given the low sequence similarity to canonical en-
ymes and the lack of an operon structure, we infer that hzsABC -
ike genes in our KSB1 MAGs are unlikely to encode a hydrazine
ynthase. Instead, we hypothesize that the pr e v alence of hzs -like
enes with low sequence similarity to canonical anammox genes
n MAGs from this study indicates that hydrazine synthase-like
nzymes may comprise a br oader, widespr ead enzymatic family
ith potential for activity with alternative substrates. 
While all MAGs in our study had potential for nitrogen cy-

ling, 26 of 33 MAGs also had potential for metal(loid) cycling, sug-
esting that bacteria r epr esented by these genomes might couple
hese reactions. Of 29 Planctomycetota MAGs, 15 had genes encod-
ng manganese oxidases, 3 encoding arsenite oxidases, and 5 en-
oding ir on oxidases, whic h might be coupled to nitrate or oxy-
en r espir ation in these micr oor ganisms (Fig. 3 ). Additionall y, ir on
eduction potential was detected in four Planctomycetota MAGs.
 coupling of iron oxidation and nitr ate r eduction has been ob-
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Figure 5. Midpoint-rooted phylogenetic tree of NarG/NxrA-encoding genes. Reference sequences were retrieved from NCBI and start with accession 
numbers. Other sequences were obtained from this study and are provided with DRAM annotations as well as bitscore values from blastp hits 
(Supplementary Table 1) to the Ca. Kuenenia stuttgartiensis NarG/NxrA sequence present in the tree . T he two main clades are color coded in orange 
and green. 
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serv ed befor e in the family Gallionellaceae (He et al. 2016 ) and the 
DTB120 candidate phylum (McAllister et al. 2021 ), and this study 
suggests that it might also occur in Planctomycetota . 

To our knowledge, this is the first report of potential for man- 
ganese and iron cycling in nonanammox bacteria in the phylum 

Planctomycetota (Wiegand, Jogler and Jogler 2018 , Kappler et al.
2021 ). Ho w e v er, 16S rRNA gene anal yses of microbial mats from 

an ir on-ric h thermal spring (Selv ar ajan et al. 2018 ), deep sea iron 

hydro xide de posits (Stor esund and Øvr eås 2013), and metallifer- 
us deposits from hydrothermal vents (Storesund et al. 2018 ) have
r e viousl y identified abundant Planctomycetota groups, including
a. Brocadiales and Phycisphaerae UBA1845. Additionally, the Planc- 

omycetota bacterium Bythoypirellula goksoyri was isolated on or- 
anic carbon sources under oxic conditions from deep sea iron
ydro xide de posits (Stor esund and Øvr eås 2013 ). In our study, one
f three MAGs affiliated with Bythoypirellula had a Cyc2-encoding 
ene, indicating potential for iron oxidation in these micr oor gan-
sms, which aligns with their isolation source. These results ex- 
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Figure 6. Genomic regions re presentati ve of common gene clusters potentially encoding novel ion-translocating energy-transducing membrane 
complexes containing an NrfD-like subunit in MAGs from this study. Genes in the molybdopterin (mbd) oxidoreductase (oxr)-containing gene cluster 
are color coded in orange and are abbreviated as follows: MHC, multi-heme c -type cytochrome ( cyt c ), with the number of heme-binding motifs 
indicated ahead; 4F e4S, 4F e-4S dicluster domain-containing protein frequently fused to the molybdopterin oxidoreductase subunit and unless 
indicated; nrfD, a polysulphide reductase NrfD-type putative membrane subunit; actD , alternative complex III transmembrane subunit D; ccoP , 
cbb 3 -type cytoc hr ome c oxidase tr ansmembr ane subunit P; ccoII , tr ansmembr ane quinol:cytoc hr ome c oxidor eductase quinone-binding subunit 2; 
barrel, Cupin domain PF07883. Genes encoding subunits of low-affinity oxygen reductases ( cox ), periplasmic nitrate reductase ( nap ), putative 
membr ane-bound nitr ate r eductase ( nar ), and putativ e nitrite oxidor eductase ( nxr ) ar e color-coded in pur ple, gr een, blue, and y ello w, r espectiv el y. 
Some genes of interest upstream or downstream of gene clusters are included: FeTF, Iron-dependent transcriptional regulator; norB , nitric oxide 
reductase; s70 or s54, regions interacting with these sigma factors; flgS, two-component system sensor kinase of the NtrC family; ctaA , heme a 
synthase; sco , synthesis of cytoc hr ome c oxidase protein; porin and porin-cytoc hr ome c (PCC) complexes, iron reductases. 
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and the phylogenetic diversity of microorganisms putatively in-
olved in metal cycling. Together with Zetaproteobacteria , which
as been pr e viousl y detected in Oslofjord tunnel biofilms (Kara ̌ci ́c
t al. 2018 ), these bacteria affiliated with Planctomycetota and KSB1
ould contribute to iron oxidation in the Oslofjord tunnel, poten-
ially contributing to steel fiber corrosion. Finally, such microor-
anisms could play a role in microbially-induced corrosion of built
nfr astructur e in other marine en vironments . 

onclusions 

he deep biosphere remains largely unexplored due to sam-
ling costs and challenges. Ho w ever, microbial communities in
hese ecosystems may harbor untapped potential for novel bio-
eoc hemical r eactions in the nitr ogen cycle and biotec hnologi-
al applications . T his study took adv anta ge of samples fr om a
nique, o xygenated dee p marine ecosystem, the Oslofjord tun-
el, to explore the potential for such novel metabolic capabilities

n micr oor ganisms enric hed in concr ete-degr ading biofilms. We
dentified potential for nitrogen and metal cycling in novel taxa
ithin the phyla Planctomycetota and KSB1, hypothesizing that

hese micr oor ganisms might be pr e viousl y unr ecognized anam-
o x, nitrite-o xidizing, and nitrogen- and metal-cycling bacteria.

hese results expand the known diversity of microorganisms pu-
ativ el y involv ed in these important biogeoc hemical r eactions,
nd contribute to our understanding of potential biofilm impacts
n built infr astructur e. 
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