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2 Introduction

1.1 Chronic obstructive pulmonary disease

Chronic Obstructive Pulmonary Disease (COPD) is a major global health issue, caus-
ing 3.23 million deaths in 2019 [1] worldwide. COPD exacerbations frequently lead to
hospital admissions and are the third most common cause of hospital readmissions,
accounting for 22.6% of cases [2]. Additionally, COPD places a significant economic
burden on healthcare systems and society, with COPD alone accounting for 56% (38.6
billion Euros) of the total direct costs of respiratory disease in the European Union,
which totals 6% of the annual healthcare budget [3].

COPD is an umbrella term to describe persistent respiratory conditions that result
in irreversible airflow obstruction in the lungs. Emphysema and chronic bronchitis
are the two most common conditions in COPD. Chronic bronchitis causes the nar-
rowing of small airways, while emphysema leads to the destruction of lung tissue.
Symptoms of COPD include dyspnea (shortness of breath), a chronic cough, the pro-
duction of mucus (sputum), and wheezing.

COPD is most commonly caused by tobacco smoking, but it can also be caused
by occupational hazards [4]. In developing countries, COPD is often seen in peo-
ple exposed to air pollution and fumes from cooking or heating in poorly ventilated
homes [5].

COPD is typically diagnosed through a pulmonary function test (PFT). This test mea-
sures the FEV1/FVC ratio, also known as the Tiffeneau-Pinelli index. The FEV1/FVC
ratio is the ratio of the vital capacity that can be exhaled in the first second of forced
exhalation (FEV1) to the full forced vital capacity (FVC). To distinguish COPD from
asthma, pulmonary functional parameters are measured after bronchodilator admin-
istration. An FEV1/FVC ratio of less than 70% post-bronchodilator is considered
indicative of irreversible airflow limitation [6,7].

The Global Obstructive Lung Disease (GOLD) guidelines [8–12] advise that the treat-
ment of COPD should focus on improving patients’ functional states. This means
that treatment planning should consider not only the degree of airflow limitation
but also the burden of symptoms experienced by the patient. In GOLD, airflow
limitation is divided into four grades (mild, moderate, severe, and very severe)
based on lung function assessment using the FEV1 (forced expiratory volume in
the first second) percentage of the predicted value. Additionally, the severity of
symptom burden and its impact on the overall quality of life are evaluated using
patient-reported outcomes such as the modified Medical Research Council Dyspnea
Scale (mMRC) [13] and the COPD Assessment Test (CAT™) [14]. These measurements,
along with the severity of airflow limitation, are used to guide patients’ therapy. The
GOLD guidelines also recommend considering a patient’s history of exacerbations
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Figure 1.1: To guide therapies, the GOLD guidelines identify patients’ COPD groups

(A, B, C, and D) by spirometry measurement, symptom assessment, and exacerba-

tion risk analysis. Image reproduced. Originals are available at: goldcopd.org/gold-

reports/.

(including previous hospitalizations) in treatment planning. Based on the combina-
tion of airflow limitation, symptom severity, and risk of exacerbation, patients are
divided into categories A, B, C, and D to determine appropriate treatment options.
Figure 1.1 summarizes the recent GOLD guidelines (2017-2021) [8–12] regarding COPD
treatment planning.

Most of the treatment options for COPD involve pharmacologic therapies [8,9], such as
short- or long-acting bronchodilators, long-acting muscarinic antagonists (LAMAs),
or long-acting beta2 agonists (LABAs). In severe cases of COPD, the lungs may be-
come hyperinflated due to the presence of emphysema and small airway disease. In
these cases, ventilatory assistance may be necessary to help patients with breathing
and improve gas exchange [15]. Exacerbations of COPD may also require ventilation
procedures, such as oxygen therapy, noninvasive ventilation (NIV), and endotra-
cheal intubation, to reduce the risk of mortality [15–17]. Guidelines for patient selec-
tion are needed to identify those who may benefit from ventilation procedures and
exclude those who are too ill to be treated safely. Surgical options such as lung trans-
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Figure 1.2: Endobronchial valves treatment (Zephyr EBV produced by Pulmonx Cor-

poration, Redwood City, CA, USA) using the placement of umbrella-shaped valve in

target airways via a plastic delivery catheter introduced through a flexible broncho-

scope. Image courtesy of Pulmonx Corporation.

plant and lung volume reduction surgery (LVRS) may be considered in severe cases
where the lung damage is localized. However, these options only apply to a lim-
ited patient population and depend on the patient’s general condition, the disease
severity and progression, the potential for complications, and the mortality risk. It
is generally believed [18] that lung reduction surgery should only be considered in se-
vere emphysema after patients have undergone optimal medical treatment, includ-
ing pulmonary rehabilitation, and have not improved their clinical status.

In the past decade, multiple minimally invasive approaches have been developed
and validated to provide the physiologic benefits of surgery with lower morbidity
and mortality rates. One example of these approaches is using endobronchial valves
as an alternative treatment to lung volume reduction surgery for specific patient
groups [19–22]. During the procedure, an umbrella-shaped valve is placed in the target
airways through a flexible bronchoscope, as depicted in Figure 1.2. The valve re-
stricts airflow into the airways distal to the valve but allows trapped air to be exhaled
from the target lung zone. The endobronchial valve treatment was designed for pa-
tients with heterogeneous emphysema, and it is essential to exclude patients with
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interlobar collateral ventilation (CV) as trapped air may travel into adjacent lobes,
leading to the failure of releasing the trapped air in the target lobe. Endobronchial
valve treatment has been shown to provide clinically meaningful and statistically
significant benefits in multiple efficacy outcomes compared to standard-of-care med-
ical therapy, with an acceptable safety profile in patients with severe heterogeneous
emphysema [19,20].

1.2 COPD heterogeneity and disease subtypes

In recent years, there has been a growing interest in personalized treatment ap-
proaches for COPD due to the complexity and heterogeneity of the disease. Pa-
tients with similar symptoms may respond differently to the same treatment. In an
effort to address this heterogeneity, researchers have been investigating COPD sub-
types based on functional parameters (such as airflow limitation), symptom charac-
teristics, physiology, and imaging findings. The goal is to identify unique patient
groups with common clinical features, treatment characteristics, and prognostic im-
plications. Some studies, such as the COPDGene study [23], have gone further by col-
lecting comprehensive data on clinical, physiological, radiological, biological, and
genetic aspects of COPD to understand the disease heterogeneity and underlying
genetic causes.

1.3 Role of thoracic imaging in COPD treatment

While lung function tests are useful diagnostic tools, they do not easily distinguish
the underlying cause of COPD and thus have limited utility in subtyping the disease
and determining appropriate treatment. Additionally, functional measures do not
provide information on the morphological aspects of the disease and are therefore
limited in their ability to track disease progression and monitor treatment response.
It is known that individuals with the same functional measures can have different
morphological appearances on chest imaging [24], with some having extensive em-
physema and others having little or no emphysema but rather an airway-dominant
disease. In addition, morphological changes of emphysema and airway disease are
present in a substantial proportion of subjects who do not meet spirometric criteria
for COPD [25]. Therefore, there has been a long-standing interest in using thoracic
imaging to characterize COPD through morphological analysis. Thoracic imaging
is also important for identifying COPD comorbidities, such as the presence of lung
cancer.
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Computed tomography (CT) has become the standard modality for in vivo visual
or quantitative morphological analysis of COPD [24,26]. CT techniques have advanced
to allow for the optimization of imaging for visualizing emphysema, airways, and
comorbidities such as lung cancer and fibrosis. For COPD characterization, thin-
section CT scans are obtained using the minimal possible radiation dose without
enhancement [27]. These scans should be processed at window-level settings suitable
for visualizing the lungs, typically at a window level of -700 Hounsfield units (HU)
and a window width of 1500 HU. A narrower window width (750–1000 HU) may
be helpful in detecting emphysema [28]. Minimum intensity projections may also be
used to show the presence, and extent of emphysema [29], and high-resolution re-
construction algorithms can provide localized lung visualization [30]. CT scans are
typically performed at full inspiration while the patient holds their breath (inspira-
tory CT). Additional expiratory CT scans can be obtained while the patient is at full
expiration [31] to quantify air trapping, a measure of small airway obstruction.

Given the morphological characteristics seen on CT, numerous studies have attempted
to identify CT-based COPD subtypes [23,27,32–35] to understand the heterogeneity of
the disease better. One common approach is distinguishing between emphysema-
dominant COPD and airway disease-dominant COPD [36]. For instance, individuals
with airway-dominant subtypes such as chronic bronchitis often have thicker airway
walls compared to those without chronic bronchitis [37]. On the other hand, abnormal
enlargement of the airspaces in emphysema can be visualized on CT scans as regions
of low CT attenuation surrounded by normal lung parenchyma (e.g., Hounsfield
units less than -925).

1.3.1 Emphysema subtypes

Based on the distribution of low attenuation regions in CT and the degree to which
they involve the secondary pulmonary lobule, emphysema can be characterized as
centrilobular, panlobular, or paraseptal. Centrilobular emphysema (shown in the
top row of Figure 1.3) is the most common type. It affects the proximal respiratory
bronchioles near the center of the secondary pulmonary lobule, particularly in the
upper lung zones. Panlobular emphysema (shown in the middle row of Figure 1.3)
affects the entire secondary pulmonary lobule and is often found in the lower lung
zones. This subtype is relatively rare and occurs particularly in individuals with
alpha-1-antitrypsin deficiency. Paraseptal emphysema (shown in the bottom row
of Figure 1.3) affects the peripheral parts of the secondary pulmonary lobule. It is
typically located adjacent to the pleural surfaces, including the pleural fissures [38].

The degree of lung emphysema involvement can also be visually or quantitatively
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Figure 1.3: Emphysema subtypes on CT: centrilobular (1st row), panlobular (2nd

row), and paraseptal emphysema (3rd row). Image Courtesy of Dr. David Cuete, Ra-

diopaedia.org, rID: 24495, Dr. Charlie Chia-Tsong Hsu, Radiopaedia.org, rID: 19161,

and Dr. Augusto César Vieira Teixeira, Radiopaedia.org, rID: 23229 from the top to

bottom row.
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measured using CT scans. In 2015, the Fleischner Society proposed a structured em-
physema scoring system [27] based on CT visual assessment. As shown in Figure 1.4,
the system defines a six-point ordinal scale to categorize the severity of centrilobular
emphysema as absent, trace, mild, moderate, confluent, or advanced destructive and
uses three-point ordinal scale to score the severity of paraseptal emphysema as ab-
sent, mild, or substantial. The system also defines additional visual features describ-
ing airway abnormalities, including small airway disease, tracheal abnormalities,
and bronchiectasis. Follow-up studies [39] have shown that the severity of centrilob-
ular emphysema is associated with mortality risk. In addition, this visual classifica-
tion system demonstrates good inter-observer agreement among radiologists [40].

Figure 1.4: Visually defined COPD Subtypes based on the degree of lung involve-

ment, and airway structural changes manifested on CT. A1AT = alpha-1 antitrypsin.

The source of this figure can be found elsewhere [27].

CT analysis can also be used to measure the heterogeneity of emphysema across
different lung lobes by quantifying the most diseased lobe in relation to other lobes.
Heterogeneous emphysema is identified by a difference of more than 15% in parenchy-
mal destruction between (inter-) and within (intra-) lobes [41]. Emphysema hetero-
geneity is important in selecting patients for lung volume reduction procedures [42].
The use of CT to identify emphysema heterogeneity highlights the importance of
thoracic imaging in COPD categorization, as it allows for a regional analysis of the
disease across different lung zones.
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(a) Normal bronchial walls. CT

scan in an asymptomatic non-

smoker with normal spirometric

findings demonstrates normal air-

ways.

(b) Bronchial wall thickening.

CT scan in a cigarette smoker

demonstrates marked thicken-

ing of segmental and subseg-

mental airways but no emphy-

sema.

Figure 1.7: Airway wall thickening may be assessed by comparison with visual stan-

dards obtained from subjects with normal and abnormal CT patterns. The detailed

information of this figure can be found elsewhere [27].

1.3.2 Airway disease subtypes

CT images can provide essential information for studying the morphological changes
of airways in COPD. For example, bronchial wall thickening, often seen in the chronic
bronchitis form of COPD [43], can be identified on CT by comparing the thickness of
the bronchial wall to the bronchial lumen and the diameter of adjacent pulmonary
arteries [44]. However, there can be substantial inter-observer variation in the assess-
ment of this feature, so it may be suggested to compare it to visual standards from
subjects with normal (Figure 1.7 (a)) and abnormal (Figure 1.7 (b)) airway walls [45].
The most important site of airflow obstruction in COPD is the small airways, which
are less than 2 mm in diameter [46,47]. These airways can become narrowed and ob-
structed by structural changes such as thickening of the airway wall, peribronchial
fibrosis, and the presence of inflammatory mucous exudate. These small airways
cannot be directly visualized with current CT scanners, but air trapping on expira-
tory CT scans can be used as an indirect measure of small airway dysfunction. On
the other hand, small airway disease may cause the airways to become visible on CT
as poorly defined centrilobular nodules of ground-glass attenuation [48].
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1.4 Computerized CT imaging analysis

The visual assessment of emphysema or airway changes in CT images can be subjec-
tive, prone to errors, and time-consuming. Therefore, there has been an increasing
interest in using computerized approaches to improve the consistency and accuracy
of measurements and increase productivity. These approaches often involve seg-
menting the structures of interest, such as the lungs, lobes, or airways, either semi-
automatically or automatically, before computing measurements on the extracted
structures.

Earlier versions of these algorithms relied on low-level image processing techniques,
such as regional-growing [49] and thresholding [50], along with task-specific rules [51] or
hand-crafted features. However, these approaches could be improved in their ability
to generalize to different data sets, as they can be affected by differences in data
collection protocols, disease characteristics, and population statistics. Additionally,
the algorithm may perform based on the knowledge of the designer. As a result, it
can be challenging to reproduce the results of one study using a different data set.
Therefore, a key concern in the field is to design algorithms that can perform well on
a wide range of data, referred to as having good generalization capabilities.

Machine learning algorithms provide a useful framework for improving generaliza-
tion capabilities, as they can learn from training examples and make predictions on
unseen data. The training objectives are designed to address the trade-off between
underfitting and overfitting the training data. Underfitting occurs when the model
lacks the complexity or learning capability to solve the problem in the target do-
main, while overfitting occurs when the model becomes too closely tailored to the
particularities of the training set and performs poorly on new data. This trade-off
was formulated in statistical learning theory [52] by minimizing the structural risk,
written as:

Rsrm(f) =
1

N

N∑
i=1

Lerm(yi, f(xi)) + λJ(f), (1.1)

where N is the number of training examples, f is the learned function set, and xi

is a training example with the corresponding target yi. The loss term Lerm is the
empirical risk measuring how well the learned function set fits the training data as
the approximation error. The loss term J(f) measures the complexity of the function
set f , determining the estimation error. λ controls the trade-off between estimation
error and approximation error. The term of J(f) can also be extended to a broad
concept of regularization techniques against overfitting.

Machine learning algorithms have been extensively used in medical image analy-
sis to automate diagnosis and predict treatment outcomes [53]. In particular, many



1.4 Computerized CT imaging analysis 11

approaches have been successfully applied to the analysis of CT scans in the con-
text of COPD treatment planning. Gaussian modeling [54], boosting [55], and graph
models [56] were used to label airway branches based on features such as orientation,
average radius, and angle relative to the parent. Additionally, lung lobes segmen-
tation has been approached using both supervised voxel classifiers [57,58], and unsu-
pervised probabilistic models [59,60]. While these approaches have demonstrated im-
proved performance compared to traditional low-level image processing techniques,
their generalizability can still be limited by the use of hand-crafted features. This re-
liance on feature engineering renders the machine learning process only partially
data-driven, resulting in the potential for inconsistencies in performance across dif-
ferent domains. A more data-driven approach can be achieved by adopting end-to-
end solutions that directly leverage artificial neural networks to map the input image
and desired output.

1.4.1 Artificial neural networks

Artificial neural networks (ANNs) are composed of functional units known as neu-
rons, which apply non-linear transformations (or activation functions) to incoming
signals using trainable parameters (weights) that determine the extent to which the
input signal is passed through the neuron. These weights are optimized during the
training process. ANNs are commonly constructed by stacking layers of neurons,
with neurons in each layer connecting to those in other layers but not to those within
the same layer (Figure 1.10 (a)). Layers that are located between the input and out-
put layers are referred to as hidden layers, as the neurons in these layers transform
the input using activation functions and weights.
Artificial neural networks (ANNs) are widely recognized as universal approxima-
tors, meaning that they can approximate any function using just one hidden layer [61].
This versatility allows ANNs to overfit target problems easily. In the past, compu-
tation limitations often restricted the use of neural networks to those with two or
three hidden layers. However, it is now possible to easily scale up ANNs by adding
more layers (making them deeper) or more neurons per layer (making them wider)
to determine the optimal network topology for a given dataset. The simplicity and
scalability of ANNs make them well-suited for developing efficient hardware and
software stacks for computation optimization.

1.4.2 Convolutional neural networks

Convolutional neural networks (CNNs) are specialized artificial neural networks
that have been demonstrated to achieve state-of-the-art performance in many medi-
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(a) Standard artificial neural network with three layers. Neurons at each

layer are fully connected with neurons in the next layer.

(b) Convolution neural network with one convolution layer (3 × 3 in kernel

size and has three output channels), one global pooling layer (reducing spa-

tial dimensions), and one standard neural network layer (linear layer) for a

2D input.

Figure 1.10: The conceptual diagram of a standard artificial neural network and a

convolution neural network.

cal image analysis tasks [62]. One key difference between CNNs and standard ANNs
is local connectivity and parameter sharing. In CNNs, each hidden layer typically or-
ganizes its neurons into a small spatial grid (a kernel), with a standard kernel size of
3×3 in 2D CNNs. Each layer consists of multiple kernels, and each kernel convolves
with the sliding windows in the input layer to generate the output, as shown in Fig-
ure 1.10 (b). This process entails reusing the same kernel for all sliding windows
in the input, known as the parameter-sharing scheme. This scheme is grounded on
the assumption that features in different spatial locations of an image are correlated.
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The use of small kernels in CNNs serves to enforce locality, allowing the network
to focus on extracting discriminative local features, similar to hand-crafted feature
descriptors such as SIFT [63], HOG [64], and LBP [65]. Additionally, small kernels and
parameter sharing can effectively reduce the number of trainable parameters (model
complexity) by limiting connectivity within the network.

In convolutional neural networks (CNNs), images are used directly as input to the
network without needing hand-crafted features, making the entire pipeline end-to-
end and data-driven. However, unlike in fully connected networks, the activation
of each neuron in a CNN no longer depends on all neurons in the input, potentially
limiting the ability of CNNs to capture global context [66]. One way to extract con-
textual features is to increase the field of view by stacking additional layers, which
can theoretically increase the receptive field size linearly [66]. This approach, known
as deep learning, has been particularly successful in computer vision and machine
learning.

1.4.3 Graph neural networks

The utilization of parameter sharing in convolutional neural networks (CNNs) is
particularly advantageous when processing image data. Various forms of artificial
neural networks (ANNs) are developed to cater to different data types in deep learn-
ing. For example, graph neural networks (GNNs) are a set of ANNs operating on
graph data.

Compared to CNNs, GNNs offer a more flexible framework that can handle grid-like
data like images and non-grid data like anatomical ontologies. In this framework,
vertices can represent semantic entities, while edges encode their relationships.

In medical image analysis, graph representation is especially beneficial in model-
ing anatomical structures by embedding their relationships through graph edges.
Graph neural networks (GNNs) solve problems associated with graph data by uti-
lizing neural network parameterization, leveraging scalable software and hardware
solutions designed for generic artificial neural network optimization to solve graph
problems.

1.4.4 Deep learning for thoracic CT analysis and COPD treatment

planning

Deep learning, an approach that involves the use of artificial neural networks with a
relatively large number of hidden layers, has seen significant success in the field of
image recognition, particularly with the family of ResNet networks [67], which have
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layer depths ranging from 34 to 101. Deep neural networks have consistently out-
performed shallow networks in computer vision challenges [68] since 2012 and have
also been successfully applied to a variety of medical image analysis tasks, includ-
ing image segmentation [69], computer-aided detection and diagnosis [70], and image
registration [71,72]. Several review articles have demonstrated that deep learning al-
gorithms can achieve performance on par with healthcare professionals in various
medical fields [73,74].

Deep learning has experienced a great deal of success in recent years in the field
of computer vision, and this can be attributed to a number of factors. Firstly, the
availability of advanced high-performance computing hardware, such as graphics
processing units (GPUs), allows for efficient computation of neural network propa-
gation through matrix multiplications. Secondly, the availability of large-scale train-
ing data [75] reduces the risk of overfitting when training complex neural network
architectures. Third, the development of algorithms such as batch normalization [76],
rectifier-based non-linearity [77], and residual connections [67] have further improved
the efficiency and robustness of training. Additionally, pre-trained deep neural net-
works are widely available and have been integrated into popular open-source pack-
ages such as Pytorch [78], Tensorflow [79], and specialized libraries for medical image
analysis [80]. This ease of use makes deep neural networks highly accessible to prac-
titioners in a wide range of fields.

Deep learning algorithms have been widely used in the context of thoracic CT anal-
ysis for a variety of purposes, including the detection of lung abnormalities such as
nodules [70,81,82], the identification and characterization of interstitial lung disease [83],
the analysis of emphysema [40], and the extraction of various lung anatomy, including
lungs [84], lobes [69,85], airways [86,87], and vessels [88]. Many of these approaches build on
convolutional neural networks and graph neural networks, combining insights from
traditional image processing and computer vision. Surveys of this field can be found
elsewhere [89,90].

1.5 Deep learning model interpretability

Despite the great success of deep learning, its application to medical image analysis
is still faced with certain challenges, particularly in model interpretability. In tradi-
tional machine learning, hand-crafted features involved in modeling were typically
low-dimensional and easy for humans to interpret. But in deep learning, models can
have millions of parameters, such as the 3D U-Net [93] architecture which uses 16.32
million parameters for segmenting objects in medical images. While this complexity
has proven to be effective in solving complex problems, it also makes it difficult for
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Figure 1.11: Two activation maps generated for visualizing deep learning model’s

prediction. The top row shows a CT coronal-view slice with a pneumonia-damaged

lung (left), and its corresponding class activation map (right) [91] produced by a model

trained to predict the presence of pneumonia in the lung lobes. The bottom row de-

picts a CT coronal-view slice from an emphysema-damaged lung (left) along with its

dense regression activation map (right) [92] produced by a model trained to regress the

emphysema percentage within the lung.

humans to understand deep learning models in the same way as traditional statis-
tical methods like generalized linear models, bayesian Models, and tree-based ma-
chine learning models. To better understand how deep convolution neural networks
make predictions, one common approach is to visualize saliency maps [94], which
highlight the parts of the input that contribute the most to the model’s decision-
making process. This idea has been extended through activation maps [91,92,95], which
incorporate both features (activations) and the weights of the layers to calculate
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saliency.
Class activation maps (CAMs) [91] displayed in the top-left of Figure 1.11 offer a visual
representation of the image regions that play the most crucial role in the prediction of
the presence of pneumonia. Meanwhile, the regression activation maps [92] displayed
in the bottom-right of Figure 1.11 indicate the image regions that are factored into
the computation of the regression target, in this case, the percentage of lung damage
caused by emphysema. A comprehensive examination of these activation maps and
their significance in deep learning model interpretability is elaborated in Chapters 4
and 5 of this thesis.

1.6 Outline

This thesis aims to identify a subset of deep learning algorithms that can be applied
to COPD quantitative CT analysis, with a particular emphasis on pulmonary lobe
segmentation, airway labeling, lesion detection, and emphysema subtyping, in order
to facilitate more advanced COPD treatment planning. The research presented in
this thesis can be summarized into three aspects:

1. We address several essential steps in performing quantitative thoracic CT anal-
ysis for COPD treatment planning. Specifically, we focus on lungs and lobes
segmentation (Chapter 2) and airway anatomical labeling (Chapter 3).

2. Our methods combine convolutional neural networks (CNNs) and graph neu-
ral networks (GNNs) to extract feature representations and model the relation-
ships between semantic entities (Chapters 2 and 3).

3. We developed a generic deep-learning method trained for regressing percent-
ages or volumes but can also be used to generate classification and segmenta-
tion predictions. This method has been applied to pulmonary lesion segmen-
tation (Chapter 4) and emphysema subtyping (Chapter 5).

This thesis is structured as follows:

Chapter 2 outlines a robust and efficient method for pulmonary lobe segmentation
in CT scans, leveraging relational modeling.
Chapter 3 delves into developing a structure and position-aware graph neural net-
work for airway labeling.
Chapter 4 presents a weakly-supervised segmentation technique based on regres-
sion training, focusing on improving model interpretability by generating dense re-
gression activation maps.
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Chapter 5 extends the method introduced in Chapter 4 for emphysema subtyping,
capable of simultaneously predicting both centrilobular and paraseptal subtypes.
Chapter 6 summarizes this research’s findings, contributions, limitations, and future
outlook in thoracic CT analysis for COPD treatment planning.





Relational modeling for pulmonary lobe
segmentation in CT scans

2

Authors: Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, and Bram van Ginneken

Original title: Relational modeling for robust and efficient pulmonary lobe
segmentation in CT scans

Published in: IEEE Transactions on Medical Imaging (Volume: 39, Issue: 8, Pages:
2664-2675, May 2020)

DOI URL: doi.org/10.1109/TMI.2020.2995108

https://doi.org/10.1109/TMI.2020.2995108


20 Relational modeling for pulmonary lobe segmentation in CT scans

Abstract

Pulmonary lobe segmentation in computed tomography scans is essential for the
regional assessment of pulmonary diseases. Recent works based on convolution
neural networks have achieved good performance for this task. However, they are
still limited in capturing structured relationships due to the nature of convolution.
The shape of the pulmonary lobes affects each other, and their borders relate to the
appearance of other structures, such as vessels, airways, and the pleural wall. We
argue that such structural relationships play a critical role in accurately delineating
pulmonary lobes when the lungs are affected by diseases such as COPD.
This paper proposes a relational approach (RTSU-Net) that leverages structured re-
lationships by introducing a novel non-local neural network module. The proposed
module learns visual and geometric relationships among all convolution features to
produce self-attention weights.
We initially trained and validated RTSU-Net on a cohort of 5000 subjects (4000 for
training and 1000 for evaluation) from the COPDGene study. Then, using mod-
els pre-trained on COPDGene, we apply transfer learning to retrain and evaluate
RTSU-Net on 470 COVID-19 suspects (370 for retraining and 100 for evaluation). Ex-
perimental results show that RTSU-Net outperforms three baselines and performs
robustly in cases with severe lung infections due to COPD or COVID-19 infections.
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2.1 Introduction

The human lungs consist of five disjoint pulmonary lobes. The right lung comprises
an upper, middle, and lower lobe, while the left lung only has an upper and a lower
lobe. The lobes are separated by the pulmonary fissures, a double-fold of visceral
pleura visible as a thin line on CT images. The lobes are functionally independent
units because each has its own vascular and bronchial supply. As a result, the extent
of the disease often varies substantially across lobes, and lobe-wise assessment of
pulmonary disorders is of clinical importance.

Computed Tomography (CT) is the best way to image the lungs in vivo. COVID-
19, the pandemic disease caused by the SARS-Cov2 virus, is straining healthcare
systems worldwide. A CT severity score can summarize the severity of the disease,
where radiologists score each lobe visually on a scale from 0 to 5. The summation
of these scores quantifies lung involvement on a scale from 0 to 25 [96]. The score
provides a tool to assess disease severity and progression, which further benefits
clinical decision-making. To automate the CT severity score, lobe segmentation in
COVID-19 scans is needed. CT scans of COVID-19 patients are affected by extensive
patchy ground-glass regions and consolidations and may even show lobes or whole
lungs filled with pleural fluid. Automated lobe segmentation is highly challenging
in scans with such extensive pathological changes.

Many automatic lobe segmentation approaches focused on finding visible fissures,
assuming that detecting fissures equivalent to finding the lobe segmentation by in-
terpolation. Both early fissure enhancement filters [97–100] and more robust supervised
learning methods [58] relied heavily on hand-crafted features, thus being hard to gen-
eralize. Moreover, because incomplete fissures are very common [101], interpolating
boundaries based on visible fissures may not suffice to reliably find the lobe borders.
Instead of finding fissures alone, anatomical relations between lobes and nearby air-
ways, vessels, and lung borders were exploited to account for incomplete fissures
and damaged lungs due to pathology [60,102–104].

Recent advances in convolution neural networks (CNN) provides a data-driven ap-
proach for more robust feature extraction in an end-to-end optimization process.
Many works have successfully adopted CNNs in their lobe segmentation frame-
work [105–108]. Deep supervision [105] was extensively used in the up-sampling path
based on their V-Net design [109] along with the multi-tasking that segments lobe and
lobe borders at the same time. Imran et al. [106] uses a relatively deeper architecture
based on Dense-Net [110] to ensure a sufficient receptive field of extracted features.
Global Geometric features were explored [107] as additional input channels to a con-
volution layer.
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The use of multi-resolution input in two-stage cascading CNNs to extract both global
and local features has been proposed for lobe segmentation in CT by Gerard et al. [108].
Their first stage network was trained on low-resolution images to learn global fea-
tures from the entire scan. The global features were added to the second stage net-
work to provide contextual guidance, while the second stage network was designed
to focus on capturing local details at a high resolution. Their framework has also
been successfully applied for pulmonary fissure and lung segmentation tasks [85,111].
In this work, we also employ a two-stage approach that is trained in an end-to-end
fashion.
Although existing CNN approaches have achieved superior performance in lobe
segmentation, they may still be inefficient and limited in relational reasoning, such
as capturing the interlobar relationships and other long-range relationships between
lobes and other structures in the CT image. CNN approaches assumed that such
relationships between objects and object parts in semantic segmentation could be
implicitly learned directly from the CNN training process.
However, the hierarchical feature representation computed using a sequence of stacked
convolutional layers can be highly inefficient in inferring relations between convo-
lution features [112,113]. As higher-level features in CNNs commonly represent objects
and object parts, instead of aggregating these features based on their semantic inter-
actions, convolutional filters act as templates, where features are aggregated depend-
ing on the filter weights. This may cause inefficiency in capturing relations between
features because filter weights are not invariant to permutations of features. In addi-
tion, convolution filters are limited to capturing long-range relations due to the use
of local kernels.
CT findings in patients of COVID-19 infections [114,115] often include multiple regions
with focal pathological changes, ranging from ground glass to consolidations to or-
ganizing pneumonia. These changes occur more often in the lower lobes. Here the
lobar boundaries can be deformed substantially. In these cases, information from
other regions in the CT image may be crucial for locating and delineating a target
lobe. Therefore, in this paper, we introduce a novel non-local neural network mod-
ule to model the global structured relationships for pulmonary lobe segmentation.
The proposed non-local neural network module computes a feature response at one
location using both appearance and geometric features from all other positions at
the scan level. We call this approach a relational two-stage U-Net, or RTSU-Net, for
short. The main contributions of this paper are as follows:

• We propose a novel non-local neural network module that can capture the
global structured relationships between object and object parts in terms of their
visual and geometric features for lobe segmentation. The proposed RTSU-Net
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is robust and produces accurate lobe segmentations even for scans with severe
pathology.

• We used a multi-resolution framework [85,108,111], however, we train both stages
in an end-to-end fashion. This allows the RTSU-Net to capture the global object
relationships at the full scan level from the first stage network while extracting
local details at the second stage simultaneously in the same optimization pro-
cess.

• RTSU-Net is fast and memory-efficient, considering it consists of a cascade of
two CNNs. RTSU-Net requires only a standard GPU with 12GB memory to
train and takes around 30 seconds to produce lung and lobe segmentations for
a full thoracic CT scan at test time. The time consumption includes the CNN
inference time, pre-processing, and post-processing, excluding the time spent
on IO.

Related works

Although convolutional neural networks (CNNs) have achieved superior perfor-
mance in a wide range of medical imaging segmentation tasks [93,109], they are still
limited in modeling object relationships, especially the long-range interactions. Sev-
eral techniques have been proposed to account for the missing capability of rela-
tional reasoning in CNNs. Poudel et al. [116] introduced recurrent neural networks
to aggregate features across the axial slices for cardiac segmentation in multi-slice
MRI. A known issue with recurrent network networks is that they suffer from van-
ishing gradients [117] and therefore are hard to train. The object relations could also
be explicitly defined using Graph Models such as dense conditional random fields
(CRF) [118]. However, due to their heavy computational demands, dense CRFs are
often only used as the post-processing steps and optimized separately on a heuristic
basis, making it hard for this approach to scale well.
Attention is widely used for various tasks such as machine translation, image and
video classification, object detection, and semantic segmentation. Self-attention meth-
ods [119,120] capture contextual dependencies between words by computing the em-
bedding at one word by a weighted summation of embeddings at all words in sen-
tences. As one of the self-attention applications, a non-local neural network was
proposed for semantic segmentation [121] by computing a global self-attention map
for each feature based on all the other features in an input CNN feature map. The
attention weights were determined by predefined similarity measurements between
pairwise features in a linear-projected subspace as an efficient way of modeling their
conceptual relationships.
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There are several recent extensions of this non-local method in semantic segmenta-
tion. CCNet [122] was proposed to employ a simple criss-cross trick, which reduces
the space and time complexity of the non-local module from O((H ×W )× (H ×W ))

to O((H ×W )× (H +W − 1)) in two-dimensional images. Hu et al. [112] aggregated
features based on visual and geometric correspondence in a locally connected ag-
gregation graph, thus lacking long-range relationships. A dynamical aggregation
graph [113] was proposed to capture both short and long-range relationships, but no
geometric correspondence between features was used.

Our approach is motivated by the above works. Our self-attention module uses the
criss-cross trick to collect global structured relationships between object and object
parts regarding their visual and geometric correspondence in the feature representa-
tion.

Chapter outline

The chapter is organized as follows. Section 2.2 reports the datasets used to train and
validate our method. Section 2.3 describes the methodology in depth. All details re-
garding experimental setups are explained in section 2.4. Section 2.5 demonstrates
the results of experiments compared to the state-of-the-art methods, followed by sec-
tion 2.6 where the discussion and final conclusion are stated.

2.2 Data

CT scans used in this study were obtained from two sources. We refer to the first set
as the COPD set and the second set as the COVID-19 set.

A large set of scans from subjects with COPD, ranging from mild to very severe,
was obtained from the COPDGene study [23]. This is a clinical trial with data from 21
imaging centers in the United States. In total, COPDGene enrolled 10,000 subjects.
Each subject underwent both inspiration and expiration chest CT. Image reconstruc-
tion uses sub-millimeter slice thickness and in-plane resolution with edge-enhancing
and smooth algorithms. Data from COPDGene is publicly available and can be re-
trieved after submitting an ancillary study proposal (ANC-398 was used for this
work).

We randomly selected 5000 subjects and used only Phase I inspiration CT scans (one
scan per subject). Subjects were randomly grouped into a training set (n = 4000) and
a test set (n = 1000). Slice thickness ranged from 0.625-0.9mm, and pixel spacing from
0.478-1.0mm. Most scans were performed using 200mAs, a tube voltage of 120kVp,
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Table 2.1: Characteristics of the two data sets used in this study. (a) lists the dis-

tribution of GOLD stages and other classes, see [23] in the COPD data set. (b) gives

the distribution of CO-RADS scores [96] across the training and test sets. CO-RADS

score 1-6 indicates the level of suspicion for COVID-19 positive disease, ranging from

very low, low, equivocal, high, very high, and confirmed positive from the reverse-

transcription polymerase chain reaction (RT-PCR) tests, respectively.

(a) COPD set GOLD stages
GOLD stages #subjects for training #subjects for testing

GOLD0 1709 433

GOLD1 319 80

GOLD2 734 184

GOLD3 441 110

GOLD4 226 57

Non Spirometry 30 2

Non Smoking 45 11

PRISm 496 123

Total 4000 1000

(b) COVID-19 set CO-RADS

CORADS #subjects for training #subjects for testing

1 158 23

2 46 9

3 47 20

4 30 16

5 65 24

6 24 8

Total 370 100

and B31f and B35f reconstruction kernels. The detailed CT protocols can be found
elsewhere [23].

The other data set was obtained from Radboud University Medical Center, Nijmegen,
the Netherlands. On March 18, 2020, this institution implemented a low-dose non-
contrast CT protocol and all patients who arrived at the hospital with suspicion of
COVID-19 disease and inpatients for whom COVID-19 was considered a possibility
underwent CT. In accordance with local guidelines, we only included scans from
subjects who did not object to the use of their scans for research purposes and we
worked with anonymized data. Permission for research use was obtained from our
review board (file number CMO 2016-3045, Project 20027). It is the intention to share
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these scans via a national Dutch COVID-19 database.

We randomly selected 470 subjects and used one scan per subject by selecting the CT
scan of the smallest slice thickness in a study. Scans have a pixel spacing between
0.5mm to 0.9mm and a slice thickness of 0.5 mm. Scans were performed using an
X-ray tube current ranging from 10mA to 493mA and a tube voltage of either 100 or
120kVp. Convolution kernels in reconstruction were lung kernels (FC83, FC86). 370
of these scans were used for training and the other 100 for testing.

See Table 2.1 for the distribution of GOLD stages in the training and the test set for
the COPD set and the distribution of CO-RADS scores [96] from the COVID-19 set.
The CO-RADS scores defined the level of COVID-19 suspicion and were extracted
from the radiology reports. Unfortunately, complete individual results of reverse-
transcription polymerase chain reaction (RT-PCR) tests were not available at the time
of anonymization of the data, but it is known that the majority of the test cases were
positive for COVID-19 (these test cases overlap with the data used in the previous
study [96]).

From the two training data sets, we selected 100 scans as the validation set for the
COPD set, and we selected 50 scans for validation from the COVID-19 set for retrain-
ing all the models.

2.2.1 Reference standard

Lobe segmentation references were obtained from Thirona, a company that special-
izes in chest CT analysis. First, automated segmentation of the left and right lung
was generated using commercialized software (LungQ, Thirona, Nijmegen, NL),
followed by manual refinement if needed. Second, automatic algorithms [58,103,123]

were used to extract the lobar boundary with possible interpolation for incomplete
fissures using information from nearby airways and vessels. Next, the automati-
cally found lobar boundaries were manually corrected separately for the left and
the right lung by trained analysts with at least one year of experience in annotating
pulmonary structures on CT. Analysts repeatedly adjusted the control points on the
auto-generated lobar boundaries until the updated lobar boundaries were satisfac-
tory. All analysts have a medical background and have received extensive training
in lung anatomy and segmenting lobes in CT imaging. In case of doubt, radiologists
could be consulted.
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Figure 2.1: The overview of our lobe segmentation framework with a cascade of two

CNNs. At each stage, a CNN (RU-Net) uses the proposed non-local module to cap-

ture the structured relationships between objects and object parts. The output from

the RU-Net I is concatenated with the cropped 3D patches as the input for RU-Net II.

2.3 Method

In this paper, we use a multi-resolution approach [108] with two cascaded CNNs to
capture both global context and local details for lobe segmentation. Our framework
is depicted in Figure 2.1.
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Besides the use of a multi-resolution framework, we introduce a novel non-local
module to capture structured relationships, and our efficient network design allows
end-to-end training of our multi-resolution framework. For each CNN, we place our
proposed non-local module to aggregate relational information for the features at the
coarsest resolution as these features commonly represent high-level semantics such
as objects and object parts [124]. The proposed non-local module computes visual and
geometric correspondence between these features, naturally modeling relationships
between objects and object parts. The use of geometric information is inspired by
Wang et al. [125]. Also, the proposed non-local module can enlarge the receptive fields
of these features because the computation of one non-local response involves all fea-
tures in the feature map. We refer to the CNN with the proposed non-local module
at each stage as relational U-Net (RU-Net), and the details are explained later in this
section.

2.3.1 Cascading relational U-Nets

The first RU-Net reads an input scan at a down-sampled resolution to segment the
lobes and lobe borders coarsely. These coarse outputs are subsequently upsampled
to a higher resolution by trilinear interpolation. The high-resolution input scan and
the output of the first RU-Net are concatenated and cropped into 3D patches as the
input to train the second RU-Net to precisely segment lobes and lobe borders. The
cascade of two relational U-Nets is trained end-to-end, allowing both local details
and scan-level context to be learned in the same optimization process. Furthermore,
we use the errors found in the predictions of the first RU-Net to optimally sample
3D patches for training in the second stage, which encourages the second RU-Net
to focus on the regions where the first RU-Net fails. This technique can be seen as a
form of online hard example mining [126].

2.3.2 Relational U-Net

The relational U-Net architecture (RU-Net) is a 3D U-Net architecture [93] with a smaller
number of convolution filters and an additional non-local module. The RU-Net has
three down-sampling layers in the encoding path, and each layer consists of two
convolutions and a max-pooling operation. Following the down-sampling path,
two more convolutions are used to double the number of convolution filters. We
then place the non-local module before up-sampling. In the up-sampling path, three
layers are used to reconstruct the resolution, and each contains one tri-linear interpo-
lation, followed by two convolutions to reduce the interpolation artifacts. In the end,
features are reshaped via a single 1x1x1 convolution in two parallel output branches,
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and each corresponds to a different learning objective; one produces 6-channel soft-
max probabilities for segmenting the background and the five lobes. The other pro-
vides a single channel probability map by sigmoid function for predicting the lobe
border. Features from 3x3x3 convolutions are batch normalized and activated via a
rectifier linear unit (ReLU). No dropout is used.
The first RU-Net uses padded convolutions, whereas the second uses valid convo-
lutions. The details regarding RU-Net network architecture on both stages are pro-
vided in Table 2.2, where the names of the down-sampling layers are prefixed with
’Down’, and the name of up-sampling layers are prefixed with ’Up’. The numbers
listed are based on the execution order.

2.3.3 The Non-Local module

The original non-local neural network [121] for semantic segmentation computes the
feature response at a position as a weighted sum of the features at all locations in the
input feature maps as

yi =
1

ζ(x)

∑
∀j

f(xi, xj)g(xj), (2.1)

where yi at location i is computed as a weighted sum using the correspondence be-
tween the feature xi at the location i and all features indexed by j in the input fea-
ture map x. The feature correspondence between feature xi and xj is also called the
self-attention in this context, computed by the pairwise function f , which is used to
weigh the feature embedding g(xj) before normalizing by ζ(x). For simplicity, g is set
to a linear projection: g(xj) = Wgxj , and the pairwise function f can be the embed-
ded Gaussian function using linear embeddings defined as f(xi, xj) = e(Wθxi)

T (Wϕxj).
We set the normalizing factor as ζ(x) =

∑
∀j f(xi, xj). Then y becomes the soft-

max computation along the dimension j written, in matrix multiplication form, as
y = softmax(xTW T

θ Wϕx)g(x). To make the input and output of the non-local mod-
ule the same size, the yi is reshaped to have the same dimensions as the input xi by
applying the linear reconstruction function r, r(yi) = Wryi. Therefore, the non-local
response at location j can be written as zi = Wryi + xi.
The feature response zi automatically achieves a global receptive field with respect
to the input. The computed self-attention map f(xi, xj) captures the feature correla-
tions, as relevant features would have higher attention responses.
However, the original non-local module disregards the geometric correspondence
between features, while Wang et al. [107] shows that introducing geometric coordi-
nates improves the performance of lobe segmentation. Hence, we propose to com-
pute non-local responses with a geometric term. Here, we denote µi, µj as geometric
coordinates for the position i and j. µi is the center coordinate of the receptive field
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Table 2.2: Architectures for the first and the second stage of the relational U-Nets.

The convolution filters are named by the kernel sizes K and the number of filters N

as K×K×K,N (stride 1 for all). Non-local linear embedding parameters are defined

in Equation 2.3 and 2.5. ∥ denotes the operation performed in dual paths.

Layer RU-Net I RU-Net II

Down1
3x3x3,1-16

3x3x3,16-24
3x3x3,8-24
3x3x3,24-48

2x2x2 max pool, stride 2

Down2
3x3x3,24-24
3x3x3,24-48

3x3x3,48-48
3x3x3,48-96

2x2x2 max pool, stride 2

Down3
3x3x3,48-64

3x3x3,64-128
3x3x3,96-96

3x3x3,96-192
2x2x2 max pool, stride 2

Bridge
3x3x3,128-128
3x3x3,128-256

3x3x3,192-192
3x3x3,192-384

Non-local
Wθ,Wϕ∈R256×32 Wω

Wρ∈R3×32 Wr∈R32×256

Wθ,Wϕ∈R384×32 Wω

Wρ∈R3×32 Wr∈R32×384

Up1
3x3x3,384-128
3x3x3,128-128

3x3x3,576-192
3x3x3,192-192

trilinear interpolation x2

Up2
3x3x3,176-48
3x3x3,48-48

3x3x3,288-96
3x3x3,96-96

trilinear interpolation x2

Up3
3x3x3,72-24
3x3x3,24-24

3x3x3,144-48
3x3x3,48-48

trilinear interpolation x2

Output 1x1x1,6 ∥ 1x1x1,1 1x1x1,6 ∥ 1x1x1,1

MAC 5.71 G 8.79 G

#Parameter 3.85M 9.24 M

of the feature at position i with respect to the original input image and rescaled to
[0 ∼ 1] range by the size of the original input image. We note that if the feature map
is produced from a cropped input, the center coordinate of the receptive field is then
shifted according to the 3D patch offset to the original input image. The rescaled
geometric coordinates are then shifted by 0.5 to have zero means. τ(µi, µj) is the
pairwise function for measuring correlations. Then, the non-local response with ge-
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ometric terms is defined as:

yi =
1

ζ(x, µ)

∑
∀j

(f(xi, xj) + τ(µi, µj))g(xj), (2.2)

A similar reparameterization can be applied using the softmax function row-wise
under linear projections to reformulate Equation 2.2 into matrix multiplications:

y = softmax(xTW T
θ Wϕx+max(0, µTW T

ω Wρµ))g(x), (2.3)

where f(xi, xj) is parameterized as a dot product in a subspace projected using the
linear transformation matrix Wθ and Wϕ. Similarly, Wω and Wρ are linear trans-
formations that are used to project the geometric features µ into a subspace where
their correspondence is measured by the pairwise kernel function τ , τ(µi, µj) =

max(0, µTW T
ω Wρµ). Such correspondence is then trimmed at 0 to restrict geomet-

ric relations within a certain threshold.

The Equation 2.3 however, has a high computational cost because the self-attention
map requires computing xTW T

θ Wϕx and µTW T
ω Wρµ on all pairs of locations. Each

term has complexity in time and space of O(C × W 2 × H2 × D2) where C is the
dimension of linear projected subspace and W,H,D denotes the width, height, and
depth of a 3D feature map. To reduce computational complexity, we adopt the criss-
cross trick [122], which has a time and space complexity of O((C×W ×H×D)× (H+

W +D − 2)). In CCNet, Equation 2.2 is modified to:

yi =
1

ζ(x, µ)

∑
j∈Ωj

(f(xi, xj) + τ(µi, µj))g(xj), (2.4)

where Ωj indicates the neighboring voxels with respect to j under criss-cross connec-
tivity, such sparse connectivity requires having three recurrent criss-cross modules
to cover all spatial locations in computation.

Given the input feature xi, the non-local response zti for a feature location i at each
t-th recurrent criss-cross module can be written as follows:

zti =

xi if t = 0

Wry
t−1
i + zt−1

i if t = 1, 2, . . . , T

yti =
1

ζ(zt,µ)

∑
j∈Ωj(f(z

t
i , z

t
j) + τ(µi, µj))g(z

t
j)

(2.5)

At each recurrent step, the non-local response zti is used as the input feature for
computing the non-local response for the next recurrent step. For the size of scans
used in this work, full global context can be achieved with three recurrent steps for
a 3D input feature map. Therefore, we set T = 3.
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2.3.4 Online hard example mining

As shown in Figure 2.1 using the red dashed lines, we compute the mean square
errors (MSE) between the lobe-wise softmax probabilities of the first RU-Net and the
lobe reference standard. We then go through all sliding window 3D patches, find
K patches with the highest integral of MSE and use them for training the second
RU-Net.

K is set to 1.0 such that all patches are used to train at the beginning and continu-
ously reduced until it reaches a coverage of only approximately 20% of the scan vol-
ume at the end of the training process. The proposed online hard example mining
does not introduce extra forward and backward passes on the network. Therefore
the additional computational cost is trivial.

2.3.5 Learning objectives

There are two learning objectives for each RU-Net: lobe segmentation and lobe bor-
der segmentation, inspired by the previous works [85,105]. Therefore, the final loss
function is a summation of four terms, and each is the generalized Dice loss [127]. The
lobe border reference is pre-computed from the lobe reference by detecting object
boundaries.

Let r be the segmentation reference with n-th voxel values rln for the class label l and
r̂ln be the predicted probabilistic map for the label l over n-th image voxel. Then the
generalized Dice loss is defined as:

GLD = 1− 2

∑
l wl

∑
n rlnr̂ln∑

l wl

∑
n rln + r̂ln

,

with wl = 1/(
∑Nl

n rln)
2, where Nl the in total number of voxels for the class label l in

the segmentation reference. wl is to re-balance learning against the variance in object
volumes.

2.4 Experiments

As the COVID-19 pandemic emerged only recently, it was not possible to obtain a
large amount of CT scans with annotations of COVID-19 patients. Therefore, we
used a transfer learning approach in our experiments. For training of the models on
the COVID-19 data, the models were initialized with the trained weights from our
models developed on the COPD data set.



2.4 Experiments 33

2.4.1 Training details

Training, validation, and testing of each experiment were carried out on a machine
with an NVIDIA TitanX GPU with 12 GB memory. The methods were implemented
using Python 3.6, Pytorch 1.1.0 library [78]. The trainable parameters of each method
were initialized using Kaiming He initialization when training from scratch [77]. And
all methods were optimized using stochastic gradient descent with a momentum of
0.9, and the initial learning rate was set to 10e-6.
The initial models were trained using CT scans from the COPD data set. Therefore,
these models may not be familiar with the visual patterns in COVID-19 scans. For
efficient training on new visual patterns, all models were retrained using a combined
loss between the generalized Dice loss (as we used to train the initial models) and
top-K cross-entropy loss where K is set to 30% of all voxels in the input. The top-K
cross-entropy loss was implemented simply as the voxel-wise cross-entropy loss but
selected only K voxels with the largest cross-entropy to back-propagate.

2.4.2 Comparison with previous work

We compared our approach with three baselines, the well-known 3D U-Net and two
recently published methods for lobe segmentation in CT. .

3D U-Net

We implemented 3D U-Net following the original paper [93]. The input is a mini-
batch of two 132 × 132 × 132 3D patches randomly cropped from the pre-processed
scan (refer to section 2.4.4). As a result of using valid convolutions, the output of this
network is 44 × 44 × 44 voxels. During test time, the softmax probabilities of all 3D
patches are tiled together by sliding over the entire scan without overlaps to build
up a scan-level probability map. The final prediction is then made by assigning each
voxel to the label with the highest probability.

FRV-Net and PDV-Net

We compare the proposed method with two existing end-to-end lobe segmentation
methods. FRV-Net [105] follows the design of the V-Net [109] and extensively uses the
idea of deep supervision at almost all scales in the up-sampling pathways. PDV-
Net [106] uses dense connections, following the DenseNet [110], to design their network
with a considerably large receptive field to capture contextual information. PDV-Net
takes the entire CT scan as the input, thus potentially capable of learning global infor-
mation. Note that these two works have specific pre-processing and post-processing
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strategies. The input scan in FRV-Net is resized into a fixed size of 128 × 256 × 256

and intensities are clipped into the range [−1000 ∼ 400] HU. In PDV-Net, the input
scan is resized into 128 × 512 × 512. We implemented both architectures following
the paper at our best efforts.

2.4.3 Ablation studies

To assess the contribution of the proposed non-local module in RTSU-Net, we per-
formed several ablation studies. During these experiments, the models were trained
from scratch using the COPD training set and retrained on COVID-19 and perfor-
mance is measured on the COPD test set of 1000 cases and 100 COVID-19 cases. The
performance of our proposed model was assessed without the geometric features in
the non-local module and without the non-local module in the relational two stage
U-Net framework.

2.4.4 Pre-processing and post-processing

All training and test scans were standardized by clamping intensity values to the
[−1200 ∼ 400] range before rescaling into [0 ∼ 1]. Then all scans were down-sampled
using trilinear interpolation to have a 256 × 256 in-plane resolution while z-spacing
was adjusted to make the scan isotropic.
The input size of the second CNN for our proposed method consisted of two 116 ×
116 × 116 sized 3D patches. The pre-processed scan was down-sampled by a factor
of 2 using trilinear interpolation as the input for the first stage (padding with zeros
is needed if the size on the z axial is not divisible by 16). The softmax probability
outputs of all 3D patches at the second stage were tiled together by sliding over the
entire scan without overlaps to produce a scan-level probability map, which is used
to generate the final prediction by assigning each voxel to the label with the highest
probability.
As a post-processing step, the predictions were then up-sampled by nearest neigh-
bor interpolation to match the original resolution of the scans. All evaluations are
performed by using predictions and reference segmentations at the original resolu-
tion.

2.4.5 Evaluation metrics

The intersection over union (IOU) and average symmetric surface distance (ASSD)
between predictions and segmentation references were used for the quantitative
evaluation of segmentation performance. The IOU between two binary masks X, Y



2.5 Results 35

is defined as:
IOU(X, Y ) =

|X ∩ Y |
|X ∪ Y |

,

Denote two surfaces as SX ,SY from the masks X, Y , and coordinate indices on the
surface as x,y. The average symmetric surface distance (ASSD) is defined as:

ASSD(X, Y ) =
∑

x∈SX
miny∈SY

d(x,y)+
∑

y∈SY
minx∈SX

d(y,x)

|SX |+|SY |

with d(·) being the Euclidean distance, and |SX | and |SY | the surface area for SX and
SY , respectively.
Besides the lobe-based measurements, we also evaluated the performance of all
models in the lung segmentation task by taking the union of all lobes as the lung.
Furthermore, we add a metric to measure fissure alignment by computing the av-
erage symmetric surface distance in the interlobar borders between the predictions
and the segmentation references.
The overall performance of the method was evaluated by computing the average of
the per-lobe metrics. A Wilcoxon signed-rank test was employed to assess whether
the performance difference was statistically significant (p < 0.01 with Bonferroni
correction).
Also, we computed the number of Multi-Adds operations (MAC) and the number of
parameters to assess computational efficiency. We also provide a comparison with
independent human readers on a subset of 100 subjects from the COPD data only.

2.5 Results

2.5.1 Quantitative results

Table 2.3 reports the quantitative results on both data sets. The proposed method
consistently outperformed the baseline methods, and two published end-to-end lobe
segmentation methods on both data sets (p < 0.01 with Bonferroni correction) in all
measurements. In addition, our model also exhibits a more robust performance,
considering the smaller standard deviations.
Box and whisker plots are provided in Figure 2.2. These plots show that for both
the COVID-19 and the COPD cases, the right middle lobe is the most difficult to
segment, which is not surprising given its known high variance in shape and the
fact that the minor fissure is often incomplete or even absent. RTSU-Net clearly
outperforms the other methods on both data sets. It can also be observed that there
are fewer outliers with low IOU, indicating RTSU-Net is more robust.
In terms of computational efficiency, the proposed method consumes even less mem-
ory than the baseline approach, with only a slight increase in the Multi-Adds op-
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Figure 2.2: Box and whisker plots of IOU per-lobe for different methods on the COPD

data set (top) and the COVID-19 data set (bottom).
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Table 2.3: Quantitative results on the COPD and COVID-19 test sets of RTSU-Net

(ours) with other methods. IOU and ASSD (in mm) metrics are given in mean ± stan-

dard deviation. Boldface denotes the result significantly better than others (p < 0.01

with Bonferroni correction). RUL, RML, RLL, LUL, LLL: Right upper, Right middle,

Right lower, Left upper, Left lower lobes. Overall: per-lobe mean.

(a) COPD results

Method MAC #Param Metric Overall Lungs LUL

3DU-Net [93] 10.5G 16.32M
IOU

ASSD
0.915±0.037
1.214±0.948

0.965±0.007
0.514±0.202

0.944±0.033
0.766±0.839

FRV-Net [105] 7.2G 15.5M
IOU

ASSD
0.918±0.038
1.408±1.190

0.965±0.014
0.602±0.393

0.950±0.038
0.818±1.535

PDV-Net [106] 7.2G 15.5M
IOU

ASSD
0.912±0.049
3.027±5.544

0.951±0.031
1.665±2.982

0.937±0.032
1.802±2.926

RTSU-Net 14.5G 13.1M
IOU

ASSD
0.949±0.026
0.607±0.537

0.976±0.010
0.326±0.166

0.962±0.020
0.482±0.534

LLL RUL RLL RML interlobar

0.937±0.007
0.951±1.017

0.918±0.043
1.264±1.050

0.937±0.032
0.936±1.069

0.840±0.032
2.153±2.738

N/A
2.054±1.691

0.932±0.050
1.030±1.481

0.917±0.050
1.557±1.779

0.942±0.033
0.957±1.414

0.848±0.103
2.680±3.441

N/A
2.292±2.218

0.926±0.044
2.772±6.286

0.912±0.066
2.885±6.600

0.926±0.050
3.109±7.520

0.854±0.109
4.540±7.800

N/A
2.541±3.460

0.959±0.023
0.465±0.446

0.952±0.030
0.668±1.020

0.960±0.010
0.534±0.518

0.912±0.080
0.885±1.412

N/A
0.947±0.800

(b) COVID-19 results

Method MAC #Param Metric Overall Lungs LUL

3DU-Net [93] 10.5G 16.3M
IOU

ASSD
0.904±0.051
1.388±1.055

0.946±0.030
0.840±0.666

0.936±0.031
0.894±0.910

FRV-Net [105] 9.3G 15.5M
IOU

ASSD
0.905±0.049
1.236±1.058

0.952±0.029
0.711±0.742

0.936±0.029
0.796±0.695

PDV-Net [106] 9.3G 15.5M
IOU

ASSD
0.891±0.051
1.908±1.727

0.943±0.030
0.877±0.771

0.927±0.035
1.379±2.158

RTSU-Net 14.5G 13.1M
IOU

ASSD
0.922±0.040
0.866±0.729

0.956±0.020
0.581±0.425

0.944±0.020
0.603±0.310

LLL RUL RLL RML interlobar

0.890±0.104
1.491±1.560

0.911±0.068
1.392±1.753

0.914±0.075
1.454±2.215

0.870±0.093
1.710±1.806

N/A
2.213±2.025

0.907±0.075
1.248±1.607

0.909±0.065
1.346±1.569

0.914±0.083
1.250±2.484

0.862±0.096
1.541±1.500

N/A
1.950±1.934

0.885±0.086
1.582±1.596

0.896±0.075
3.451±5.194

0.903±0.082
1.425±2.409

0.844±0.097
1.705±1.464

N/A
2.718±2.343

0.922±0.041
0.793±0.586

0.927±0.061
0.969±1.391

0.924±0.061
0.917±1.348

0.893±0.082
1.049±1.284

N/A
1.226±1.508
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erations (MAC). Hence, we conclude that the proposed method outperforms the
other methods without introducing a substantial computational overhead. The pro-
posed method processes a single scan at test time in 30 seconds on average, of which
around 20 seconds are spent on model inference and the remainder on pre- and post-
processing.

2.5.2 Ablation study

Table 2.4 shows the results of the ablation study, where we compare the two-stage
cascading framework without non-local modules, the framework with non-local
modules without the geometric term, and the RTSU-Net. The results on both the
COPD and COVID-19 data demonstrate the added value of the non-local module
and show that the introduction of the geometric features increases the performance
over the non-local module alone. This effect is most pronounced for the surface dis-
tance metric.

Table 2.4: Ablation study on the both data set for the non-local module (Non-local)

and the geometric features (Geometric) into the two-stage cascading framework.

Boldface denotes that a result is significantly better than others in the same column

(p < 0.01 with Bonferroni correction).

(a) COPD results

Method Two-stage Non-local Geo-metric ASSD IOU

only two-stage ✓ 1.122±1.315 0.940±0.031

w/o geometric ✓ ✓ 0.956±1.395 0.942±0.031

RTSU-Net ✓ ✓ ✓ 0.607±0.537 0.949±0.026

(b) COVID-19 results

Method Two-stage Non-local Geo-metric ASSD IOU

only two-stage ✓ 1.025±0.893 0.916±0.045

w/o geometric ✓ ✓ 1.370±1.582 0.918±0.037

RTSU-Net ✓ ✓ ✓ 0.866±0.729 0.922±0.04

2.5.3 Effect of the Non-Local module

In theory, the proposed non-local module can achieve a global receptive field in an
efficient way instead of using aggressively down-sampled input or relying on much
deeper CNN architectures. To measure the effective receptive field (ERF) size before
and after the non-local operation, we computed the gradients ∂F

∂I

∣∣
i

of the feature at
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Figure 2.3: Effective Receptive Field (ERF) before the non-local module (2nd row) and

after (3rd row) by running forward pass for the first RU-Net on a CT scan from the

COVID-19 test set. The green area indicates non-zero gradients (with respect to the

input scan) of a feature at a location in the input scan corresponding to the red square

(1st row).

the location i in the feature map F to the input image I . We run a forward pass for
the first RU-Net on a CT scan from the COVID-19 test set. The effective receptive
fields of the features at the same corresponding location before and after the non-
local operation are visualized in Figure 2.3 for three orthogonal slices.

The figure renders non-zero gradients in green and indicates the center of the ERF
with a red square. The center is a mapped coordinate from the chosen feature in
the feature map to the input image via up-sampling. Thus a slight shift may occur.
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The left image shows the ERF before the non-local operation is contained in a square
due to the nature of stacked convolutions. However, the ERF after non-local on the
right side shows a non-square distribution, reaching the other side of the lung. We,
therefore, conclude that the non-local module can enlarge the effective receptive field
dramatically.

To study the structured relationships between features, we visualize the self-attention
weights for the feature at location i given the feature map x and geometric features µ.
We run a forward pass for the first stage RU-Net on two CT scans from the COVID-
19 test set. The attention weights are the i-th row vector in the self-attention matrix
corresponding to f(xi, xj) + τ(µi, µj) from the Equation 2.2. Figure 2.5.3 (a) shows
the feature at the location i (green dot) mostly depends on the information within the
lobe when the healthy lung is present. We can also clearly see the attention weights
follows the lobe borders. Figure 2.5.3 (b) shows a case with multiple ground-glass le-
sions, where the interactions between the feature representing the region nearby the
right middle lobe and features presenting other regions in the entire lung. Interest-
ingly, by introducing the geometric term in the non-local module, attention weights
also correspond to the lung bounding box.

2.5.4 Qualitative results

Figure 2.5 shows results for the 3D U-Net, PDV-Net [106], FRV-Net [105], and the RTSU-
Net from top to bottom. For comparison, reference segmentations are provided in
the bottom row. We selected three COPD (4-6 columns) and three COVID-19 cases
(1-3 columns) with various levels of pathological and anatomical variations. We ob-
served that all methods usually do not produce over-segmentation of the lungs. By
capturing feature dependencies, we see that the proposed method generates gener-
ally smoother lobe borders and is even able to infer the approximately correct lobe
shapes when the lung is filled with fluid (1st column).

2.5.5 Comparison with human readers

To evaluate human performance, we asked two independent human readers (an-
alysts) to manually segment the lobes from scratch, given the segmentation of the
lung. Their results were evaluated on a random set of 100 scans from the COPD test
set. The human readers achieved 0.953± 0.017 IOU and 0.501± 0.193 ASSD (in mm)
on average, while the RTSU-Net achieved 0.953±0.015 IOU and 0.541±0.231 ASSD.
The human readers and the RTSU-Net method are both significantly better than the
other methods.
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In terms of lung segmentation, the analysts reached 0.974 ± 0.015 IOU and 0.340 ±
0.214 ASSD on average, while the RTSU-Net achieved 0.977± 0.009 IOU and 0.325±
0.200 ASSD on average.

Regarding the fissure alignment, the analysts reached 0.686±0.361 ASSD on average,
while the RTSU-Net achieved 0.835± 0.398 ASSD on average. We conclude that the
RTSU-Net method performs comparably to humans for segmenting the lung and the
lobes.

2.5.6 Validation on LOLA11

We have applied our method to the 55 scans of the LOLA11 challenge, available on
https://lola11.grand-challenge.org/. This is an independent test set in which
approximately half of these scans are very difficult to segment due to the presence
of gross pathology. Lobar borders are completely invisible in some of these scans.

Our method (submission date May 3, 2020) reaches a mean IOU of 0.9197 for lobe
segmentation and 0.9706 for lung segmentation. This score is comparable to the
other top participants and ranks #2 for automatic lobe segmentation methods after
submission of a not yet published variant of LobeNet (submission date November
20, 2019).

2.6 Discussion and conclusion

We have presented a novel method using relational two-stage convolution neural
networks for segmenting pulmonary lobes in CT images. The proposed method is
capable of capturing visual and geometric correspondence between high-level con-
volution features, which may represent the relationships between objects and object
parts. This proposed non-local module can also be used to effectively and efficiently
enlarge the receptive field of convolution features. This module can be easily used
as a common neural network layer in other computer vision tasks such as object
detection and classification.

We show in our results that learning feature dependencies improves the lobe seg-
mentation performance significantly on the COPD and the COVID-19 data set. The
average symmetric distance metric in the ablation study shows that using geometric
features is effective for generating more precise object boundaries. This can also be
observed from the qualitative results, where the lobe boundaries from the proposed
method are more consistent with the reference lobe shapes. Without depending on
prior lung segmentation, our approach serves as an end-to-end lobe segmentation
framework that can be used for lung segmentation as well by taking the union of

https://lola11.grand-challenge.org/
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lobes per lung.

Regarding computational efficiency, our method maintains the same level of Multi-
Adds operations (MAC) as the standard 3D U-Net and two other approaches previ-
ously proposed for pulmonary lobe segmentation. It requires even fewer trainable
parameters compared to the standard 3D U-Net. Our method can be trained and
tested on a consumer-level GPU with 12 GB memory, and the speed at test time is
around 30 seconds for a full-resolution CT scan (20 seconds for deep learning infer-
ence and 10 for pre-processing and post-processing).

For segmenting the lobes in scans of COPD patients, the LobeNet method [108] re-
ported excellent performance on 1076 scans from COPDGene, with an ASSD of 0.138
mm, well below the voxel resolution and well below what RTSU-Net and indepen-
dent human analysts achieved in a set of 100 COPDGene scans in this study (sec-
tion 2.5.5). These metrics are not directly comparable as LobeNet [108] used a differ-
ent set of scans and a reference partly provided by a software package. For future
studies, it would be interesting to directly compare both approaches. On LOLA11,
LobeNet outperformed RTSU-Net by a very small margin. We noticed failures of
RTSU-Net on scans with abnormalities distinct from what occurred in the COPD
and COVID-19 training data.

Segmentation of lobes in scans of patients with severe pneumonia due to COVID-19
is not an easy task. In this work, we used only 370 COVID-19 CT scans for training.
Thanks to pre-training on 4000 COPD scans, we still obtained good results with a
small training set, and we were able to provide lobe segmentations robust to the
presence of ground glass, consolidations, and crazy paving.

Lobe segmentation is an important prerequisite for accurate quantification of lung
damage in COVID-19 CT scans. Figure 2.5 shows that the standard 3D U-Net (2nd
row), PDV-Net (3rd row), and FRV-Net (4th row) may miss areas of consolidation
(3rd column) while the RTSU-Net found the lobes accurately. RTSU-Net also per-
forms reasonably well when this lobe is completely filled with pleural fluid (first
column). Nevertheless, we also see that sometimes the border of the segmentations
of the proposed method is incorrect (3rd column, the right upper lobe shows a slight
over-segmentation across the lobar borders towards the shoulder),

We hypothesize that a larger training set would further improve performance, espe-
cially for cases with gross pathological changes that are not yet well represented in
the current training scans. Nevertheless, the results presented here are sufficient for
further analysis, and we believe that they will prove useful in automated per-lobe
severity scoring. This is a topic for future research.

We freely share our segmentation algorithm on https://grand-challenge.org

/algorithms/ and provide results for public data such as the scans from https:

https://grand-challenge.org/algorithms/
https://grand-challenge.org/algorithms/
https://coronacases.org/
https://coronacases.org/
https://coronacases.org/
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(a) Intra-lobe dependency

(b) Long-range dependency

Figure 2.4: The Self-Attention weights (2nd row) from the proposed non-local module

for the feature whose location is shown using the green spot in the original input scan

(1st row). We use color map jet [91] for this plot. Two scans from the COVID-19 test set

are shown. (a) demonstrates mostly the feature dependencies within the lobe in the

clear lung. (b) indicates long-range dependencies are required when the target lobe is

affected by the disease.
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Figure 2.5: Qualitative comparison of segmentation results for six representative test

cases. The three left columns show COVID-19 cases, and the three right columns

show COPD cases. From top to bottom: input image, 3DU-Net baseline, PDV-Net,

FRV-Net, the proposed RTSU-Net, and the segmentation reference. right upper,

right middle, right lower, left upper, left lower lobes.
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Abstract

We present a novel graph-based approach for labeling the anatomical branches of a
given airway tree segmentation. The proposed method formulates airway labeling
as a branch classification problem in the airway tree graph, where branch features
are extracted using convolutional neural networks and enriched using graph neural
networks. Our graph neural network is structure-aware by having each node ag-
gregate information from its local neighbors and position-aware by encoding node
positions in the graph.
We evaluated the proposed method on 220 airway trees from subjects with vari-
ous severity stages of Chronic Obstructive Pulmonary Disease (COPD). The results
demonstrate that our approach is computationally efficient and significantly im-
proves branch classification performance than the baseline method. The overall
average accuracy of our method reaches 91.18% for labeling 18 segmental airway
branches, compared to 83.83% obtained by the standard CNN method. We pub-
lished our source code at https://github.com/DIAGNijmegen/spgnn. The proposed
algorithm is also publicly available at https://grand-challenge.org/algorithms/
airway-anatomical-labeling/.

https://github.com/DIAGNijmegen/spgnn
https://grand-challenge.org/algorithms/airway-anatomical-labeling/
https://grand-challenge.org/algorithms/airway-anatomical-labeling/
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3.1 Introduction

Chronic obstructive pulmonary disease (COPD) is one of the most prevalent lung
diseases and a leading cause of chronic morbidity and mortality worldwide [128]. Air-
way narrowing and remodeling are typical COPD characteristics. Therefore, assess-
ing airway remodeling is essential for evaluating disease severity and progression.
CT imaging is an excellent tool for in vivo quantitative airway analysis. This analy-
sis can be performed efficiently when an automatic airway segmentation is available
and is often applied regionally for specific anatomical branches. Automated airway
labeling can expedite such a process. Airway labeling is also useful for planning
bronchoscopic interventions. We, therefore, aimed to develop an automatic algo-
rithm for anatomical airway labeling given a pre-extracted airway tree.

Airway labeling was traditionally performed by matching an unlabeled tree to a
pre-labeled tree [129,130], where correspondences between the two trees were defined
using visual and topological features extracted on branches or branch points. Most
methods exploited prior knowledge about airway anatomy. For example, Tschirren
et al. [130] searched for an optimal match between two trees as a maximum clique
on association graphs based on segment lengths, spatial orientations, and angle dif-
ferences between branch segments to measure associations between branch points.
Other methods based on matching trees involved geodesic distances in a tree space [131,132].
Two adjacent trees in the tree space have similar visual features and common topol-
ogy. Beyond matching-based approaches, supervised machine learning methods
were proposed to model a probability distribution of branch labels given their fea-
tures on training data. By assuming features of different anatomical branches are
Gaussian distributed [54], labeling airways was formulated into learning Gaussian
distributions using branch features such as orientation, average radius, and the an-
gle relative to the parent. The authors also exploited a graph-based topological as-
sumption that a branch’s labeling decision is conditioned on its parent’s predicted
label. Other supervised machine learning methods for airway labeling include a hid-
den Markov tree model [56], branch classifiers [55] based on AdaBoost, and KNN-based
appearance models [133].

Airway labeling is challenging because airway tree topology varies substantially
across subjects. Moreover, segmented trees may have missing or spurious branches
due to imaging noise, and their structures may also be affected by pathological
changes. Due to these challenges, traditional airway labeling methods may not
generalize well on unseen trees if they rely heavily on hand-craft features or spe-
cific rules derived from the anatomy. As data-driven approaches, convolution neu-
ral networks (CNNs) and graph neural networks (GNNs) can be used to extract
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powerful visual features and encode anatomical information holistically. A popu-
lar regime in visual recognition of anatomical tree structures is to combine CNNs
with GNNs [134–136], where CNNs can be trained from the data to extract visual fea-
tures for representing objects. Then in the graph, objects are encoded as nodes, and
the CNN visual features of these objects are used as the initial node representations.
The anatomical relationships between objects (nodes) can be encoded in edges. The
GNN training is to enrich the representations of nodes or edges based on the graph
structure. For example, deep vessel segmentation [134] proposed using CNN to gener-
ate pixel-wise features. Then the GNN was used to enrich pixel-wise features using
vessel connectivity. Their results showed that the GNN significantly improved over-
all vessel segmentation performance on retinal images and coronary artery X-ray
angiography. For airway segmentation in CT images, Juarez et al. [135] trained a GNN
to capture airway connectivity for enriching dense features from a CNN, and both
networks were trained end-to-end but with a memory spending limit. A very re-
cent work [136] proposed to segment and label airways simultaneously by CNNs and
GNNs. In this method, dense features from a CNN network were used to repre-
sent branch points, and these dense representations were augmented in a GNN by
considering the information within 2-hop neighbors for each branch point.

The existing methods that combine CNNs with GNNs have two limitations. First,
they are only structure-aware, not position-aware, i.e., graph convolution networks [137]

used in airway segmentation [135,136] and graph attention networks [138] in blood ves-
sel segmentation [134]. The expressive power of structure-aware GNNs is limited by
the 1-Weisfeiler-Lehman (WL) [139] graph isomorphism test. The node classification
in structure-aware GNNs depends on differences in local graph structures, mean-
ing that two nodes with similar neighboring connectivity are hardly distinguishable.
This structure-aware property does not suffice to classify nodes in graphs exhibiting
symmetric structures, i.e., two airway branches are located in different sides of the
tree but with similar neighboring structures (left upper lobe airways versus right up-
per lobe airways). On the other hand, position awareness is for each node to encode
its position in the graph. Intuitively, position awareness can provide an important
cue to classify nodes with similar neighboring patterns, yet underused in previous
works.

Second, the existing methods operated locally at the pixel- or voxel-level [134–136] be-
cause they focused on semantic segmentation. In their practices, graphs were built
on branch or landmark points. Although these methods can be used for labeling
airways by assigning each voxel an anatomical label, we believe they are inefficient,
counter-intuitive, and may not suffice to exploit graph-level anatomical informa-
tion. Building graphs on dense pixel- or voxel-grid is computationally demanding.
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Shallow GNNs [134,136] were often used to reduce the computational cost. This may
cause their GNN networks to only capture local structural patterns, ignoring the
graph-level information. Furthermore, airway labeling intrinsically is a branch clas-
sification problem. Once branch segments are extracted, anatomical labels should
be assigned to each branch as a whole. The semantic segmentation methods can-
not guarantee that voxels inside an individual branch are assigned the same label
without additional post-processing steps.
In this paper, unlike building graphs on a voxel grid, we define airway branches
as nodes in our graph, which are connected according to the airway tree topology.
We train a CNN network to extract initial branch features. Our GNN enriches the
branch features by gathering information from neighbors, and we encode positional
information in node features, which is missing in previous works. The enriched
features are used for final branch classification. Working at the branch level allows
graphs in our method to have a tiny amount of nodes (on average, 152 branches ex-
tracted from an airway tree in our data), thus computationally cheap. Furthermore,
we verify and demonstrate the possibilities for using deeper GNN architectures by
introducing skip connections between layers.
We refer to our proposed method as a structure and position-aware graph neural
network (SPGNN).

Contribution

Our key contributions are as follows:

• We introduced a novel idea of extracting structural and positional information
from airway trees in representing branches for airway anatomical labeling. Our
SPGNN method achieves 91.18% overall branch classification accuracy on a
challenging dataset of COPD subjects, including all GOLD stages.

• SPGNN is generic and can be extended to other branch classification problems,
such as labeling vessel trees.

• SPGNN is memory and computationally efficient. It requires only an NVIDIA
GTX1080 GPU with 8GB memory to train and takes, on average, 17 seconds to
label an entire segmented airway tree.

Chapter outline

This chapter is organized as follows. Section 3.2 describes the proposed method
thoroughly. Experimental results are explained in section 3.3, followed by section 3.4
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where the discussion and conclusion are stated.

3.2 Method

3.2.1 Airway labeling framework

We formulate airway labeling as a branch classification problem. For training, we
add the trachea and two main bronchi as additional target labels to provide more
information regarding the airway tree hierarchy. Therefore, the classification tar-
gets for training are 22 classes, including 18 segmental airways, trachea, two main
bronchi, and one additional class to represent all other airway branches. The overview
of our branch classification framework is illustrated in Figure 3.1. To ensure the
same spatial scale, we first resample the airway segmentation maps to a fixed voxel
spacing (0.625mm, 0.625mm, and 0.5mm in sagittal, coronal, and axial views). The
resampled segmentation map is used to build a graph by considering each branch
a node and making connections if two branch segments share a common boundary
in the segmentation map. Then we train a CNN to predict branch target labels. The
branch features are the features before the classification head in the CNN network.
Meanwhile, the predicted anatomical branches by the CNN are used as anchors to
compute positional encodings. Next, the CNN branch features and computed posi-
tional encodings are enriched with a multi-layer GNN by iteratively exchanging and
gathering information between neighboring branches. Finally, branch features gen-
erated by the GNN are fed into a classification head to produce class probabilities.
The following subsections describe these steps in detail.

Branch feature extraction using CNN

We train our CNN using the input of 3D patches cropped around each branch from
the airway segmentation map. To do so, we first compute the branch center as the
center of the skeletonized branch, for which we use a thinning algorithm [140]. At
the branch center, we crop a 3D patch of size 80×80×80 voxels from the airway
segmentation map.
In the 3D patch, voxels inside the branch at the patch center are set to 0.9. Voxels
in other branches in the patch are set to 0.5, and the background is set to 0. Using
only airway segmentation maps, we ignore the CT intensities to prioritize shape and
connectivity information in branch representation learning.
Our CNN has three downsampling blocks. Each consists of two consecutive 3×3×3
convolutions and one 2×2×2 max-pooling with stride 2. After the down-sampling
blocks, we apply two more convolutions with kernel size 3 to double the number of
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Figure 3.1: The overview of our proposed airway labeling framework. Branch fea-

tures extracted from the CNN (a) are enriched using the proposed SPGNN network

(b) with positional encodings.
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filters up to 256 before flattening them into 1024-dimensional feature vectors. These
feature vectors are reshaped into 22-dimensional class vectors using a single linear
layer (classification head) with a softmax activation function to produce class prob-
abilities. Architectural details are provided in Figure 3.1. Branch features are the
1024-dimensional feature vectors before the classification head. The CNN branch
features are fed to the GNN as the input for training. We report the classification
performance using only CNN features as our baseline.

Labeling airways using branch classification prediction

At test time, we can label an airway tree with N branches using the class probability
matrix C ∈ RN×22 predicted by the network. The predicted branch of a target label
corresponding to the column s in C is the branch at the row i that maximizes proba-
bilities i = argmax(C[, ..s.., ]) over all branches. We only apply this computation on
columns corresponding to the 18 segmental branches. If the same branch is matched
more than once, we assign the branch to the most confident label. Note that the total
number of predicted branches in one tree may be less than 18 because some branches
may be missing due to anatomical variations and pathological changes.

Enriching branch representation using GNN

The proposed graph neural network intends to capture each branch’s structure (con-
nectivity to other branches) and position information (location in the graph), referred
to as the structure and position-aware graph neural network (SPGNN). The SPGNN
network sequentially applies four layers. Each layer passes and gathers messages
within its 4-hop neighbors. In such a way, each branch is represented by its own fea-
ture and features from its 4-hop neighbors. We initially describe branches using their
CNN features and their positional encodings. These two branch representations are
fed to the SPGNN network as the network input.

The positional encoding serves the same purpose as the geometric prior in relational
convolution neural networks [69,112] and position encoding in Transformers [120,141]. Po-
sitional encoding aims to introduce a coordinate system into the learning process
such that the orders and distances between objects are embedded in the learned rep-
resentation. We introduce the concept of anchors to encode positional information
for each branch. We use the trachea, two main bronchi, and 18 segmental branches
predicted by the CNN as the initial anchors. To have these branches predicted from
the CNN network, we slightly modify the branch prediction process (section 3.2.1).
Given the class probability matrix C ∈ RN×22 in the CNN prediction where N is the
number of branches in the given tree, the entry C[i, s] denotes the probability of a
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given branch at the ith row belonging to a target label at sth column. The column
corresponding to the rest of the airway branches is ignored in this computation. We
assign the target label at sth column to the branch at ith row if it maximizes the prob-
abilities i = argmax(C[, ..s.., ]) over all branches. We perform this assignment over
target labels in a leave-one-out fashion. Once a branch has been labeled, its corre-
sponding row in C is excluded from finding row indices for other classes. This guar-
antees that exactly 22 branches are assigned with the trachea, two main bronchi, and
18 segmental labels. Given the 18 predicted segmental branches, the sub-segmental
leaf branch rooted from each predicted segmental branch is also added to the set
of anchors. We only select the one sub-segmental leaf branch farthest from the pre-
dicted segmental branch among possible multiple leaves. We randomly select one
of the multiple leaves with equal distances to the segmental branch. Consequently,
the final anchor set includes 39 branches, including the trachea, two main bronchi,
18 segmental branches, and 18 leaves rooted in the predicted segmental branches.
Adding leaf branches ensures the anchors can be sampled from the bottom part of
the tree when subtrees below the segmental level exist.

The positional encoding of each node is the shortest path length to the 39 anchor
branches in the airway tree. The shortest path lengths are rescaled to [0 ∼ 1] range by
dividing the longest distance between any pair of branches in the tree. Assuming the
CNN predictions are mostly accurate (results in Table 3.2), the correctly-predicted
branches can be used to provide canonical positional encodings because their loca-
tions are consistently defined (up, down, left, and right) according to the airway
tree anatomy. Many existing positional encoding methods, i.e., Laplacian eigenvec-
tors [142], random-walks encodings [143], and encodings using random anchors [144] pro-
vide non-canonical positional encodings because these methods operate on arbitrary
graphs. Because the ordering of anchors is fixed for all trees, the semantics that each
dimension presents in the positional encoding is consistent across different trees.
Suppose the CNN completely fails to predict branches. In that case, our positional
encodings become non-canonical positional encodings with randomly assigned an-
chors [144], which can still be used to harvest relative distances between nodes in the
graph. On the other hand, if the CNN produces perfect branch predictions, the posi-
tional encodings suffice to make perfect branch classification because the distance to
the target branch will be zero and non-zero otherwise, resulting in a one-hot branch
encoding schema.

In addition, our positional encoding is distance-sensitive. The Euclidean distance
between positional encodings of two branches far from each other in the graph must
be large and small for two nearby branches. We point out that many existing air-
way labeling or segmentation methods also use location information, i.e., the spatial
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position of the bronchial centerline points [145], and voxels’ coordinates and their Eu-
clidean distances to the carina [136]. However, the problem with using voxel coordi-
nates to present a branch location is that they are not topological, so two branches
whose voxel coordinates are close in Euclidean space are not necessarily short in the
path when traveling in the tree. Voxel coordinates are also sensitive to the image
scale, patient position, and variation in orientation.
For any branch, its positional encoding is a 39-dimensional vector, where each di-
mension indicates the rescaled shortest path length between the branch and one
of the anchors, in the order of trachea, two main bronchi, 18 predicted segmen-
tal branches, and the 18 sub-segmental leaves according to the predictions of seg-
mental airways. We denote an airway graph as G = (B,E), where B is a set of
branches, E is a set of edges connecting branches. Given an anchor set S with k

anchors S = {si}, i = 1, ..., k, positional encoding for a branch b can be written as
[d(b, s1), d(b, s2), ..., d(b, sk)], where d(·, ·) is the rescaled shortest path length between
two branches, where [·] is the concatenation operator.
Each layer l in the SPGNN consists of two graph neural networks, denoted as GNN l

hp

and GNN l
p. At each layer l, the input to GNN l

hp is the concatenation between branch
features hl and positional encodings pl from the previous layer, hl ∈ RN×dlh and
pl ∈ RN×dlp where N is the number of branches, dlh is the dimension of hl, and dlp is the
dimension of pl. The input to GNN l

p is the positional encoding pl from the previous
layer. Consequently, GNN l

p focuses on learning positional encodings, while GNN l
hp

updates branch features using both branch features and positional encodings from
the previous layer. At the first layer, the input feature to GNN1

hp is the concatena-
tion of the 1024-dimensional CNN feature and 39-dimensional positional encoding.
The input to GNN1

p at the first layer is the 39-dimensional positional encoding. In
SPGNN, layer-wise updates can be formulated as follows:

hl+1 = σ(W l
hp[h

l, pl] +GNN l
hp([h

l, pl])) (3.1)

pl+1 = σ(W l
pp

l +GNN l
p(p

l)) (3.2)

where both GNN l
hp and GNN l

p are graph attention networks. W l
hp and W l

p are linear
transformations to project the concatenated features [hl, pl] and positional encodings
pl to be the same size as the output features from GNN l

hp and GNN l
p respectively,

which allows for summation between the layer’s input and output as applying skip
connections between layers. The activation function σ is the exponential Linear Unit.
In SPGNN, we stack four layers. Given the 1063-dimensional (1024+39) input fea-
ture, the output features from the GNNhp are 256, 128, 64, and 1024 in dimensions
from the first to the fourth layer. Given the 39-dimensional input positional encod-
ing, the output encoding from the GNNp are 256, 128, and 64 in dimensions from
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the first to the third layer. GNNp has one layer less than GNNhp because we do not
feed positional encodings into the final classification head. In the end, the output
of SPGNN is the 1024-dimensional branch feature from GNNhp at the fourth layer,
which has the same size as the CNN branch feature. For predicting anatomical la-
bels, a classification head using a single linear layer is used to reshape the branch
features into 22-dimensional class probabilities, the same as the classification head
in the CNN method.

We adopt graph attention networks as the backbone in SPGNN for the following rea-
sons. First, graph attention networks selectively attend over neighbors (anisotropic)
for each branch via a self-attention mechanism which has proven to be useful for
many machine learning tasks [120,141]. Second, graph attention networks are non-
spectral methods and have shown superior performance in inductive learning bench-
marks [138], where the model has to generalize to completely unseen graphs. Spectral
methods such as GCNs and chebNet [146] are intrinsically transductive because their
exact solutions depend on the full graph Laplacian to be known during training.
Additionally, we add skip connections in SPGNN between graph attention layers to
alleviate over-smoothing issues [147].

For each branch (node) b, the graph attention network updates the node feature hl
b at

layer l using its neighbors Nb as:

hl+1
b = σ(

∑
j∈N(b) α

l
bjW

l
ah

l
j)

αl
bj =

exp(σ(W l
r[W

l
gh

l
b,W

l
gh

l
j ]))∑

k∈Nb
exp(σ(W l

r[W
l
gh

l
b,W

l
gh

l
k]))

,
(3.3)

where αl
bj is the attention weight between branch b and j at layer l. [·] is the con-

catenation operator. W l
a, W l

r , and W l
g are linear transformations with W l

a,W
l
g ∈

Rdl×dl+1
,W l

r ∈ R2dl+1×1 where the input and output dimension of the layer l is dl, dl+1.
W l

r projects the concatenated features into a scalar as the attention weight. The atten-
tion weights are normalized using the softmax function over all neighboring pairs.
We add self-connections for nodes when training graph neural networks in our ex-
periments.

An SPGNN layer without positional encodings can be formulated as follows:

hl+1 = σ(W l
hh

l +GNN l
h(h

l)), (3.4)

where GNN l
h is a graph attention network. Therefore, an SPGNN layer without

positional encodings is a graph attention network layer with a skip connection. We
refer to the network using the SPGNN layers without positional encodings as GATS
and compare it with SPGNN to examine the benefit of using positional encodings.
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3.3 Experimental results

3.3.1 Data

Table 3.1: The distribution of GOLD stages in the main and secondary data collec-

tion from the COPDGene study. Gold stages 0-4 defined elsewhere [23]. No PFT:

spirometry data not available; PRISM: Preserved Ratio Impaired spirometry [148] in

the COPDGene study.

GOLD stages
# subjects

main secondary

GOLD0 31 6

GOLD1 33 10

GOLD2 32 6

GOLD3 33 7

GOLD4 27 5

Non Spirometry 1 0

Non Smoking 32 4

PRISm 31 2

Total 220 40

We obtained chest CT scans from the COPDGene study [23], which is a clinical trial
with data from 21 imaging centers in the United States. COPDGene enrolled 10,000
subjects, and each subject underwent both inspiration and expiration chest CT. Data
from COPDGene is publicly available and can be retrieved after submitting an ancil-
lary study proposal (ANC-337 was used for this work).

We randomly selected 220 subjects from the COPDGene study as our main data col-
lection for cross-validating our algorithm. The other 40 randomly chosen subjects
from the COPDGene study were used as the secondary data collection for a reader
study. The main and secondary data collection included subjects with various COPD
severity stages. See Table 3.1 for the distribution of selected subjects in terms of their
COPD gold stages. We utilized only inspiration CT scans from selected subjects at
their first hospital visit, one scan per subject. These inspiration CT scans have slice
thicknesses ranging from 0.625mm to 0.9mm and pixel spacing from 0.478mm to
1.0mm. In this work, CT scans were only used to extract the airway trees. The ex-
tracted airway trees were stored in label-map images and used as our algorithms’
input.
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3.3.2 Reference standard

Since the first several generations of the human airway tree have a relatively similar
topology across subjects, we focused on labeling the 18 segmental airways: 8 from
the left lung (LB1+2, LB3, LB4, LB5, LB6, LB7+8, LB9, and LB10) and ten from the
right lung (RB1-10), following the anatomical labeling scheme [130].

Given an inspiration chest CT scan, an airway tree and branch segments were ex-
tracted using the front propagation segmentation method [54], where voxels of each
branch were assigned a unique random integer. Trained analysts visually inspected
the generated airway segmentation, and manual editing was made to ensure that all
segmentations included airways up until at least the segmental level. We use these
manually-edited segmentation maps as the input to our labeling algorithms. Next,
analysts clicked on segmental branches to assign anatomical labels based on their
anatomical knowledge of the airway tree. The resulting manual airway labeling ref-
erence was a segmentation label map where 18 segmental branch segments were
assigned with a set of predefined unique values (above 1). The rest branches in the
airway tree were assigned to 1, and the background was set to 0.

All analysts have a medical background and extensive training in the segmentation
and anatomical labeling of airways in CT imaging. The analysts could consult a
radiologist in cases of doubt during the annotation process.

3.3.3 Experimental details

All experiments were carried out on a machine with an NVIDIA GTX1080 with 8 GB
GPU memory. All methods were evaluated by 5-fold cross-validation on the main
data collection with 220 subjects (details in section 3.3.1), represented as 220 airway
tree segmentation maps. We shuffled training and test splits for each fold at the sub-
ject level. For each fold, airway trees in the test split are completely unseen during
training. Our airway labeling method consists of two sequential steps: CNN train-
ing and GNN training. Each network has a linear layer as its classification head.
All networks were optimized using stochastic gradient descent with a momentum
of 0.9 and weighted cross-entropy loss. Class weights are 0.8 for target branches (the
trachea, two main bronchi, and segmental branches) and 0.2 for the rest of the air-
way branches. All methods were implemented using Python 3.8 and Pytorch 1.7.1
library [78]. Graph neural networks were implemented using the DGL graph com-
puting library [107] version 0.6.1. We trained using the training folds for each cross-
validation split and applied the trained networks to the test fold. We merged the
prediction results on the test folds of each split for evaluation. For all experiments,
training finished at epoch 150. Model parameters were initialized according to He et
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al. [77]. The initial learning rate was set to 5−4. For experiments with CNNs, we fed
the branch-level crops into training in a batch size of four. For training GNNs, we
fed four airway trees into training at each step. With these settings, CNN and GNN
methods both converged at epoch 150.

We used two evaluation metrics for measuring the overall classification performance.
The branch classification accuracy (ACC) for each target label is the number of cor-
rect predictions divided by the total number of branches for that label on the dataset.
The overall branch classification accuracy is the average accuracy over all target la-
bels. Given the airway tree graph, the topological distance (TD) is the shortest path
length between the predicted and target branches. TD measurements were only com-
puted on mislabeled airway branches because all correctly labeled branches have a
topological distance of 0. The overall topological distance is the average of TD on all
target labels. We also report computational complexity as the number of multiply-
accumulate operations (MACs) and the number of network parameters. Runtime
efficiency was measured by the test processing time per case on average.

3.3.4 Quantitative results

Three branch classification methods are compared: 1) the baseline using branch fea-
tures from the CNN; 2) the GATS (Equation 3.4), equivalent to the SPGNN with-
out positional encodings; 3) the SPGNN. The GATS method is only structure-aware,
whereas SPGNN is both structure and position-aware.

As shown in Table 3.2, the GATS method substantially outperforms the baseline by
learning structural information within four-hop neighbors, from 83.83% to 89.84% in
ACC and from 2.41 TD to 2.02 TD. Adding positional encodings in SPGNN further
improves the results, reaching 91.18% ACC and 1.80 TD. Regarding model complex-
ity and runtime efficiency, the baseline method has only slightly fewer parameters,
MACs, and less time consumption on processing a test scan than those in GATS and
SPGNN because both GATS and SPGNN depend on the feature extraction using the
CNN network. The difference between GATS and SPGNN is trivial in model com-
plexity and runtime efficiency. The SPGNN method can process a scan in roughly 17
seconds in an NVIDIA GTX1080 GPU with 8 GB memory.

Regarding scores on individual branches, LB6 and RB6 achieve the highest ACC be-
cause these branches exhibit only minor anatomical variations. Branches with high
anatomical variations, such as LB1-4, LB10, and RB10, show lower ACC scores. It
is also challenging to label these anatomical branches manually; we have noticed
that human analysts may occasionally assign LB1 and LB2 (children of LB1+2) as
LB1+2 when the actual LB1+2 is missing due to anatomical variation. Regarding
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Table 3.2: Branch Classification Accuracy (ACC(%)) and Topological Distance (TD)

of the CNN, GATS, and the proposed SPGNN methods (in mean ± standard devia-

tion). The overall branch classification accuracy is measured over all target labels on

average. Multiply accumulate operations (MACs) and the number of parameters are

shown as measures of computational complexity. Testing time consumption indicates

run-time efficiency. The overall topological distance is the average of TD on all target

labels. The boldface denotes the best result.

Method Metric LB1+2 LB3 LB4 LB5 LB6 LB7+8 LB9

CNN
ACC(%) 76.81 75.45 81.36 80.00 98.63 92.72 84.09

TD 1.36±0.59 2.75±1.37 3.39±2.32 3.31±3.59 2.00±0.81 2.40±2.75 2.97±1.69

GATS
ACC(%) 80.90 85.00 88.63 91.36 99.54 94.54 88.18

TD 1.40±0.57 2.45±1.04 2.28±1.07 1.36±1.56 3.00±0.00 1.66±1.02 3.07±1.77

SPGNN
ACC(%) 82.27 87.27 88.63 92.27 99.09 95.45 91.36

TD 1.38±0.48 2.42±0.56 2.36±0.93 1.05±0.23 2.00±1.00 1.90±1.04 2.57±1.09

Metric LB10 RB1 RB2 RB3 RB4 RB5 RB6

CNN
ACC(%) 72.72 81.36 87.72 83.18 79.09 85.00 95.90

TD 1.22±0.55 2.34±1.92 2.44±2.06 1.78±2.34 1.95±2.61 3.59±3.20 2.88±2.84

GATS
ACC(%) 81.36 85.45 90.45 87.72 88.18 94.09 99.54

TD 1.27±0.49 2.15±1.48 1.76±1.23 1.85±2.60 1.96±1.97 2.25±1.08 1.00±0.00

SPGNN
ACC(%) 83.18 87.72 91.36 90.90 90.00 95.00 98.63

TD 1.16±0.44 1.85±1.29 1.78±0.89 1.40±0.66 1.36±0.56 2.00±1.18 1.00±0.00

Metric RB7 RB8 RB9 RB10

CNN
ACC(%) 91.36 90.00 80.90 72.72

TD 2.50±1.32 2.52±1.56 2.69±1.37 1.41±0.73

GATS
ACC(%) 95.45 93.63 90.45 82.72

TD 2.80±0.74 2.00±1.13 2.80±1.59 1.26±0.59

SPGNN
ACC(%) 95.90 96.36 92.72 83.18

TD 2.11±0.73 2.50±0.95 2.25±1.08 1.29±0.45

Method overall ACC(%) TD MACs #param testing time (second)

CNN 83.83±7.37 2.41±0.67 6.42G 67.49M 14.25±9.65
GATS 89.84±5.44 2.02±0.61 6.62G 69.52M 16.12±8.69

SPGNN 91.18±4.97 1.80±0.50 6.67G 70.09M 16.98±9.79

ACC, graph-based approaches perform substantially better than the baseline in LB4,
LB5, RB4, RB5, LB3, LB10, and RB10. This is because graph-based methods can infer
branch labels based on the predictions of nearby branches using the learned struc-
tural information. This knowledge propagation can result in an essential improve-
ment in labeling branches with high anatomical variations, such as LB10 and RB10,
using predictions on nearby branches. Regarding TD measurements, the SPGNN
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method outperforms other methods in most branches. This indicates that introduc-
ing positional encodings limits errors to nearby branches. The standard deviation of
TD is much lower in the SPGNN than in other methods in RB2, RB3, RB4, LB5, RB8,
and RB9. We also computed the maximum TD measurement per branch and summa-
rized per-branch maximum TDs in mean and standard deviation over all branches.
The overall maximum TDs in the SPGNN is 3.27±1.04, substantially smaller than
5.16±2.89 in the GATS method and 8.68±4.28 in the CNN method. This shows
that positional encodings substantially reduce critical errors (mislabeling far-away
branches).
A relatively large TD is seen in some CNN predictions, showing that the CNN is sen-
sitive to shape variations in airway branches, possibly due to the lack of knowledge
regarding airway tree connectivity.

Ablation study on architecture choices

We conducted two ablation studies: the first for evaluating different GNN architec-
tures in the airway labeling problem, the second for validating the number of layers
needed for graph attention networks; Ablation studies were carried out using an
identical experimental setup as for the main results (section 3.3.4).
The GNN architectures we compare are the graph attention network (GAT) [138], graph
isomorphic network (GIN) [149], GraphSage [150] (SAGE), and Graph convolution net-
work (GCN) [137] because they have shown superior performance on many graph
neural network benchmarks. In the ablation study, GAT denotes the vanilla graph at-
tention network without skip connections, which is different from the GATS method
that uses skip connections (Equation 3.4). Architectures, in comparison, have four
layers, each taking 1024-dimensional CNN branch features as the input and produc-
ing equal-sized features as the output. At each layer, branch features are updated
using neighboring information. Branch features are projected to 256, 128, 64, and
1024 dimensions from the first to the fourth layer, same as settings in SPGNN (sec-
tion 3.2.1). We do not use positional encodings in ablation studies to focus on ana-
lyzing the difference between GNN architectures for airway labeling.
In SAGE, sampling neighbors is unnecessary for airway trees because node degrees
are relatively small compared to graphs in large-scale benchmarks. The aggregation
function in SAGE is the max pooling operator with a linear layer [150]. In GIN, average
pooling is used in the aggregation function. As shown in Table 3.3 (a), GAT achieves
the best performance in both metrics, reaching 89.59% overall branch classification
accuracy and 2.05 topological distance. We noticed that a four-layer GCN converges
to degenerated results in ACC due to the known over-smoothing effect [151]. Interest-
ingly, over-smoothed features mainly cause classification errors within local neigh-
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bors, as shown by a relatively small TD (1.78).

GIN, SAGE, and GAT substantially outperform the CNN baseline (ACC: 83.83%,
TD:2.41), demonstrating the importance of using neighboring information in learn-
ing branch features. In addition, GAT slightly outperforms GIN and SAGE for air-
way labeling on our dataset.

The second ablation study is to quantify the performance gap of stacking different
layers in GAT. We compare results when stacking two, four, and seven layers. The
projected feature dimensions are 256 and 1024 for the network stacking two layers.
For the network stacking seven layers, projected feature dimensions are 256, 128, 64,
64, 64, 64, and 1024 from the first to the seventh layer. For training the network stack-
ing seven layers, we lower the learning rate to 1−5 to avoid exceptionally large gradi-
ents, and therefore we allowed training to reach 250 epochs. From Table 3.3 (b), with
or without skip connection, using 2-hop neighbors already provides substantially
improved results against the CNN baseline (ACC: 83.83%, TD:2.41). Stacking seven
layers achieves a slightly better performance than the network stacking four layers
in the method with skip connections. Without the skip connection, Branch classi-
fication performance drops dramatically in the seven-layer GAT from 90.30% ACC
and 2.09 TD with skip connections to 82.19% ACC and 2.18 TD without skip con-
nections showing that skip connections can help alleviate issues when using deeper
GAT networks.

3.3.5 Comparison with human readers

We invited two analysts to participate in a reader study on the secondary data col-
lection (section 3.3.1) in which the analysts had not yet seen airways. The secondary
data collection included 40 subjects with various COPD severities. Two analysts in-
dependently annotated anatomical labels given segmented airway trees. The same
segmented trees were presented as the input to the proposed SPGNN algorithm. We
computed a linearly weighted kappa with 95% confidence interval in pair groups
among the two analysts and the proposed SPGNN algorithm using the R software
package (version 3.6.2; R Foundation for Statistical Computing, Vienna, Austria).
Reader agreement was categorized as slight, fair, moderate, good, or excellent based
on k values of 0.20 or less, 0.21–0.40, 0.41–0.60, 0.61–0.80, and 0.81 or higher, respec-
tively. Table 3.4 demonstrates that the agreement between observers is excellent,
the same as the agreement between any of the analysts and the proposed algorithm
(SPGNN). However, the agreement between observers is slightly higher.
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(a) CNN features

(b) Positional encodings
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(c) SPGNN features

Figure 3.2: t-SNE plots of the CNN features (a), positional encodings (b) and SPGNN

features (c) for all branches on 220 airways. Plots were generated by the trained model

on one cross-validation split. Features from training or testing examples are marked

by dot or cross. Features are colored according to their anatomical label, and anatom-

ical names are annotated at the coordinate center among points of the same label.
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Table 3.3: Ablation study on architecture choices. We compare GCN [137], GIN [149],

SAGE [150], and GAT [138] when stacking fours layers for each architecture in (a). For

GAT, we compare results when stacking two, four, and seven layers in (b). The best

result is shown in bold.

(a) GNN variants

Method ACC (%) TD

GCN 68.35±10.95 1.78±0.37
GIN 88.07±7.15 2.03±0.68

SAGE 88.81±5.80 2.25±0.54

GAT 89.59±5.76 2.05±0.67

(b) #stacked layers

#layers ACC (%) TD

2 87.26±6.78 2.11±0.59

2+skip connection 87.90±6.89 2.00±0.62

4 89.59±5.76 2.05±0.67

4+skip connection 89.84±5.44 2.02±0.61

7 82.19±7.18 2.18±0.79

7+skip connection 90.30±5.30 2.09±0.76

3.3.6 Visualization of learned branch features

In this section, we use t-SNE plots [152] to visualize learned branch features and posi-
tional encodings from the proposed SPGNN method in comparison with the learned
branch features from the CNN method. The CNN and SPGNN branch features are
1024-dimensional and learned positional encodings have 64 dimensions. We apply
PCA to reduce 1024-dimensional branch features to 64 dimensions before applying
t-SNE. We use perplexity 50 and max iterations 1000 for t-SNE optimization. We use
the network trained on one cross-validation split (fold-0) to generate features on 220
airway trees in the main data collection. Features from the training and testing split
are visualized using different marker types (dot and cross). Features are labeled in
different colors according to their anatomical label. The anatomical name is posi-
tioned at the coordinate center among points of the same label.

From Figure 3.2, the CNN branch features achieve good separation in feature space
in terms of inter-class distances between different anatomical labels concerning intra-
class distances within each label. However, there is confusion in some branches; for
example, features between RB4 and RB5 are not well-separated, like those between
LB4 and LB5. Their separation is more visible in the SPGNN feature space than in
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Table 3.4: Reader study using linearly weighted kappa scores (95% confidence in-

terval) between paired groups among the two analysts and the proposed SPGNN

algorithm.

Paired Groups Kappa(95%CI)

Observer 1 versus Observer 2 86.93 (76.26,97.60)

Observer 1 versus SPGNN 82.44 (71.78,93.10)

Observer 2 versus SPGNN 83.97 (73.30,94.65)

the CNN, possibly because of the learned structural information. This phenomenon
is consistent with quantitative results in Table 3.2 as a substantially improved branch
classification accuracy for RB4, LB4, RB5, and LB5.
The positional encodings form a lobe-wise separation among branches (Figure 3.2
(b)). Meanwhile, branches from the same lobe are adjacent in the SPGNN feature
space (Figure 3.2 (c)) in the group of right upper lobe (RB1, RB2, and RB3), right mid-
dle lobe (RB4 and RB5), right lower lobe (RB7-10), left upper lobe (LB1+2 and LB3),
lingula (LB4 and LB5), and left lower lobe (LB7-10). However, RB8 and RB9 are far
from RB7 and RB10 in the CNN feature space (Figure 3.2 (a)). Lobe-wise separation
in the positional encodings could help to reduce misclassification across lobes, as
shown in a reduced topological distance (TD) between the SPGNN and other meth-
ods (Table 3.2). Nevertheless, positional encodings do not distinguish neighboring
segmental branches within the same lobe because neighboring branches have similar
shortest path lengths to anchor nodes regardless of the selection of anchors. Addi-
tionally, we do not see a clear separation in feature space between training and test
examples, indicating feature extraction process generalizes well between the train
and the test split.

3.3.7 Qualitative results

In Figure 3.3, the first column shows the full view of three airway trees where the 18
anatomical segmental branches are labeled by the SPGNN method. For each labeled
tree, we selected two branches using close-up views to demonstrate the difference
between the reference annotation (2nd column), predictions from the SPGNN (3rd
column), the GATS (4th column), and the baseline CNN methods (5th column).
In the first case, the SPGNN, the GATS, and the CNN methods label RB1 as a sub-
segmental branch rooted in RB1. This error may be caused by high anatomical vari-
ations in RB1, RB2, and RB3. There are cases where RB1, RB2, and RB3 trifurcate,
while it is common to have one bifurcation leading to RB1 before another bifurcation
leading to RB2 and RB3. The LB10 is correctly labeled by the SPGNN method as a
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Figure 3.3: Branch predictions for three representative cases in rows. In the first col-

umn, we show predictions from the SPGNN method in the full view. Next, we show

two close-up views from the third column to the last, highlighting the branch pre-

dictions generated by the proposed SPGNN, GATS, and the baseline CNN methods,

respectively, according to the reference in the second column. 18 segments are in dif-

ferent colors as RB1 , RB2 , RB3 , RB4 , RB5 , RB6 , RB7 , RB8 , RB9 , RB10 ,

LB1+2 , LB3 , LB4 , LB5 , LB6 , LB7+8 , LB9 , LB10

sibling of the LB9 but mislabeled as a sibling of the LB7+8 in the GATS and CNN
methods.

In the second case, the LB3 and the LB5 are mislabeled by GATS and CNN as one
branch nearby, whereas the SPGNN makes accurate predictions. We noticed that the
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GATs and the CNN methods do not fully recognize sibling structures because they
correctly label both LB1+2 and LB4 when mislabeling their siblings. On the other
hand, the SPGNN marks LB3 and LB5 correctly, indicating that adding positional
encodings in the SPGNN helps in understanding sibling relationships.
In the third case, the CNN, GATS, and SPGNN methods mislabeled the RB7 because
an unusual branch bifurcated before the RB7 from the right lower lobar bronchus.
This additional split also causes the RB7 to change orientation relative to the right
lower lobe bronchus. For the LB9, the SPGNN method is accurate. However, the
CNN falsely labels the LB9 as one branch connected to the LB6, which causes a sig-
nificant error in the topological distance (TD). The mistake made in GATS on the LB9
is on a branch succeeding the LB10, resulting in a minor error in TD but showing a
sign of not catching sibling structures. Moreover, the CNN method labels the LB10
as one branch below. However, this does not occur in the GATS and the SPGNN re-
sults, indicating that structural information can reduce the classification error caused
by the confusion in convolution features.

3.4 Discussion

We have presented a method that formulates airway labeling as a branch classifi-
cation problem. First, we train a CNN to extract features for representing airway
branches. Then, these features are iteratively enriched in a GNN by collecting in-
formation from neighbors, where the graph is based on the airway tree connectivity.
Furthermore, we leverage positional information in our GNN, where the position of
each branch is encoded by its topological distance to a set of anchor branches. As
a result, the learned features are structure- and position-aware, contributing to sub-
stantially improved branch classification results compared with methods that use
only convolution features or structure-aware GNNs.
We experimented with various GNN architectures and demonstrated that graph at-
tention networks achieve slightly better performance on our data set than other pop-
ular GNN architectures. We also show that introducing skip connections between
layers makes using deeper graph attention networks possible.
In conclusion, we have shown that the proposed SPGNN achieves the top branch
classification performance in our data set with only trivial computational overhead
on top of the CNN baseline. The proposed algorithm is publicly available at https:
//grand-challenge.org/algorithms/airway-anatomical-labeling/. Fur-
thermore, our method is generic and can be readily applied to other tree-labeling
problems ubiquitous in medical image analysis. We published our source code at
https://github.com/DIAGNijmegen/spgnn.

https://grand-challenge.org/algorithms/airway-anatomical-labeling/
https://grand-challenge.org/algorithms/airway-anatomical-labeling/
https://github.com/DIAGNijmegen/spgnn


70 Structure and position-aware graph neural network for airway labeling

3.5 Acknowledgment

The authors are deeply grateful to Gerwin Salentijn and analysts from Thirona (Ni-
jmegen, the Netherlands), who made the segmentation references available for this
study. The Dutch Lung Foundation supported this work under project 5.1.17.171.
We acknowledge the COPDGene Study (ancillary study ANC-337) for providing the
data used. COPDGene is funded by Award Number U01 HL089897 and Award
Number U01 HL089856 from the National Heart, Lung, and Blood Institute. The
content is solely the responsibility of the authors. It does not necessarily represent
the official views of the National Heart, Lung, and Blood Institute of the National
Institutes of Health.



Dense regression activation maps for le-
sion segmentation

4

Authors: Weiyi Xie, Colin Jacobs, Jean-Paul Charbonnier, and Bram van Ginneken

Original title: Dense regression activation maps for lesion segmentation in CT scans
of COVID-19 patient

Published in: Medical Image Analysis (Page: 102771, Volume: 86, May. 2023)

DOI URL: doi.org/10.1016/j.media.2023.102771

https://doi.org/10.1016/j.media.2023.102771


72 Dense regression activation maps for lesion segmentation

Abstract

Automatic lesion segmentation on thoracic CT enables rapid quantitative analysis
of lung involvement in COVID-19 infections. However, obtaining a large amount
of voxel-level annotations for training segmentation networks is prohibitively ex-
pensive. Therefore, we propose a weakly-supervised segmentation method based
on dense regression activation maps (dRAMs). Most weakly-supervised segmenta-
tion approaches exploit class activation maps (CAMs) to localize objects. However,
because CAMs were trained for classification, they do not align precisely with the
object segmentations. Instead, we produce high-resolution activation maps using
dense features from a segmentation network that was trained to estimate a per-lobe
lesion percentage. In this way, the network can exploit knowledge regarding the re-
quired lesion volume. In addition, we propose an attention neural network module
to refine dRAMs, optimized together with the main regression task. We evaluated
our algorithm on 90 subjects. Results show our method achieved 70.2% Dice coeffi-
cient, substantially outperforming the CAM-based baseline at 48.6%. We published
our source code at https://github.com/DIAGNijmegen/bodyct-dram.

https://github.com/DIAGNijmegen/bodyct-dram


4.1 Introduction 73

4.1 Introduction

The coronavirus disease 2019 (COVID-19) has been declared a global pandemic since
March 2020. Infected cases have reached over 340 million worldwide, with more
than five million deaths. Unfortunately, both numbers are still increasing. To re-
duce the fatality rate, effective diagnosis, and treatment planning are essential. As
COVID-19 mainly damages the lungs of infected subjects, Computed Tomography
(CT) of the chest plays a critical role in the rapid diagnosis and progression moni-
toring of COVID-19 infection. Based on chest CT analysis, standardized CT scoring
systems, such as the COVID-19 Reporting and Data System (CO-RADS) [96], were de-
fined to quantify the degree of suspicion of COVID-19 according to CT findings into
1-5 scores with an increasing level of suspicion.

Similarly, a CT severity scoring system [153] was designed to assess the extent of
parenchymal involvement of the disease. These scoring systems may be applied
more accurately, objectively, and rapidly when automatic segmentation of infected
areas (lesions) is available. Therefore, this work aims at developing an algorithm
that can automatically segment lesions related to COVID-19 on chest CT scans.

One of the major obstacles of semantic segmentation is the difficulty of acquiring a
large amount of voxel-wise annotations for training, as manual outlining in high-
resolution 3D scans is extremely laborious. Therefore, we present a novel weakly-
supervised segmentation method that only requires lobe-wise severity scores, such
as routinely reported using the CT severity scoring system, to supervise training.
We aim to produce high-resolution lesion segmentation maps using only these lobe
scores.

Weakly-supervised segmentation (WSS) has been extensively studied in recent years,
where reference standards can be provided using scribbles [154], or surface points [155].
Both these approaches seek a trade-off between annotation efforts and location infor-
mation in need. However, because COVID-19 CT abnormalities often have bilateral
lung involvement with a peripheral and diffuse distribution [115], annotating scrib-
bles or extreme points could still be demanding. A less demanding approach is to
label the entire image volume or only regions within a volume. Early WSS methods
using image-level labels were based on multi-instance learning frameworks [156] and
the expectation-maximization algorithm [157]. Compared to these early works, ap-
proaches based on class activation maps (CAMs) [158–161] significantly improved the
segmentation performance on major benchmarks [160]. CAMs were originally gen-
erated at low resolution, usually from the features before global pooling or fully
connected layers in training a classification network. Low-resolution CAMs do not
provide local details.
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To obtain high-resolution activation maps, MS-CAM [95] exploited both low- and
high-resolution convolution features in a multi-scale framework. High-resolution
CAMs may produce segmentation maps with local details. However, they still do
not necessarily align with object segmentation because, naturally, CAMs only reflect
discriminative regions responsible for classification. This might cause certain objects
or parts to be ignored in the CAM if the classification was made correctly. To mit-
igate this issue, research efforts were made to expand or refine CAMs, often using
the original CAMs as the initial object cues or seed regions. Wei et al. [161] proposed
to progressively erase already-found object maps and force the network to discover
new and complement CAM regions at later runs. A similar iterative approach was
applied to lesion localization in color fundus images [162]. A seeded region growing
module was proposed by Huang et al. [158] to expand CAMs to cover the complete
object boundaries. AffinityNet [159] exploited inter-pixel affinities as the transition
probability matrix and applied random walks to expand and refine CAMs.

Instead of relying on CAMs, we obtain object cues based on dense regression activa-
tion maps (dRAMs) by training a segmentation network for regressing the per-lobe
lesion percentage. dRAMs can provide high-resolution segmentation maps. More-
over, regression training allows the network to be aware of the object size, which was
not done in previous work that relied on training with categorical labels. Because
lobe-wise severity scores provided by radiologists can be translated into intervals
of lesion percentage per lobe, we propose a novel interval regression loss to enforce
the predicted lesion percentage to fall in a particular range to use these intervals as
reference standards.

Furthermore, we introduce an attention module for revising dRAMs, trained to-
gether with the regression task. This refinement module updates each location in
dRAMs using information from its local neighbors according to voxel-wise affinities
embedded in convolution features. This process mimics the random-walker [159] and
seeded-region growth [158], but contrary to those approaches, it was trained end-to-
end in our framework.

Contribution

Our key contributions are as follows:

• We propose a weakly-supervised segmentation method that is trained to pre-
dict per-lobe lesion percentage, allowing the network to be aware of the object
size. This regression training is different from generating CAMs based on clas-
sification training. The regression problem is solved using a new interval re-
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gression loss because the exact per-lobe lesion percentage is not available, only
defined in a range as supervision.

• Our framework produces high-resolution segmentation maps and is trained
end-to-end, including a proposed attention neural network module for refining
activation maps, which obviates the need for ad hoc post-processing steps.

• We study quantitatively and qualitatively the difference between class activa-
tion maps and regression activation maps obtained from weakly-supervised
segmentation training. To our knowledge, this comparison has not yet been
shown in the literature.

4.2 Related works

Several works on COVID-19 lesion segmentation attempted to reduce the demand
for voxel-level supervision in training. A semi-supervised training strategy [163] started
with full supervision with only a few labeled images and progressively updated the
model using primarily unlabeled data. An active learning-based method [164] was
proposed to use point-level labels to generate lesion segmentation maps. Yao et
al. [165] superimposed synthesized lesions on healthy CT scans to train networks to
separate lesions from other structures. Xu et al. [166] relied on scan-level labels and
fractional voxel-level labels to train a generative adversarial learning framework for
segmenting COVID-19 lesions. A binary classifier [167] was proposed to predict the
presence of COVID-19 on CT scans and used the classifier to generate CAMs for
detecting lesions. Self-supervised learning [164,168] was used to improve consistency
between activation maps from different augmented views of the same input images.
Our approach is closely related to CAMs-based WSS approaches in three building
blocks: 1) the generation of CAMs by training a convolution neural network, often
for a classification task. 2) regularization to stabilize training. 3) CAM refinement is
often needed because CAMs do not necessarily align with object boundaries.
In these three aspects, our approach generates dense class regression maps (dRAMs)
by training a segmentation network for an interval regression target. Meanwhile,
we adopt self-supervised learning by equivariant regularization [160] for improving
the consistency of extracted dRAMs over various affine-transformed input images.
In terms of refinement, our method is motivated by Ahn et al. [159], which revised
CAMs by a random-walker in post-processing steps where the transitional probabil-
ities were derived from learned local affinities. A similar but end-to-end solution can
be found in Wang et al. [160], where an attention-based neural network module was
proposed to capture global affinities for refining CAMs. Capturing global affinity is
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expensive for 3D data. Thus axial fusion transformer [169] was proposed to compute
attention on neighboring axial slices using low-resolution feature maps from the pro-
posed encoding network. With keeping the computation manageable in mind, our
method captures local affinities in 3D by gathering attentions within a 3× 3× 3 grid
of neighboring spatial locations, similar to that in Ahn et al. [159].

We also noticed recent works in semi-supervised semantic segmentation that can be
related to the proposed method. The consistency loss [170,171] was used to enforce the
unlabeled input volumes after different perturbations have similar outputs in their
semi-supervised segmentation frameworks. Similarly, a multi-view co-training ap-
proach [172] was proposed to minimize the disagreement between each view of the
same unlabeled data. The idea of learning feature consistency between two aug-
mented views of the same input has been extended into computing relative con-
sistency using a set of anchor examples [171]. The equivariant regularization in the
proposed method shares the same intuition as the consistency loss and multi-view
co-training as a self-supervised way to stabilize training.

Chapter outline

This chapter is organized as follows. Section 4.3 describes the proposed method
thoroughly. Experimental results are explained in section 4.4, followed by section 4.5
where the discussion and final conclusion are stated.

4.3 Method

4.3.1 Weakly-supervised segmentation framework

The overview of the proposed weakly-supervised lesion segmentation framework is
shown in Figure 4.1. We train a regression network to predict the lesion percentage
per lobe (not the lobe-wise severity score), and in the process, we generate the dense
regression activation maps (dRAMs). The network is trained using a proposed in-
terval regression loss, encouraging the predicted lesion percentage to fall within a
specific interval. Standard regression training is impossible because the exact lesion
percentage per lobe is not available for training. Instead, we only know the range
of lesion percentage mapped from lobe-wise severity scores, as given in Table 4.1
(b). For example, a severity score of 1 indicates that the estimated lesion percentage
in that lobe is between 1% and 5%. We also introduce a calibration process to rule
out the overestimated lesion percentage due to possible mistakes in labeling severity
scores.
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Figure 4.1: Overview of the proposed weakly-supervised segmentation framework.

(a) shows the backbone 3D U-Net [93] performing a regression task. The final dense

features were used to generate a dense regression activation map (dRAM) corre-

sponding to the lesion segmentation. (b) shows the attention module in the process

of dRAM refinement.



78 Dense regression activation maps for lesion segmentation

Moreover, we use equivariant regularization to improve the consistency of dRAMs
among various affine-transformed input images. Finally, dRAMs are refined using
a proposed attention mechanism. The following subsections elaborate on each of
these steps.

Low-level features for lesion candidate proposal

Low-level features were commonly used in weakly-supervised semantic segmenta-
tion. For example, Wei et al. [173] used low-level features-based saliency maps as the
reference for training the initial segmentation network. We propose to isolate high
attenuation areas in the lung by applying Otsu’s threshold [174] separately for each
lobe. Meanwhile, we coarsely suppress vessels via vessel enhancement filtering [175].
The high attenuation lung regions after vessel suppression are used as candidate
lesions.

Regression training for generating dRAMs

The dense regression activation map is generated by training a regression network
for predicting the lesion percentage per lobe. We adopt the 3D U-Net [93] as the re-
gression network (shown in Figure 4.1 (a)). The 3D U-Net has three down-sampling
layers in the encoding path, and each layer consists of two convolutions and a max-
pooling operation. Following the down-sampling path, two more convolutions are
used to double the convolution filters. In the up-sampling path, three layers are used
to reconstruct the resolution, and each contains one tri-linear interpolation, followed
by two convolutions to reduce the interpolation artifacts. Convolution kernels have
3 × 3 × 3 kernel size, a stride of 1 voxel, and zero padding. At the final upsampling
layer, feature maps are dense (having the same resolution as the network input).
These dense features are reshaped in channels using a regression head with a single
1 × 1 × 1 convolution before applying a softmax activation. Denote the regression
network as F (·). F (·) takes a lobe chunk image as the input, cropped around each
segmented lobe, and resized to have a fixed spatial size D×W×H , where D, W , and
H indicate the number of slices, width, and height. The pulmonary lobe segmenta-
tion was performed using a publicly available algorithm [69]. For each lobe chunk
input, areas outside the target lobe are masked out. Denoting the lobe chunk input
as I , forwarding I through F (·) produces a C ×D ×W ×H dimensional dense pre-
diction map F (I), referred to as the dense regression activation map (dRAM). In this
paper, C channels correspond to the background, vessels, and abnormal regions in
ascending order. For any channel, we can compute the per-lobe percentage of the
object corresponding to the channel by simply average-pooling F (I) over all voxels
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within the lobe (lobe-wise mean pooling). Denoting the lobe-wise mean pooling as
P (·), the parameters of F (·) can be trained given a target percentage range (rl, ru) via
the interval regression loss LINT :

min: max(0, (P (F (I))− 0.5 ∗ (rl + ru))
2 −K),

K = (0.5 ∗ (rl–ru))2.
(4.1)

Note that P (F (I)), rl, and ru are float values between 0 and 1, representing a per-
centage. LINT can also be interpreted as the quadratic version of the piecewise linear
loss function that minimizes |P (F (I)) − rl| + |P (F (I)) − ru| − |ru − rl| to force the
prediction P (F (I)) falls into (rl, ru).
The initial lesion percentage range (r∗l ,r∗l ) translated from lobe-wise severity scores
(See Table 4.1 (b)) may be inaccurate due to possible mistakes in annotating severity
scores. Therefore, we calibrate the lesion percentage range derived from lobe-wise
severity scores using our lesion candidate proposal (section 4.3.1). We first calculate
the per-lobe lesion percentage p∗ using candidate lesions (section 4.3.1) as the volume
of the candidate lesions divided by the volume of the corresponding lobe. Then we
use p∗ to calibrate the initial lesion percentage range via:

rl = max(min(r∗l , p
∗ − 0.05), 0.0).

ru = min(r∗u, p
∗ + 0.05)

(4.2)

After the calibration, rl and rl are aware of candidate lesions, which can avoid over-
estimating the percentage of lesions during labeling lobe severity scores when both
r∗l , r∗l or one of them is beyond the percentage of candidate lesions. We added 5%
tolerance for the possible errors in lesion candidate proposals (p∗ ± 0.05).

Equivariant regularization

Training on weak labels may lead to a trivial segmentation solution because no loca-
tion information is given. Therefore, regularization techniques are commonly used
to stabilize training. Wang et al. [160] introduced an implicit equivariant constraint
that enforces CAMs produced by an affine-transformed input to be similar to the
affine-transformed CAMs produced by the original input.
Denote a predefined spatial affine transformation as T (·), the input lobe chunk image
as I and F (I) as the dRAM. Equivariant regularization loss LER can be formulated
as

min: ||F (A(I))− T (F (I))||1. (4.3)

Equivariant regularization introduces the self-supervising correspondences among
affine-transformed images. The affine transformations used in this work combine
random resizing ([80% ∼ 120%] of size on each axis) and rotation of 90, 180, or 270
degrees at randomly selected axes.
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Dense regression activation map refinement

Without having the exact lesion percentage per lobe, dRAMs with only regression
training may not suffice to delineate lesions accurately. To further improve the seg-
mentation performance, we introduce a refinement step. First, we generate voxel-
wise pseudo labels t∗, where t∗ is one-hot encoded in a C ×D×W ×H dimensional
matrix. Lesion labels take the overlapping regions between the dRAMs and the can-
didate lesions (section 4.3.1). Vessel labels are detected vessels from the candidate
proposal step. The remaining voxels are considered the background. Because these
pseudo labels are generated using automatic methods and may contain errors, we
adopt a bootstrapping loss [176] LREF as the refinement loss, which minimizes∑C

c=0[βt
∗
k + (1− β)zc]log(qc)

zc = 1[c = argmax(qi)], i = 0, 1, . . . , L,
(4.4)

where C is the number of classes (3 in our case, including background, vessel, and le-
sion), tc is the pseudo reference for the class label c and zc is the bootstrapping target
produced by the network output. qc is the softmax probability of assigning a voxel
into the class c. We set β to be 0.9 to penalize more heavily on mislabeling the pseudo
reference than the errors from the bootstrapping loss because the pseudo reference
is partially a result (dRAM) from the regression training guided by the manual an-
notations (severity scores). This loss aims to leverage the knowledge learned during
training to provide hints of the true labels. Introducing vessels as the additional la-
bel forces the network to learn shape features to distinguish vessel structures from
the COVID-19 lesions, as both may have similar intensity patterns. Overall, it would
help reduce false positives on vessels.
The refinement loss and regression loss are trained simultaneously along with the
equivariant regularization loss. The total loss L for training the proposed method
can be written as:

L = 2.0× LREG + LREG + LREF (4.5)

which is the weighted sum, where the regression loss is weighted 2.0 and other two
loss terms are weighted 1.0.
The pseudo labels were generated based on dRAMs and lesion candidate proposals.
dRAMs may not be reliable at the beginning of the training. However, having a dou-
bled penalty (weighted 2.0 equals the summation of weights in other loss terms) on
the main regression training target can force dRAMs to discover regions that account
for corresponding severity scores. We use lobe-wise mean pooling to pool dRAMs to
produce regression predictions. This pooling mathematically equals computing the
lesion percentage per lobe. Therefore, regression training forces the network to find
regions that sum up to an amount reflecting the lesion percentage range defined by
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the severity scores. Using the lesion candidate proposal in refinement training, we
encourage the network to refine the lesion borders according to intensity thresholds
and exclude tubular tree structures like vessels.

Attention-based dRAM refinement

To further improve the quality of dRAM, we apply an attention module for refining
dRAMs. First, features from the first and second layers of the regression network
are squeezed to have l channels via a 1 × 1 × 1 convolution. Before squeezing, fea-
tures are detached from the back-propagation such that refinement training does not
update these features. Second, squeezed features are resized to the shape of the in-
put image and concatenated with the input image. Denote this concatenated feature
map as x, x ∈ R(1+2l)×D×W×H . We use x to compute the local voxel-wise affinities
in the dRAM y, y ∈ RC×D×W×H (C classes are 0 as background, 1 as vessels, 2 as
lesions). The affinity a(xi, xj) between two locations i and j in y can be computed
via a gated embedded Gaussian function a(xi, xj) = emax((Wθxi)

T (Wϕxj),0), where Wθ

and Wϕ are linear transformations to project x into a l dimensional subspace. We
eliminate weak affinities using the gate operation by max(·, 0). For each location i,
only local voxel-wise affinities are measured between i and surrounding locations j

in a 3× 3× 3 spatial window taking i as the center within connectivity of 2, resulting
in a total of 18 neighbors. Computing local affinities for all locations in x produces
an attention map A, A ∈ RD×W×H×18, which greatly reduces the computational in-
tensity compared with the non-local neural networks [121] using dense self-attention
maps. Each location’s local affinities are normalized within its neighbors Ωj. The
normalizing factor ζ(x) can be computed by a summation over the neighboring lo-
cations j as ζ(x) =

∑
j∈Ωj a(xi, xj). To revise the dRAM y, we apply the following

process:

ŷi = r(
1

ζ(x)

∑
Ωj

a(xi, xj)g(yj)). (4.6)

where g(·) and r(·) linearly project y a sub-space and project it back respectively.
This process can be seen as selectively collecting information from local neighbors
for each location in y. The impact from local neighbors is determined by the voxel-
wise affinities in x.
Considering A as the probability transitional matrix, this attention module, in prin-
ciple, has similar effects as using random walks based on local affinities for refin-
ing CAMS [159], and also similar to applying seeded-region growth [158] based on con-
volution features in measuring pairwise similarities in their CAM refinement pro-
cess. However, in comparison, our method enables an end-to-end optimization pro-
cess, whereas random walks [159] and seeded-region growth [158] were used as separate
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steps and not included in the neural network training.

4.4 Experimental results

4.4.1 Data

Table 4.1: The distribution of CO-RADS scores and lobe severity scores across the

training and test sets. CO-RADS score 1-6 indicates the level of suspicion for COVID-

19-positive disease, ranging from very low, low, equivocal, high, very high, and con-

firmed PCR positive, respectively. Lobe severity scores indicate the extent of lobe-

wise involvement in COVID-19 infection.

(a) CO-RADS scores

CO-RADS
#subjects
training

#subjects
testing

1 34 0

2 35 0

3 96 19

4 47 21

5 68 35

6 20 15

Total 300 90

(b) Lobe severity scores

severity scores
(percentage per lobe)

#training
lobes

#testing
lobes

0 (0%) 535 64

1 (1-5%) 327 90

2 (5-25%) 308 154

3 (25-50%) 185 86

4 (50-75%) 110 42

5 (75-100%) 35 14

Total Lobes 1500 450

We selected CT scans from patients who presented at the emergency wards of the
Radboud University Medical Center, in the Netherlands, from March to September
2020. Patients were referred for CT imaging because of moderate to severe COVID-
19 pneumonia suspicion. The ethical review board approved the retrospective and
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anonymous collection of this data (Radboudumc CMO2016-3045, Project 20027). All
CT scans were obtained with a low-dose thin slice protocol without administration
of contrast [177].

Following the guidelines of the Dutch Radiological Society [96], the radiology report
for each scan contained CO-RADS and lobe-wise severity scores. CO-RADS 1 is de-
fined as a normal scan or has non-infectious etiologies and, thus, a very low level
of suspicion for COVID-19. CO-RADS 2 indicates that the CT scan has features typ-
ical for infections other than COVID-19. CO-RADS 3 reveals equivocal findings:
features compatible with COVID-19 and other diseases. CO-RADS 4 and 5 indi-
cate a high and very high level of COVID-19 suspicion, respectively. CO-RADS 6
was given to scans from patients already known to be positive for COVID-19 with
reverse transcription-polymerase chain reaction (RT-PCR) tests at the time of re-
porting. Lobe-wise severity scores indicate the extent of lobar involvement in the
COVID-19 infection. Each lobe’s score from 0 to 5 is assigned according to the visu-
ally assessed lesion percentage. The mapping between lobe-wise severity score and
lesion percentage per lobe can be found in Table 4.1 (b). We used lobe severity scores
to generate weak labels in training our algorithm.

Data selection and partitioning

We randomly selected 390 subjects (shuffled into 300 for training and 90 for testing).
This selection included all subjects that were available when this project started. A
single scan was used for each subject. Thirty subjects in the training set were used
as the validation set during model development to prevent over-fitting. The distri-
bution of CO-RADS and lobe severity scores are provided in Table 4.1 (a) and (b).
CO-RADS scores are not used in developing our method, only for showing the level
of suspicion for COVID-19 of selected subjects.

Reference standard

For evaluating our method, lesion segmentation references on 90 test scans were
obtained from Thirona (Nijmegen, the Netherlands), a medical image analysis ser-
vice company specializing in chest CT analysis. First, lung parenchyma regions with
a higher attenuation were identified by thresholding and morphologic operations.
Next, automatic methods were used to suppress vessels and airways. Following
the radiology report, a certified image analyst with at least one year of experience
corrected the segmentations obtained by the automatic methods. The analysts also
labeled segmented lesions into the ground glass (GGO), consolidation, and mixed
type, to allow us to evaluate segmentation performance for different lesion subtypes.
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The analyst could consult a radiologist in cases of doubt during the annotation pro-
cess.

4.4.2 Implementation details

Training, validation, and testing of each experiment were carried out on a machine
with an NVIDIA A100 with 40 GB GPU memory. Train, validation, and test data
split can be found in Table 4.1. Training each weakly-supervised method took 30
hours and stopped at 200 epochs. Weakly-supervised methods were implemented
using Python 3.8 and the Pytorch 1.7.1 library [78]. Model parameters were initialized
according to He et al. [77] and were optimized using stochastic gradient descent with
a momentum of 0.9. The initial learning rate was set to 10−5. For both training
and testing of WSS methods, the size of the lobe chunk input images was 80 × 80 ×
80 cropped from the input scan resampled to 1.4 millimeters in isotropic spacing.
Intensities in input scans were clipped into the range [−1000 ∼ 400] HU before re-
scaling into [0 ∼ 1]. Dense activation maps for individual lobes were tiled together
to form a scan-level activation map in the test phase. Then segmentation prediction
was obtained by assigning labels with the maximum activation. For the attention
module in the proposed method, we set the dimension of the projected subspace
to 8 (l=8, refer to section 4.3.1). We set l to be small to reduce the computational
cost, which is also one of the reasons we perform attention computation only within
the local neighborhood. The vessel enhancement filter used for detecting vessels in
finding candidate lesions (section 4.3.1) was implemented using the Gaussian scales
of 0.8, 1.0, 1.5, 2.0, and 4.0 millimeters, with α equals to 0.5, β as 0.5, and γ of 15 as
correction constants.
The fully-supervised experiment was based on the official nn-UNet [178] implementa-
tion. We let the nn-UNet operate in 3D full-resolution mode. We randomly selected
85 scans from the training dataset of 300 scans (refer to section 4.4.1). We let analysts
manually label lesions as the foreground and the background, following the same
protocols as annotating the test set. We split 85 scans into 65 for training and 20
for validation for training the nn-UNet method. The nn-UNet required training for
two weeks before reaching 1000 epochs (Detailed self-configured hyper-parameters
listed in Table 4.2).

4.4.3 Evaluation metrics

The Dice coefficient (DSC), absolute percentage difference (APD), the absolute dif-
ference in the surface-to-volume ratio (SVRD), false discovery rate (FDR), and true
positive ratio (TPR) were used for measuring the segmentation performance.
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Table 4.2: The main settings chosen by the nnUNet framework [178] to train the seg-

mentation network with manual annotations (fully-supervised training).

parameters values

#pooling operations in z,x,y direction [5, 5, 4]

#features after first conv 32

conv per stage 2

optimizer SGD (momentum: 0.99)

initial learning rate 0.01

#epochs 1000

#batches used in every epoch 250

#images per batch 2

patch size in z,y,z direction [128 160 112]

normalization schemes (0, ’CT’)

Given the predicted lesion segmentation map X and the segmentation reference Y ,
DSC measures the degree of overlap between the two as:

DSC(X, Y ) =
2× V ol(X ∩ Y )

V ol(X) + V ol(Y )
, (4.7)

where ∩ indicates the intersection between X and Y . V ol(·) computes the volume
size of the underlying region.

Using the same notations, APD measures the absolute difference of lesion percentage
per lung between the prediction X and the reference Y as:

APD(X, Y ) =
|V ol(X)− V ol(Y )|

V ol(Lung)
, (4.8)

given the volume of the lung as V ol(Lung). APD serves as a volume-based measure.

The surface-to-volume ratio (SVR) measures the irregularity or compactness of a
shape. With the same object size, the ball shape has the smallest SVR, and SVR
grows larger when the object size increases. SVRD measures the absolute difference
in two shapes in terms of the shape irregularity as:

SVRD(X, Y ) = |Sur(X)

V ol(X)
− Sur(Y )

V ol(Y )
|, (4.9)

where X denotes the predicted lesion mask, Y is the reference mask, and Sur(·)
computes the surface area of the underlying region. SVRD serves as a shape-based
measurement.
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FDR is a precision-based measure that computes the number of falsely-labeled vox-
els divided by the total number of voxels in prediction as:

FDR(X, Y ) = 1.0− V ol(X ∩ Y )

V ol(X)
. (4.10)

between the prediction X and the reference Y .

TPR, or recall, is a measure that indicates the amount of lesions that are detection in
the segmentation, computed as:

TPR(X, Y ) =
V ol(X ∩ Y )

V ol(Y )
, (4.11)

between the prediction X and the reference Y . We compute TPR for each lesion
subcategory, namely consolidation, ground-glass, and mixed types.

In addition to segmentation measurements, we compute per-lobe lesion percentage
using the segmentation results. And we use the calculated lesion percentage to pre-
dict the lobe-wise severity score using the definition in Table 4.1 (b). This way, we
can measure the classification performance using the predicted lobe-wise severity
scores against manual-labeled ones. Notice that our methods do not directly predict
lobe-wise severity scores but are translated from the lesion percentage. We measure
classification accuracy (ACC) as the number of correctly predicted lobes divided by
the total number. Also, a linearly weighted kappa is computed to measure the de-
gree of reader agreement using the Rel (version 1.4.2) software package in R (version
3.6.2; R Foundation for Statistical Computing, Vienna, Austria).

Besides the quality measurements, the computational complexity was measured by
counting the number of Multi-Adds operations (MAC) and the number of network
parameters (the model size).

4.4.4 Comparisons with CAMs and fully-supervised methods

We denote the regression training using only interval regression loss as the dRAM
method. In the proposed method, we train the regression network using interval
regression loss, equivariant regularization, and refinement loss with the proposed
attention module.

To compare with CAM-based methods, we turn the regression network into a clas-
sification network by replacing the regression head with a classification head. The
classification head computes a mean pooling of dense features per lobe and reshapes
the pooled features according to the number of classes using a linear layer. The classi-
fication network is trained using cross-entropy loss to predict binary labels between
1 if the lobe has a non-zero severity score and 0 otherwise. CAMs are then generated
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by multiplying dense feature maps with weights in the linear layer. We denote this
approach as dCAM because of using dense features.

To compare with the standard CAM-based methods, we skip up-sampling layers in
the classification network to generate CAMs using features at the lowest resolution.
Same as dCAM, we train this slimmed network for binary classification to generate
CAMs. Then we resize CAMs to the original resolution by trilinear interpolation.
We denote this method as CAM.

For both dCAM and CAM methods, the class activation maps in the test phase are
rescaled to be in the [0,1] range separately for each lobe by eliminating negative
values using a Rectified Linear Unit (Relu), subtracting by the minimal and dividing
by the maximum. These rescaled class activation maps are binarized using Otsu’s
threshold to produce the lesion segmentation.

To improve the segmentation performance on CAM-based methods, we use a sim-
ple post-processing strategy, where the region outside the candidate lesions (sec-
tion 4.3.1) in the segmentation is masked out. The best-performing method based on
CAMs is the dCAM with post-processing, referred to as the baseline method in this
paper.

Quantitative results of CAM, dCAM, dRAM, and the proposed method are shown in
Table 4.3. Without equivariant regularization and refinement loss, training with only
interval regression loss (dRAM) reaches 59.90% in DSC, outperforming all CAM-
based methods by a large margin. Using equivariant regularization and refine-
ment loss, the proposed regression training method achieved 70.24% in DSC, the
best weakly-supervised method in comparison. Not surprisingly, a fully-supervised
method (nn-UNet) still outperforms weakly-supervised methods, but for several
metrics, differences with the proposed method are minor. Relatively large standard
deviations in DSC of all methods are due to the high variation in lesion volume in
different cases.

Visual inspection of the generated activation maps (Figure 4.2) reveals that blob-like
CAMs (2nd row) do not recognize object boundaries. They enclose mostly healthy
lung parenchyma when there is only a focal lesion (2nd row, 4th column) because of
being generated from the low-resolution features. dCAMs (3rd row) produce high-
resolution activation maps using dense features but still suffer from a large amount
of over-segmentation and under-segmentation. This can be seen, for example, in the
right upper lobe of the first subject (3rd row, 1st column), where the dCAM misses a
small pleural lesion, whereas many vessels and opacities near vessels in other sub-
jects are falsely detected. These errors are greatly reduced in the proposed method
(4th row). The main reason is that the proposed method was trained to quantify le-
sions in the image through an interval regression loss. Supplying information about
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Figure 4.2: Visualization of CAMs (2nd row), dCAMs (3rd row), and dRAMs in the

proposed method (4th row) in one coronal view of four subjects. The 1st and the last

row show the original image and the reference standard. We use the color map jet for

this plot.
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Table 4.3: Segmentation results using CAM, dCAM, dRAM, and the proposed meth-

ods on the test set. nn-UNet indicates the results from the fully-supervised training.

Post-processed results are suffixed by ’p’. We use dCAM with post-processing as the

baseline method (dCAMp). The boldface denotes the best result among all WSS meth-

ods. DSC scores are shown in mean ± standard deviation. The classification accuracy

(ACC) is reported by computing the per lobe lesion percentage using the generated

segmentation map and translating the ratio to a lobe-wise severity score.

Method DSC [%] APD [%] SVRD [%] FDR [%]

CAM 34.24±19.59 21.59±8.79 8.84±6.14 71.16±20.37

CAMp 47.29±20.19 8.03±9.23 19.27±11.10 46.09±24.53

dCAM 40.42±25.56 10.53±6.77 6.02±8.14 54.19±21.66

dCAMp 48.63±26.76 7.46±7.04 15.20±6.82 34.49±23.50

dRAM 59.90±18.75 4.10±5.26 5.53±6.21 35.95±23.92

dRAMp 58.12±18.08 6.32±6.09 9.89±8.60 28.85±25.74

proposed 70.24±18.66 3.52±2.78 3.58±3.19 17.58±19.15
nnUNet 77.09±20.67 3.21±4.77 4.23±5.75 23.97±23.75

Method
TPR [%]

ACC [%]
Consolidation GGO Mixed type

CAM 37.60±33.00 49.79±27.58 61.99±23.37 27.11

CAMp 27.71±25.83 38.41±24.67 50.51±20.54 40.89

dCAM 27.08±30.75 29.42±29.86 55.18±28.99 27.78

dCAMp 28.93±26.84 35.87±26.07 52.07±25.41 42.44

dRAM 37.08±21.37 43.17±21.23 64.03±14.65 44.67

dRAMp 32.78±20.02 36.56±20.01 55.17±13.21 41.78

proposed 49.86±20.80 48.53±20.49 68.67±16.81 47.33
nnUNet 71.86±22.92 75.59±22.04 84.76±9.26 50.67

the object size allows the model to learn a much finer feature representation, result-
ing in a less noisy activation map.

Post-processing improves the performance of the CAMs-based method, from 40.42%
DSC in dCAM to 48.63%

Regarding shape and volume-based measurements, the proposed method reaches
3.52 APD and 3.58 in SVRD, representing a low error rate in predicting lesion vol-
umes and shape compactness compared to manual segmentation. We also notice
that the proposed method has a higher voxel-level precision resulting in a lower FDR
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Figure 4.3: Post-processed segmentation results of CAM (1st row), dCAM (2nd row),

and dRAM (3rd row) methods in three different test subjects listed column-wise. Seg-

mented contours from raw activation maps were drawn in , post-processed activa-

tion maps in , and reference masks in . Contours were drawn in orders of raw,

post-processed, and reference. Best viewed in color.

but a lower recall (TPRs are lower in all lesion sub-types) than the fully-supervised
method.

In terms of predicting lobe-wise severity scores using the segmentation maps pro-
duced by the listed methods, the proposed method achieves classification accuracy
at 47.33%, lower than 50.67% achieved by the fully supervised nn-UNet. The con-
fusion matrix in Figure 4.4 (a) shows that the scores predicted by the proposed
method tend to underestimate the manual-labeled lobe-wise severity. Because the
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predicted lobe-wise severity score is translated from the per-lobe lesion percent-
age computed using the segmentation map, this underestimation in severity may
be caused by the under-segmentation in the proposed method, seen as the lower
TPR in the proposed method than the fully supervised method (Table 4.3). We
also compute the linearly weighted kappa for the baseline, the proposed, and the
fully supervised methods to measure the agreement against a radiologist. Kappa is
46.47 (95%CI:40.90,52.05) for the baseline, 58.61 (95%CI:53.82,63.40) for the proposed,
and 56.87 (95%CI:51.66,62.08) for the fully-supervised method, where the proposed
method achieves the best kappa.

Regarding computational complexity, the CAM method based on low-resolution fea-
tures requires only 66.15GMacs and 7.03M in model size, much less than other meth-
ods. The methods based on dCAMs require 462.92 GMacs and 16.32M in model size.
The proposed method needs extra computation for computing the attention map and
siamese networks used in the regularization, consuming 926.41 GMacs and 16.32M
in model size. In terms of the runtime speed, weakly-supervised methods (CAMs,
dCAMs, and the proposed) process each scan at the testing time in 2 seconds on
average, while the nn-UNet takes roughly 480 seconds to process a scan due to the
heavy build-in pre-processing.

4.4.5 The proposed method and classification methods in predict-

ing lobe-wise severity scores

We also compare the severity score prediction accuracy of the proposed method
with that of networks trained directly for classifying lobe-wise severity scores. For
training the classification network, we turn the regression network in the proposed
method into a classification network by replacing the regression head with a classi-
fication head. The classification head computes the global average pooling of dense
features per lobe and reshapes the pooled features according to the number of classes
using a linear layer. We use the global average pooling because it is the common clas-
sification head in networks for image classification [179]. The classification network is
trained using the weighted cross-entropy loss to predict six categorical lobe-wise
severity scores. The class weights are determined by the reverse class occurrence on
the training set (clipped between 0.2 and 0.8 to avoid over-weighting). We experi-
mented with two classification networks: the one having the same network archi-
tecture as the proposed method but with a classification head and the other using
the architecture of the CAM method (without up-sampling layers in the proposed
method, using the features at the lowest resolution as the input to the classification
head). We referred to these two classification networks as dCLS and CLS. Note that
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in dCLS and CLS, we predict six categorical labels using the global average pooling,
while in dCAM and CAM (section 4.4.4), we use the lobe-wise mean pooling in pre-
dicting binary labels. The dCLS method reaches 48.67% overall severity score predic-
tion accuracy on the test set, slightly higher than the proposed method (47.33%) and
the CLS method (46.44%). In terms of the reader agreement, the CLS and dCLS meth-
ods achieve 52.45 (95%CI:47.36,57.54) and 54.44 (95%CI:49.32,59.57) kappa statistics,
respectively, slightly lower than the proposed method at 56.87 (95%CI:51.66,62.08).

From the confusion matrix (Figure 4.4), the dCLS and the CLS method have a higher
rate of producing critical errors than the proposed method, e.g., predicting score
0 when the actual severity score is 5. Regarding the error distribution, errors are
shifted towards one cell above (predicting one score lower than the actual severity)
the diagonal in the proposed method consistently for all severity scores. This consis-
tent shift in error distribution is because of using predicted segmentation maps for
measuring the lesion percentages, which are further mapped to severity scores. We
do not observe the consistent error distribution in the classification methods trained
to directly produce severity scores, e.g., in the dCLS result (Figure 4.4 (b)), 22 lobes
were mislabeled as 1 and 37 lobes were mislabeled as 3 when the actual label is 2,
compared with 22 lobes mislabeled as 2 and 16 lobes mislabeled as 4 when the true
label is 3. The nature of the consistent shift in the error distribution when predict-
ing severity scores by segmented lesions is illustrated in Figure 4.8, which shows
the lesion percentage range defined by the severity scores through the mapping (Ta-
ble 4.1 (b)) is generally at a higher level than the lesion percentage range computed
by the manual segmentation reference. Clearly, there is an overestimation of the le-
sion percentage in the visual assessment when manually annotating severity scores.
Furthermore, the classification methods tend to assign a score between 0 to 4 when
the actual score is 5 (the second column from the right in Figure 4.4 (b)), indicating
that the dCLS and CLS methods sometimes do not recognize well on most severe
cases. On the other hand, the proposed method may assign a score of 5 when the
actual scores are between 1 and 3 (the second row from the bottom in Figure 4.4 (a)),
demonstrating the predicted segmentations may rarely include lesions that are not
COVID-19 but with a similar appearance. We conclude that the dCLS and the pro-
posed method have a small degree of confusion between the COVID-19 lesions and
false lesions with similar visual patterns, possibly due to the lack of training data,
especially for the most severe cases (only 35 lobes for the score 5). In general, the
proposed method achieves comparable results as the classification methods (dCLS
and CLS) in predicting lobe-wise severity scores, but with better consistency in error
distribution from the confusion matrix and a smaller chance of producing critical
errors.
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Table 4.4: Ablation study on the proposed method with or without using the equiv-

ariant regularizer (ER), refinement loss (REF), and attention module (AT). The first

row represents the performance of the dRAM method, and the final row presents the

proposed method. DSC scores are shown in mean ± standard deviation.

ER REF AT DSC,% ACC,%

- - - 59.90±18.75 44.67

✓ - - 61.74±23.62 45.33

✓ - 64.62±22.81 41.33

✓ ✓ - 68.41±21.59 46.22

- - ✓ 62.17±22.58 45.55

- ✓ ✓ 67.72±21.11 46.00

✓ ✓ ✓ 70.24±18.66 47.33

4.4.6 Ablation study on dRAM-based methods

We conducted an ablation study to evaluate the effectiveness of each component
in the proposed WSS framework. These components are the equivariant regular-
izer (ER), refinement loss (REF), and the proposed attention module (AT). Quanti-
tative results are shown in Table 4.4. dRAM trained only with interval regression
loss achieves 59.91% in DSC due to the lack of voxel-level cues. By introducing
the dRAM refinement process, we greatly improve DSC to 64.62% without impos-
ing additional computational burden. The reason is that suppression of vessels and
false-detected regions beyond the intensity threshold encourages the network to dis-
cover new areas to satisfy the regression target during training. However, we also
see that classification accuracy is lower in dRAM with refinement training (Table 4.4,
the 3rd row) compared to the dRAM only with interval regression loss (Table 4.4, the
1st row). This is because the refinement training reduces the false positives due to
the vessel suppression and lesion candidate proposal but also reduces the estimated
lesion percentage. From Figure 4.5 (b), we see that more errors are made to one
score lower in dRAM with refinement than without refinement. As both methods
are based on predicted segmentation maps in estimating lobe-wise severity scores,
the underestimation of severity scores can reflect an overall reduced percentage per
lobe estimation due to the under-segmentation. From the ablation results, the under-
estimation of lesion percentage can be alleviated by introducing the attention mod-
ule, which has the effect of seeded regional growth for discovering more relevant
regions. Self-supervised training using the equivariant regularizer contributes to an
improvement from 59.91% DSC to 61.74% DSC due to the known capability of sta-
bilizing the training process. The downside of using an equivariant regularizer is to
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have a doubled computation cost (925.84 GMacs and 16.32M in model size) during
training. The high computation cost is due to the Siamese networks taking original
and affine-transformed input images in equivariant regularization.

The proposed attention module alone boosts the segmentation performance from
59.91% DSC to 62.17% DSC. The module updates activation maps at each location se-
lectively using its neighboring information. This is similar to popular CAM-refinement
techniques, i.e., conditional random field [158], random walkers [95], and seeded-region
growth [158]. Figure 4.6 shows the activation maps before and after the attention mod-
ule in two input images during training. We notice that neighboring information is
gathered and weighted more towards high attenuation areas. This makes low at-
tenuation regions (probably healthy lung parenchyma) less involved in further com-
putation, suppressing false alarms and forcing the network to look for other areas to
find lesions. With the equivariant regularizer, refinement loss, and attention module,
the proposed method ultimately reaches a DSC of 70.24%. Even though the compu-
tation cost of the proposed method is high (926.41 GMacs and 16.32M in model size),
we argue that the large computational burden only occurs during training.

All listed approaches do not differ much in classification performance, where the
proposed method achieves the best accuracy at 47.33%.

4.4.7 Robustness study on lesion subtypes

This study examines whether the segmentation method performs worse or better for
a specific lesion subtype. We computed the correlation between the volume ratio
of each subtype and the segmentation performance (in DSC,%) on every test image.
Each point in Figure 4.7 tallies the correlation on each test image, where the top-
left image shows the distribution of DSC scores for the baseline, the proposed, and
the fully-supervised methods. The other images rank the percentage of each lesion
subtype (the volume of each lesion subtype divided by the overall lesion volume) at
x-axis, and y-axis shows the DSC scores.

The top-right subplot shows that all methods perform well on mixed lesions because
points are more concentrated at the top right corner. However, the performance
is relatively weak for the ground-glass and consolidated lesions because points are
densely distributed at the top-left corner of the subplots corresponding to the ground-
glass and consolidation subtypes.
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4.4.8 Ablation study on hyper-parameters and the impact of vessel

suppression

In this section, we perform an ablation study to evaluate the sensitivity of the model
performance to a different choice of hyperparameters. The hyper-parameters se-
lected in this study are the weight (β in Equation 4.4) between the loss on the pseudo
labels and bootstrapping term in the refinement loss, the weight λ in the total loss
(Equation 4.5), and the dimension of the projection subspace in the attention module.
We listed the segmentation performance of the proposed method (DSC %) on the test
set in Table 4.5. Results show that the performance drops when the regression loss
term in the total loss is under-weighted (λ less than 2.0). This demonstrates that the
contribution of the regression training is essential for guiding the network to learn
visual representations corresponding to the severity scores. In the refinement loss,
the model performs smoothly over a range of β values, illustrating that the model
is robust to the choice of β. However, a slightly better performance was achieved
when β is set to 0.8 and 0.9. Regarding the projected subspace in the attention mod-
ule, we do not see a significant deviation in performance by changing the projection
dimension l because the attention module primarily benefits from gathering features
among local neighbors, not sensitive to the projection dimension. Finally, the perfor-
mance drops when turning off the vessel detection in the candidate proposal and the
refinement training. This illustrates the importance of learning vessel structures in
the refinement training and calibrating the target lesion percentage by subtracting
the predicted vessel.

4.4.9 Rationale behind lesion candidate proposal

From Figure 4.8, we see that the per lobe lesion percentage translated from the an-
notated lobe-wise severity scores using the mapping Table 4.1 (b) has a higher range
in all severity categories, than the lesion percentage computed using the manually
annotated lesion segmentation references. The segmentation references were man-
ually labeled on 85 scans in our training set and used to train the nn-UNet method
(See section 4.4.2). The offset between the two percentage ranges reflects the esti-
mation error due to the difficulties in visually assessing the lesion volume in the
CT image. To reduce the offset, we propose to use simple low-level image process-
ing techniques (vesselness and thresholding) to isolate high attenuation non-vessel
lung areas in the lesion candidates proposal step according to the prior knowledge
of COVID-19 lesion CT patterns. These candidate lesions can be used to calibrate the
lesion percentage translated from the manual annotated lobe-wise severity scores.
And the candidate lesions can also reduce the false positives in the post-processing
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Table 4.5: The ablation study of hyper-parameters among λ, the weight term in the

total loss summation (Equation 4.5), the weight term β in the refinement loss (Equa-

tion 4.4), l the dimension of the projection subspace in the attention module (sec-

tion 4.3.1), and the impact of using vessel suppression.

Hyper Parameter Options DSC,%

λ

0.5 68.13±19.57
1.0 69.56±19.32
2.0 70.24±18.66
5.0 70.15±19.13

β

0.5 69.67±17.31
0.8 70.27±18.22
0.9 70.24±18.66
1.0 69.83±19.95

l

2 70.08±18.81
8 70.24±18.66

16 70.53±20.19

Vesselness
No 68.09±18.25
Yes 70.24±18.66

steps (primarily useful for CAM-based methods) or in the refinement training for
generating pseudo labels (See section 4.3.1).

4.4.10 Qualitative results

As shown in Figure 4.9, the result from the baseline method (2nd row) exhibits sub-
stantial under-segmentation in pleural lesions (2nd, 3rd, 5th, 6th columns). Also, the
baseline method often over-segments perivascular regions (3rd and 4th columns).
The proposed method (3rd row) generally performed well on lesion segmentation.
However, compared with the nn-UNet results, the proposed method under-segments
small pleural ground-glass lesions (3rd and 5th column). One reason is that the lobe-
wise severity scores only represent an interval of the per-lobe lesion percentage and
not the exact ratio, potentially allowing the network to tolerate inevitable mistakes.
On the other hand, ground-glass opacities may create challenges in visual recogni-
tion. This challenge may also cause measurement errors for radiologists in labeling
severity scores, further contributing to confusion regarding ground-glass opacities
in our methods.
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4.5 Discussion and conclusion

We proposed a novel weakly-supervised segmentation framework trained end-to-
end using only lobe-level supervision and can produce high-resolution segmenta-
tion maps. The proposed method substantially outperforms the baseline method,
though a gap with the fully-supervised performance remained. Our method trained
a segmentation network to predict per-lobe lesion percentage. We made this training
possible by proposing an interval regression loss, given only the upper and lower
bound of the target percentage, not the exact percentage as supervision. Further-
more, we stabilized the regression training using equivariant regularization. In the
refinement process, we proposed an attention neural network module that updated
activation maps in one location using nearby activations, acting similar to random
walkers, and seeded regional growth in standard post-processing pipelines, yet ours
is trained end-to-end.
Our results showed that the proposed model sometimes under-segments small ground-
glass lesions in the subpleural region of the lung periphery. However, as weak labels
are cheap to collect, more advanced approaches can be built upon our model using
our methods as the initial seed for interactive (e.g., adaptive learning scenarios) or
iterative refinement (e.g., knowledge distillation).
The proposed method is generic and can be easily adapted to other weakly-supervised
segmentation problems if specific object statistics are given and can be used as the
regression target. Visually assessing the number of affected regions is common in
radiology. Therefore we believe that the proposed weakly-supervised segmentation
framework can be used for many segmentation problems in medical imaging, where
automatic segmentation is often used for quantification analysis. Our framework
can directly use visually assessed quantification results from radiological scoring
systems as the regression target in these scenarios.
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(a) The proposed method

(b) dCLS
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(c) CLS

Figure 4.4: Confusion Matrix in predicting lobe-wise severity scores on the test set be-

tween the proposed method and the methods trained on directly classifying Severity

Scores (dCLS and CLS), rows represent predicted score, and columns show the target

scores.
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(a) dRAM

(b) dRAM with refinement loss

Figure 4.5: Confusion Matrix in predicting lobe-wise severity scores on the test set

between the dRAM method and the dRAM method with refinement loss, rows repre-

sent predicted score, and columns show the target scores.
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Figure 4.6: Visualization of dense feature maps before (2nd col) and after (3rd col) the

attention module in two input volumes in coronal views (1st col) during training. We

use the color map jet for this plot.

Figure 4.7: Robustness study on different lesion subtypes for the baseline, the pro-

posed, and fully-supervised methods. The top-left image shows the overall DSC dis-

tribution on the test set. The rest images show the correlation between the lesion

percentage of a specific subtype and the corresponding DSC.
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Figure 4.8: Offset between lesion percentage range (dash-line red rectangles) trans-

lated from the annotated lobe-wise severity scores using the mapping Table 4.1 (b)

and lesion percentages computed by the manually annotated segmentation reference

(points in the box-plot), for all severity scores (0 - 5) on 85 CT scans with voxel-wise

annotations from the training set.
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Figure 4.9: Segmentation results for six representative test cases in coronal views (1st

row) represented in columns. The 2nd, 3rd, 4th, and 5th rows show the segmentation

results of the baseline, the proposed method, the nnU-Net method, and the segmen-

tation reference, respectively.
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Abstract

We present a deep learning-based approach for automating the Fleischner Society’s
visual scoring system for classifying emphysema by CT characteristics. Using in-
spiratory CT scans from 9650 subjects in the COPDGene study, we trained a 3D
deep neural network on 2507 scans and evaluated it on 7143 scans using predic-
tive accuracy (ACC), F-measurement, and weighted kappa statistic (K), using visual
scores as the reference. Our method achieved a classification accuracy of 52%, out-
performing a previously published method’s accuracy of 45%. In addition, the agree-
ment between the predicted scores of our method and the visual scores was good,
whereas the previous method obtained only moderate agreement. Our method has
several novel features. It includes the ability to generate a percentage of emphy-
sema involvement per lung in addition to a categorical severity score. It provides
high-resolution localized activation maps for visualizing the classification decision.
Finally, it predicts not only centrilobular but also paraseptal emphysema subtypes.



5.1 Introduction 107

5.1 Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death
worldwide, causing 3.23 million deaths in 2019 [1]. COPD is characterized by ir-
reversible airway obstruction, which can be caused by small airway diseases and
emphysema. However, the extent to which each contributes to airflow obstruction
varies among individuals, leading to significant heterogeneity among COPD pa-
tients [180]. To better understand this heterogeneity, researchers have used computed
tomography (CT) scans to assess the disease’s distribution, severity, and progression
in vivo [24,26]. Additionally, many studies have attempted to identify COPD subtypes
based on patterns observed on CT scans [27,32,33,35].

The Fleischner Society has developed a structured scoring system for classifying sub-
types of centrilobular and paraseptal emphysema based on the severity of the dis-
ease as observed on chest CT scans [27]. This scoring system, which we refer to in
this work as the Fleischner system, utilizes six ordinal scales to evaluate centrilob-
ular emphysema as absent, trace, mild, moderate, confluent, or advanced destruc-
tive, and paraseptal emphysema as absent, mild, or substantial. Previous studies of
the Fleischner system [39,40] have primarily focused on centrilobular emphysema and
have reported good reader agreement in scoring centrilobular emphysema among
human readers on scans from 3171 participants in the COPDGene study cohort [23] (a
subset of the data used in our current study). These studies also demonstrated that
visual scores of centrilobular emphysema are associated with mortality. To improve
the efficiency of using the Fleischner system in research and clinical practice, a deep
learning algorithm [40], referred to in this work as the Humphries algorithm, has been
developed to score centrilobular emphysema according to the Fleischner system au-
tomatically. When comparing the predicted scores of the Humphries algorithm with
visual scores for 7143 subjects from the COPDGene study, the Humphries algorithm
achieved a linear weighted kappa statistic of 0.60 and a classification accuracy of
45%. Furthermore, the scores produced by the Humphries algorithm were found to
be associated with mortality [40].

This paper presents a novel method that addresses two limitations of the existing
Fleischner algorithm: its focus on centrilobular scores and its lack of model inter-
pretability. Our proposed method calculates severity scores for centrilobular emphy-
sema and paraseptal emphysema, enabling the analysis of both subtypes. Further-
more, it generates more interpretable high-resolution emphysema activation maps,
allowing for the quantification of the percentage of emphysema per lung for further
analysis.
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Chapter outline

The chapter is organized as follows: section 5.2 describes the materials and methods
in depth; Experimental results are described in section 5.3; the discussions and con-
clusions are stated in section 5.4.

5.2 Method

5.2.1 Data collection and partitioning

In this study, we utilized chest CT scans from the COPDGene clinical trial, which in-
cluded data from 21 imaging centers in the United States and enrolled 10,192 subjects
between 2008 and 2011. From this dataset, we selected a subset of 9650 subjects for
analysis and used the same data selection and partitioning as in the previous study
by Humphries et al. [40]. This subset included one inspiratory CT scan per subject, ac-
quired at their first visit, which was visually scored according to the Fleischner sys-
tem. The lungs were then segmented semi-automatically by trained analysts from
Thirona, a company specializing in chest CT analysis.

The data was partitioned into a development set (n = 2507) and an evaluation set
(n = 7143), with the development set further divided into a training set (n = 2407)
and a validation set (n = 100). The evaluation set was used for statistical analysis
and the reporting of performance metrics. The slice thickness of the CT scans ranged
from 0.625-0.9mm, and the pixel spacing ranged from 0.478-1.0mm. Most scans were
performed using a tube voltage of 120kVp, a tube current of 200mAs, and reconstruc-
tion kernels B31f and B35f. The full CT protocols are detailed in Regan et al. [23].

Table 5.1 provides the distribution of COPD GOLD stages and Fleischner visual
scores in the data selection, as well as the expected range of emphysema percent-
age per lung for each severity score. For example, a centrilobular emphysema score
of 1 indicates an estimated emphysema percentage per lung between 1% and 5%.
These percentage ranges were used to train our algorithm to capture the differences
in disease severity scores. Patient demographics and lung function parameters for
the evaluation set (n = 7143) can be found in the previous study by Humphries et
al. [40].

Reference standard

CT scans were visually scored according to the Fleischner system by analysts who
did not have prior experience in radiology interpretation. The annotation process is
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Table 5.1: Distribution of GOLD stages [23] and the Fleischner visual scores [27] in our

data selection in the development set (dev) and the evaluation set (eval). No PFT:

spirometry data not available; PRISM: Preserved Ratio Impaired spirometry [148].

(a) GOLD stages

GOLD stages # subjects (dev) #subjects (eval)

GOLD0 981 3178

GOLD1 182 570

GOLD2 440 1371

GOLD3 305 771

GOLD4 205 337

Non PFT 0 63

Non Smoking 70 36

PRISm 324 817

Total 2507 7143

(b) Centrilobular scores

Score
#subjects

(dev)
#subjects

(eval)

0 (0-1%) 782 2499

1 (1-5%) 431 1322

2 (5-10%) 478 1409

3 (10-20%) 430 1049

4 (20-30%) 275 656

5 (30-100%) 111 208

Total 2507 7143

(c) Paramseptal scores

Score
#subjects

(dev)
#subjects

(eval)

0 (0-1%) 1145 3857

1 (1-5%) 739 1865

2 (5-100%) 623 1421

Total 2507 7143

described in more detail in previous research by Lynch et al. [27,39]. A reader study
conducted on 3171 scans from our data selection by two analysts found good agree-
ment in scoring centrilobular emphysema using the Fleischner system [39].
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Lung segmentation

The lungs were extracted using commercialized software (LungQ, Thirona, Nijmegen,
NL), followed by manual refinement if needed. We used lung segmentations for pre-
processing CT scans in developing our algorithm.

5.2.2 Algorithm design

Pre-processing of CT scans

All CT scans in this work were preprocessed by clamping the intensity values be-
tween [−1150 ∼ −300], rescaling to [0 ∼ 1], cropping using lung segmentations, and
resizing using trilinear interpolation to 128 × 224 × 288 in the axial, coronal, and
sagittal dimensions, respectively. Note that the spacing may not be isotropic follow-
ing this resizing process. The resizing was done to fit the cropped images within the
run-time memory of our computational infrastructure, and the lung segmentations
were used to set values outside of the lungs to zero, allowing the algorithm to focus
on learning features within the lungs.

Neural network architecture

In building our algorithm, we used the ResNet variant with 34 layers [67] as the back-
bone, as ResNet is a widely used convolutional neural network architecture in image
recognition. As shown in Figure 5.1, the network begins with a 3D convolution oper-
ation (kernel size=7, stride=2) using 64 filters to reduce the spatial size of the input by
half. All convolutions in our network are isotropic, followed by batch normalization
and a rectifier linear unit (ReLU) activation function unless otherwise specified. We
then reduce the spatial resolution by half using a max pooling layer (kernel size=3,
stride =2). The pooled features serve as the input to four stacked ResNet layers, each
consisting of several ResNet blocks. The number of ResNet blocks per layer increases
from the first to the fourth layer, with 3, 4, 6, and 3 blocks, respectively. Each ResNet
block includes two convolution operations with kernel size 3. From the second layer
onwards, the first convolution in each block doubles the number of filters and, at
the second layer, also reduces the spatial resolution by half using a stride of 2. This
results in the input size being reduced by a factor of 8.

The Resnet backbone generates convolutional features at a resolution that is eight
times lower than the input resolution, which can compromise the interpretability of
the model using standard techniques such as class activation maps (as demonstrated
in the Humphries algorithm [40]). To address this limitation, we propose including a
reconstruction network on top of the ResNet backbone to generate dense features.
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Figure 5.1: The overview of our ResNet-based backbone with 34 layers (a), consisting

of four stacked ResNet layers (b). Each layer consists of 3, 4, 6, and 3 ResNet blocks

(c), respectively from top to bottom.

As shown in Figure 5.2, the reconstruction network takes features extracted from
the Resnet backbone as the inputs. It comprises two upsampling layers, each of
which includes one trilinear upsampling operation and two 3x3 convolution filters
to reduce upsampling artifacts. The upsampled features are then concatenated with
the features from the ResNet backbone using a skip connection, as the one utilized
in 3D-UNet [93]. The reconstruction network serves the same purpose as the decoder
in 3D-UNet, where the ResNet backbone can be seen as the encoder. On top of the
reconstruction head, we utilize two output heads depending on the training strategy.

For classification training, the dense features from the reconstruction network are re-
shaped to have the appropriate number of channels for the number of target classes.
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Figure 5.2: The reconstruction network on top of the ResNet backbone for producing

dense features. The output of the reconstruction network is fed into either classifica-

tion or the regression output head depending on the training strategy for predicting

centrilobular scores (CLE out) and paraseptal scores (PSE out). Note that we do not

use both output heads together for multi-tasking.

Two 1 × 1 × 1 convolutions are employed to reshape the features, one for predict-
ing centrilobular scores and the other for predicting paraseptal scores. The reshaped
feature maps are then processed using global average pooling and activated using
the softmax function to produce class probabilities. We refer to the reshaped dense
features before pooling as dense class activation maps.

For regression training, the reconstructed features are reshaped into two single-
channel feature maps using 1× 1× 1 convolutions, one for predicting the percentage
of centrilobular emphysema per lung and the other for predicting the percentage
of paraseptal emphysema per lung. The sigmoid function is then applied to both
feature maps, and the resulting features are averaged inside the lung segmentation
to produce two floating numbers (emphysema percentages per lung). The sigmoid-
activated dense features before pooling are referred to as the dense regression acti-
vation maps.
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Algorithm training

We refer to the network with the classification output head as the classification net-
work, and the network with the regression output head as the regression network.
We train each network separately and compare their results with the Humphries
algorithm as the baseline.
In the classification output head, we utilize a two-way convolutional layer with
1 × 1 × 1 kernels to predict two targets, following the definitions of the Fleischner
system. This is depicted in Figure 5.2 (a). The first target is to classify six levels of
centrilobular severity: absent (0), trace (1), mild (2), moderate (3), confluent (4), or
advanced destructive (5). The second target is to classify three levels of parasep-
tal severity: absent (0), mild (1), and substantial (2). During the training phase, we
employ a weighted cross-entropy loss function, where the weights are initially deter-
mined by the inverse frequency of the target classes and are subsequently updated at
the conclusion of each epoch in order to penalize classes with low per-class accuracy.
Training a convolutional neural network to classify emphysema severity scores in a
multi-class classification setup may appear counter-intuitive. By definition, severity
scores reflect the degree of involvement of emphysema in the lung and are directly
correlated with the volume measurements of emphysematous regions. To correctly
predict a severity score, the sum of the corresponding channel for that score in the
class activation maps must be larger than the sum in the other channels, resulting
in one channel suppressing activations in the other channels (being discriminative).
As a result, the class activation maps generated by the trained network may not
necessarily represent the underlying disease, emphysema, but rather highlight areas
that were used to make the correct classification. For example, the zero-indexed
channel corresponding to the ”absent” class is expected to be more heavily activated
than the other channels when there is no emphysema present in the image.
Therefore, instead of directly predicting visual scores, we propose a regression train-
ing strategy to estimate the percentage of emphysema involvement per lung us-
ing the interval regression loss proposed in previous research [92]. In the Fleischner
system [27], severity scores are defined based on the percentage of emphysema in-
volvement in the lung. Therefore, we convert the severity scores into intervals of
emphysema percentage per lung using a predefined mapping table. For example,
a centrilobular severity score of 2 (mild) indicates that the estimated centrilobular
emphysema-affected region should occupy between 1-5% of the lung. In this way,
each visual score corresponds to an interval of emphysema percentage in the lung.
We use the mapping in Table 5.1 (b) and Table 5.1 (c) to convert visual scores into per-
centage intervals for training, and subsequently map the predicted percentage back
to visual scores for evaluation. The regression output head produces two single-
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channel dense feature maps using a two-way convolution layer with 1×1×1 kernels
for estimating the emphysema percentage in the lung for centrilobular and parasep-
tal subtypes, respectively. Denoting the estimated percentage as p, and the target
emphysema percentage range (rl, ru), the interval regression loss LINT can be writ-
ten as:

K = (0.5 ∗ (rl − ru))
2.

min: LINT = max(0, (p− 0.5 ∗ (rl + ru))
2 −K)

(5.1)

The dense regression activation maps, which are sigmoid-activated single-channel
dense feature maps before the lung-wise mean pooling, represent the probability of
emphysema. During training, we impose two constraints on the dense regression
activation maps. The first constraint is the overlapping loss, which ensures that the
dense regression activation maps for two emphysema subtypes do not overlap, as
each voxel can only be assigned to one subtype (either centrilobular or paraseptal).
Denoting the dense regression activation map for centrilobular emphysema as piC

and the dense regression activation map for paraseptal emphysema as piS where i is
the location index, the overlapping loss LOL can be written as:

min: LOL =
2∗

∑
i(p

i
CpiS)∑

i(p
i
C)+

∑
i(p

i
S)
. (5.2)

The overlapping loss is used to compute the soft Dice coefficient between two dense
regression activation maps (probability maps).
The second constraint is the segmentation loss. To generate the segmentation pseudo
labels, we identify the low-attenuation areas (LAA-950) in the lungs by applying an
intensity threshold of -950 HU to CT images. This threshold is commonly used in
the analysis of emphysema on CT scans [27]. The segmentation loss ensures that the
union of dense regression activation maps from both subtypes matches the LAA-950.
Using the previous notations, the segmentation loss LSEG can be written as:

pi = min(max(0.0, piC + piS), 1.0)

min: LSEG =
∑

i(−s ∗ log(pi ∗ ti + (1.0− pi)(1.0− ti)))
(5.3)

where ti is the segmentation target indexed at the voxel location i, and s is the
smoothness factor. The segmentation loss is a binary cross-entropy loss with la-
bel smoothing [181]. We apply label smoothing to encourage the network to be less
confident in the target pseudo labels. The joint emphysema probability map is then
generated by clamping the values of the summation of two dense regression acti-
vation maps between 0 and 1. The final loss L for regression training is the sum
of the interval regression loss, the overlapping loss, and the segmentation loss as
L = LINT + LOL + LSEG.
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We used a variety of data augmentation techniques in training both networks, in-
cluding flips and rotations, intensity and contrast jittering, cropping, Gaussian smooth-
ing, and additive noise. These augmentations were applied randomly and all spatial
transforms were preserved using trilinear interpolation to maintain the original size
of the images.

Both networks were trained for a maximum of 200 epochs with an initial learning
rate of 1e-5, using an Adam optimizer and a learning rate scheduler with exponential
decay of 0.9. Training was terminate if there was no improvement in the validation
set performance for 10 consecutive epochs.

Evaluation metrics and statistical analysis

To assess the classification performance, we use classification accuracy (ACC), the
F-measurement (harmonic mean of precision and recall), and linear weighted kappa
(K statistics) as evaluation metrics. The ACC and F-measurement are calculated
using the Sklearn python package (version 1.1.2) [182], while the K statistics are cal-
culated using the rel software package in R (version 3.6.2). We also create confusion
matrices and compute per-class metrics for each method. The level of agreement be-
tween algorithm predictions and visual scores is classified as slight, fair, moderate,
good, or excellent based on K values of 0.20 or less, 0.21–0.40, 0.41–0.60, 0.61–0.80,
and 0.81 or higher, respectively [183].

5.3 Results

We compared the performance of our classification and regression networks in pre-
dicting both centrilobular and paraseptal visual scores on an evaluation set. We also
compared our results to those obtained using the Humphries algorithm for classify-
ing centrilobular severity scores on the same evaluation set. As shown in Table 5.2,
both the classification and regression networks outperformed the Humphries algo-
rithm in terms of overall classification accuracy for predicting centrilobular severity
scores. Both networks achieved predictive accuracy above 51%, while the Humphries
algorithm only reached 45%. In terms of kappa statistics, the agreements between
automated scores and visual scores for both the classification and regression net-
works were good for centrilobular emphysema, slightly better than the moderate
agreement reported by the Humphries algorithm. The agreements between our net-
works and paraseptal visual scores were moderate. the Humphries algorithm did
not report results for paraseptal emphysema. Interestingly, the comparison between
the classification and regression networks showed that the classification network
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Table 5.2: Results of the classification and regression networks on the evaluation set

(n = 7143). The classification accuracy (ACC), F-measurements (F-measure), and

linear weighted kappa are calculated against the visual scores. We also list the results

from the Humphries algorithm, obtained on the same test set, where only ACC and

kappa were reported for predicting centrilobular emphysema severity scores.

Method Subtype ACC(%) F-measure Kappa (95% CI)

The Fleischner
algorithm [40]

centrilobular 45 - 60

Ours
(classification)

centrilobular 52.23 51.00 64.29 (63.16-65.42)

Ours
(classification)

paraseptal 59.12 57.12 42.03 (40.21-43.85)

Ours
(regression)

centrilobular 51.32 49.61 64.24 (63.14-65.35)

Ours
(regression)

paraseptal 64.62 60.74 52.06 (50.40-53.73)

outperformed the regression network in predicting centrilobular severity scores, but
underperformed when predicting paraseptal scores in terms of overall accuracy and
kappa statistics. These findings suggest that the two models may fit differently into
the underlying target distribution.

Examining the confusion matrices in Table 5.3 (a) and (b), we observed that the clas-
sification network performed poorly in recognizing trace levels of centrilobular em-
physema, with 31.15% precision and 34.11% recall. Analysis of the results revealed
that most of these errors were caused by mislabeling trace emphysema as absent
or vice versa. Similarly, in distinguishing paraseptal severity scores, the classifica-
tion network had a high error rate for mild emphysema, with 36.90% precision and
50.51% recall. Furthermore, the regression network also exhibited a high rate of mis-
labeling between absence, trace and mild centrilobular emphysema. Specifically, the
regression network performed the worst when labeling trace and mild centrilobular
emphysema, with 29.43% precision and 48.03% recall in trace, and 43.19% precision
and 27.89% recall in mild. In distinguishing paraseptal severity scores, the regres-
sion network also had the worst performance for mild emphysema, with 38.57%
precision and 41.72% recall. The suboptimal performance observed in the lighter
grades of emphysema severity may be attributed to the nuanced distinctions in lung
involvement that define these grades (scores less than 2), resulting in a high degree
of ambiguity in the scoring process. This challenge is also reflected in the results of
the Humphries algorithm (Table 5.4), highlighting the prevalent difficulty in accu-
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Table 5.3: Confusion metrics of the classification and regression network for classify-

ing centrilobular and paraseptal emphysema severity scores against the visual scores

on the evaluation set (n = 7143). Advanced destructive emphysema is denoted as

Advanced.

Visual Scores

Predict Absent Trace Mild Moderate Confluence Advanced Precision (%)

Absent 1621 530 259 21 0 0 66.68

Trace 625 451 322 50 0 0 31.15

Mild 230 294 664 288 4 0 44.86

Moderate 22 42 142 514 141 7 59.22

Confluence 0 3 15 153 322 42 60.19

Advanced 1 2 7 23 189 159 41.73

Recall (%) 64.87 34.11 47.13 49.00 49.09 76.44 52.23 (ACC%)

(a) Classification network in predicting centrilobular emphysema severity

Visual Scores

Predict Absent Mild Substantial Precision (%)

Absent 2508 740 181 73.14

Mild 1144 942 467 36.90

Substantial 205 183 773 66.58

Recall (%) 65.02 50.51 54.40 59.12 (ACC%)

(b) Classification network in predicting paraseptal emphysema severity

Visual Scores

Predict Absent Trace Mild Moderate Confluence Advanced Precision (%)

Absent 1734 536 206 17 0 0 69.55

Trace 696 635 682 142 2 0 29.43

Mild 56 121 393 319 21 0 43.19

Moderate 11 26 117 453 192 8 56.13

Confluence 2 3 10 112 334 83 61.09
Advanced 0 1 1 5 107 117 50.65

Recall (%) 69.39 48.03 27.89 43.18 50.91 56.25 51.32 (ACC%)

(c) Regression network in predicting centrilobular emphysema severity

Visual Scores

Predict Absent Mild Substantial Precision (%)

Absent 2976 839 104 75.94

Mild 784 778 455 38.57

Substantial 97 248 862 71.42

Recall (%) 77.16 41.72 60.66 64.62 (ACC%)

(d) Regression network in predicting paraseptal emphysema severity
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Table 5.4: Confusion matrix of the Humphries algorithm for classifying centrilobular

emphysema severity scores against the visual scores on the evaluation set (n = 7143).

Advanced destructive emphysema is denoted as Advanced.

Visual Scores

Predict Absent Trace Mild Moderate Confluence Advanced Precision (%)

Absent 637 126 35 2 0 0 79.62

Trace 1495 751 380 23 1 0 28.82

Mild 324 377 678 166 4 0 43.77

Moderate 41 66 296 643 154 8 53.22

Confluence 2 2 20 211 428 108 55.51

Advanced 0 0 0 4 69 92 55.57

Recall (%) 25.49 56.80 48.11 61.29 65.24 44.23 45.21 (ACC%)

rately assessing the severity of emphysema. We identified a discrepancy in the per-
formance of the Humphries algorithm and our methods in classifying the severity
of centrilobular emphysema. Specifically, the Humphries algorithm demonstrated
a tendency to overestimate the presence of emphysema in cases where it is actually
absent, with 1495 cases being mislabeled as trace. Conversely, our methods tended
to underestimate the severity in cases where it is present in minimal levels (trace),
resulting in 536 cases of trace emphysema being mislabeled as absence by the regres-
sion network.

The regression network has an advantage in terms of error distribution in confusion
matrices, as it produces a percentage of lung involvement by averaging the dense re-
gression maps within the lung volume. This improves its consistency in predicting
severity scores. We observed a consistent shift in the error distribution in the confu-
sion matrix, with the network more often mislabeling the target as one grade lower
(Table 5.3 (c) and (d)). For example, in the case of centrilobular classification, the
regression network classified 536 scans as absent and 121 scans as mild emphysema
when they were manually scored as trace emphysema, and mislabeled 682 scans as
trace and 117 scans as moderate when the actual labels were mild emphysema. In
contrast, the error distribution was not consistent in the results of the classification
network, which made more errors on one grade higher in the confluent centrilobu-
lar emphysema, with 141 scans mislabeled as moderate and 189 scans as advanced
emphysema. However, for other grades, errors were made by mislabeling them as
one grade lower.

In the extreme cases, the classification network mislabeled one case of absent cen-
trilobular emphysema as advanced emphysema and classified 205 cases as substan-
tial paraseptal emphysema when the visual score indicated absent. These critical
errors suggest that the classification network was sometimes confused between cen-
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trilobular and paraseptal CT patterns, possibly due to the co-existence of both sub-
types in some training scans. We also noticed that the regression network produced
fewer critical errors in paraseptal classification, mistakenly labeling 97 scans as sub-
stantial when they were manually scored as absent. This number was 205 in the re-
sult of the classification network. This improvement may be due to the introduction
of training constraints in the regression training, which enforce that dense predic-
tions for centrilobular and paraseptal emphysema are mutually exclusive. However,
we also observed that the regression network labeled 104 scans as absent when the
visual scores indicated substantial paraseptal emphysema. This suggests that the re-
gression network may under-segment or completely miss paraseptal emphysema in
some cases.

5.3.1 Visual interpretation

We utilized dense activation maps to visualize the features that correspond to the
classification decisions. As shown in Figure 5.3, we present the dense class and re-
gression activation maps on two examples of predicting centrilobular and paraseptal
emphysema subtypes. Each example consists of two images, with 3× 3 tiles, where
the left image displays the dense class activation maps and the right image displays
the dense regression activation maps. The three columns in each image are sampled
axial slices from the input CT scan. For each image, the rows represent the pre-
processed input CT scan, the activation map for centrilobular emphysema, and the
activation map corresponding to paraseptal emphysema.

In general, the dense class activation maps do not necessarily align with object con-
tours, e.g., blobs of paraseptal emphysema in the second case (Figure 5.3 Case II (a)).
Naturally, class activation maps only reflect discriminative regions responsible for
classification. By utilizing the reconstruction network to generate dense features, our
network’s dense class activation maps already provide improved localization com-
pared to the class activation maps generated by the Fleischer algorithm (which tend
to be blurry blobs, as seen in their publication). The application of regression train-
ing further improves lesion localization, as can be seen in the subpleural paraseptal
emphysema in the second case (Figure 5.3, Case II (b)) and small blobs following the
secondary lobular structures in the first case (Figure 5.3, Case I (b)). Additionally,
due to the use of the overlapping loss (Equation 5.2), the centrilobular and parasep-
tal activations do not overlap in the dense regression activation maps (Figure5.3,
Case II (b)), unlike in the class activation maps. For instance, in the first case, both
class activation maps responded to the same regions in the right lobe (Figure 5.3,
Case I (a)). This highlights the effectiveness of our proposed method in providing
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Case I: Confluence in centrilobular, Absent in Paraseptal Emphysema.

(a) Class Activation Maps. Pre-

dicted Advance for centrilobular,

Substantial for Paraseptal.

(b) Regression Activation Maps.

Predicted Advance for centrilobu-

lar, Mild for Paraseptal.

Case II: Advance in centrilobular, Substantial in Paraseptal Emphysema.

(a) class Activation Maps. Pre-

dicted Advance for centrilobular,

Absent for Paraseptal.

(b) Regression Activation Maps.

Predicted Advance for centrilobu-

lar, Mild for Paraseptal.

Figure 5.3: Dense class activation maps (left) versus dense regression activation maps

(right), We show two cases, and each consists of three rows. The first row shows

the input image (cropped and masked by the lung segmentation), the second row

illustrates the activation maps for the centrilobular emphysema, and the third row

shows the activation maps for the paraseptal emphysema.
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improved lesion localization compared to the Fleischer algorithm.

5.4 Discussion

In this study, we propose a novel approach for automating the Fleischer scoring sys-
tem for identifying emphysema subtypes on CT images using deep neural networks.
Our method incorporates a reconstruction sub-network, which is utilized to generate
high-resolution activation maps, providing more localized information for model in-
terpretation in comparison to the low-resolution heatmaps produced by the Fleischer
algorithm. Additionally, our regression-based training strategy offers an estimation
of emphysema percentage in the lungs and generates the regression activation maps
which offer improved emphysema localization. The regression training approach is
more intuitive as it utilizes the semantic link between severity scores and emphy-
sema involvement in the lungs, compared to the classification approach which only
aims to identify discriminative features between different severity grades.
The target labels for regression training are percentage intervals translated from cate-
gorical scores using a predefined mapping table, and the network is trained using an
interval regression loss to ensure that the predicted percentage falls within the target
interval. This approach could be used for automating many other scoring systems
used in radiology based on visual assessment of the (relative) size of the affected vol-
ume. We use lung-wise average pooling to aggregate the sigmoid-activated dense
features (dense regression activation maps) to estimate the emphysema percentage
per lung, and we incorporate the overlapping loss to ensure that each voxel is only
assigned to one of the two emphysema subtypes (centrilobular or paraseptal). Ad-
ditionally, we use low-attenuation areas in the lung (LAA-950) as visual cues in the
regression training to provide localized information to the network.
Our method generates both categorical visual scores and estimated emphysema per-
centages for both centrilobular and paraseptal subtypes, offering additional features
in comparison to the existing method, which can only produce centrilobular severity
scores. The dense regression activation maps generated by our approach provide de-
tailed emphysema localization, potentially enabling further clinical research in this
field.
The results of our study showed that our method (both the classification and re-
gression networks) outperformed the Fleischer algorithm in terms of classification
accuracy for predicting centrilobular severity grades (52% versus 45%). Our method
also had better reader agreement as measured by kappa statistics.
The regression approach has several advantages compared to the classification ap-
proaches. It resulted in fewer critical errors in the confusion matrix comparison,
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such as mislabeling heavily diseased cases as disease-free. In addition, the errors
were distributed more consistently, with a shift to a lower severity grade in the con-
fusion matrix (Table 5.3 (c)), which is not observed in the results of the classification
approach (Table 5.3 (a)).

In terms of qualitative analysis, the dense regression activation maps were observed
to provide superior localization, particularly in the case of paraseptal emphysema
with sub-pleural bullae. In contrast, the dense class activation maps were observed
to be less specific, as they included many surrounding regions, and were not able to
distinguish different emphysema subtypes.

There are several limitations to consider in this study. First, our systems were only
trained using CT scans from the COPDGene study, which had a specific data ac-
quisition protocol and carefully curated scans. This may limit the generalizability
of our algorithms to other datasets with different CT acquisition processes. We at-
tempted to mitigate this risk by using data augmentation techniques that introduce
common noise patterns and using early stopping to prevent overfitting. Second, our
algorithms require the availability of lung segmentation for both training and in-
ference, which may be a challenge to implement in clinical practice, although fast
and accurate publicly available systems for CT lung segmentation are available [84,92].
Third, we did not validate the segmentation performance using the generated dense
regression activation maps, although these maps appear to be capable of localizing
emphysema patterns based on visual inspection. This was due to the lack of voxel-
wise annotations of emphysema patterns with different subtypes.

5.5 Model availability

Our algorithms are available at GitHub (https://github.com/DIAGNijmegen/body
ct-dram-emph-subtype). We integrated our trained regression network as a ready-
to-use web service hosted on the Grand-challenge platform (https://grand-chall
enge.org/algorithms/weakly-supervised-emphysema-subtyping/).

5.6 Data availability

To access the COPDGene data used in this study for research purposes, please visit
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs000179.v6.p2 and submit an ancillary study proposal. We received approval
for this work under the ANC-251 proposal. To submit your proposal, contact the
COPDGene Administrative Core Executive Secretary, Sara Penchev, at PenchevS@N

https://github.com/DIAGNijmegen/bodyct-dram-emph-subtype
https://github.com/DIAGNijmegen/bodyct-dram-emph-subtype
https://grand-challenge.org/algorithms/weakly-supervised-emphysema-subtyping/
https://grand-challenge.org/algorithms/weakly-supervised-emphysema-subtyping/
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000179.v6.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000179.v6.p2
PenchevS@NJHealth.org
PenchevS@NJHealth.org
PenchevS@NJHealth.org
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This dissertation presents techniques essential to the quantitative analysis of pul-
monary CT scans. The second chapter presents a method for automatically segment-
ing lung lobes in CT scans. The third chapter introduces a technique for automat-
ically labeling segmental branches of the airways. The accurate segmentation and
identification of lung lobes and airways serve as critical pre-processing steps for the
regional quantitative analysis of lung conditions such as COPD in CT scans. Chap-
ters 4 and 5 present a generic method for predicting scan-level statistics and gener-
ating high-resolution response maps to visually interpret these predictions. Chapter
4 elaborates on the theory of the method and its application in predicting the sever-
ity of COVID-19 abnormalities in CT scans. Chapter 5 extends this approach to the
subtyping of emphysema, which has the potential to enable new research to enhance
our understanding of the heterogeneity of COPD.
This discussion chapter summarizes the techniques and results presented in this the-
sis, examines their implications and limitations, and identifies potential avenues for
future research.

6.1 Pulmonary lung and lobe segmentation

The second chapter of this thesis presents a deep learning approach for segmenting
lungs and lobes from CT scans. This method employs a cascaded architecture of
two convolutional neural networks (CNNs) to extract contextual features and non-
local neural networks to capture long-range dependencies. Utilizing this cascaded
architecture and Non-Local Neural Networks allows the method to effectively in-
corporate local and global information, which is critical for precisely segmenting the
lungs and lobes.
The most widely adopted deep neural networks for lung and lobe segmentation
are based on CNNs [84,85,108,111]. These networks have proven superior to traditional
methods that rely on hand-crafted features and rule-based algorithms for lung and
lobe segmentation in CT images.
The core idea behind CNNs is that if a feature descriptor can summarize the proper-
ties of one lung zone, it should be able to represent patterns in other lung zones. This
is achieved through the parameter-sharing schema in CNNs. Additionally, the local-
ity assumption states that features should be locally discriminative, meaning that the
prediction of one class at location i in the image does not diminish the capability of
the model to predict a different class at an adjacent location j.
However, the challenge of segmenting lungs and lobes using CNNs lies in the rela-
tively large size of these structures in CT scans. To effectively capture the necessary
information for prediction, the field of view of the network must respond to ade-
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quately large areas in the image. Moreover, features of pulmonary lobes and other
lung structures, such as airways and vessels, are anatomically related within the
lung. It is, therefore, imperative to incorporate a modeling approach that accounts
for these anatomical relationships and dependencies.

To overcome these challenges, we proposed two techniques: cascading networks and
non-local neural networks. In cascading networks, the first network handles high-
level semantics using a smaller image with a larger context, while the second focuses
on learning local information using high-resolution details. On the other hand, our
non-local neural networks allow the network to have a global field of view of the
input image and enable relational modeling between long-range dependencies.

Our algorithm demonstrated significant improvement in lobe segmentation perfor-
mance in two challenging datasets: a cohort of 5000 subjects from the COPDGene
study [23] across all stages of COPD and a cohort of 470 COVID-19 suspects from
the Radboud University Medical Center across all risk groups according to the CO-
RADS standard [96].

One limitation of our algorithm is that it was developed using CT scans from the
COPDGene study and routine CT scans for COVID-19 examination from the Rad-
boud University Medical Center. These scans were of relatively high quality, ad-
hering to specific patient selection guidelines. However, since the release of our
algorithm on https://grand-challenge.org/algorithms/pulmonary-lobe-segme

ntation/, we have observed that users have uploaded CT scans from a wide range
of different scenarios, including patients in intensive care units (ICU) and CT scans
for abdomen examination. The CT protocols and pathological patterns used in these
scenarios may differ significantly from those used in the training data. Consequently,
the generalizability of our algorithm may be limited due to these variations.

A promising avenue for further improving our work involves enriching the training
data with airway and vessel annotations, enabling the model to be trained with a
more comprehensive understanding of lung anatomy. This approach has the poten-
tial to enhance the model’s feature representation and result in more accurate and
robust lung lobe segmentation performance.

Another promising extension is to incorporate aggressive data augmentation tech-
niques, including the use of generative models to produce synthetic data that closely
resemble actual CT scans. This would enhance the model’s ability to handle varia-
tions in CT acquisition protocols, leading to greater robustness and reliability.

https://grand-challenge.org/algorithms/pulmonary-lobe-segmentation/
https://grand-challenge.org/algorithms/pulmonary-lobe-segmentation/
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6.2 Airway anatomical labeling

The third chapter of this thesis presents a deep learning approach for labeling airway
segments based on a given segmented airway tree. The task of airway anatomical
labeling poses a significant challenge due to the substantial variability of airway tree
topology among subjects. Furthermore, the segmented airway tree may be impacted
by imaging noise, resulting in missing or false branches and pathological changes
that affect their overall structure.

Historically, the labeling of airway segments has been approached by matching an
unlabeled airway tree to a pre-labeled tree [129,130], using image features extracted
from the branches. However, these methods are often limited by the difficulty in
finding a robust set of features, making them less reliable for airways from different
populations.

Recent advances in deep learning have resulted in several works [136,184,185] on airway
segmentation using CT scans as inputs. Some of these methods can also be applied
to airway anatomical labeling [136]. However, the airway segmentation task is highly
challenging, requiring careful attention to the neural network design, particularly
for leak suppression. Therefore, we separated the airway segmentation and labeling
tasks and focused on the labeling part.

Our method takes only a segmented airway tree as input without using CT scans. We
treat the airway labeling task as a branch classification task and utilize convolution
neural networks to extract branch features and graph neural networks to model the
airway tree topology. By combining learning on the tree topology and image grid,
our method eliminates the requirement for manual feature engineering. One novelty
in our work is the inclusion of relative positions as topological features in training
the graph neural network. This feature endows our algorithm with insensitivity to
deformations in the airway shape that do not alter the connectivity of the tree.

Our findings from a cohort of 220 subjects (using their airway trees) across all gold
stages from the COPDGene study [23] demonstrate that graph neural networks sig-
nificantly improve the accuracy of airway anatomical labeling. Furthermore, the use
of positional encodings results in further improvement. Our approach is generic
and can be applied to tree branch labeling problems beyond the scope of labeling
airways. Additionally, our algorithm is highly efficient and capable of labeling an
airway tree in under 20 seconds on average.

One limitation of our study is that we did not compare our method with conven-
tional airway labeling techniques that rely on anatomical tree modeling. It is worth
noting, however, that methods utilizing explicit probabilistic graph modeling based
on engineered features have exhibited suboptimal results in the EXACT09 airway
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segmentation challenge compared with the deep learning based methods, as re-
ported in prior works such as [185] and [186].
Looking ahead, a promising avenue for future research would be to extend our struc-
ture and position-aware graph neural network to other anatomical structure model-
ing problems. One example that stands out as particularly relevant is the labeling of
pulmonary vessels.

6.3 Dense regression activation maps

The discussions of this section encompass the contents of this thesis’s fourth and fifth
chapters, developed with the same methodology. A major challenge in medical im-
age analysis within deep learning is the lack of interpretability of the models’ output.
Deep learning algorithms can predict target labels based on input CT scans, but these
predictions often appear as a black box to radiologists, and this could be an obstacle
for practical usage in the clinical workflow. Another significant challenge, partic-
ularly in semantic segmentation, is the need for more annotated data. Commonly
used segmentation models require a substantial number of voxel-wise annotations
for training. However, acquiring such annotations is laborious and costly, especially
in radiology, where radiologists are already understaffed [187].
We have developed a novel approach for generating high-resolution activation maps
while predicting scan-level target labels. Our methodology involves converting cat-
egorical label predictions into a regression problem and training a segmentation net-
work to predict the resulting regression target. The resultant activation maps are
an effective visualization tool for pinpointing localized regions within input images
that have contributed the most towards making predictions. This high-resolution vi-
sualization significantly improves over existing state-of-the-art techniques that only
offer low-resolution, indistinct activation maps. Furthermore, the activation maps
generated through our approach can also be employed for object segmentation in
downstream tasks, rendering it useful for weakly-supervised semantic segmenta-
tion.
This method has a limitation because it requires the regression target or original
categorical labels to represent a volume size or a percentage ratio. Chapters 4 and 5
applications use disease severity scores as target labels that measure the percentage
of disease-affected regions in the lungs or the lobes. This limitation arises from the
use of global pooling layers that rely on network summation or averaging. Future
research should focus on developing more advanced aggregation functions that can
be integrated into the output layer of the network.
The method has been validated in two datasets: predicting COVID-19 CT severity
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scores on a cohort of 390 subjects and their CT scans collected in Radboud Univer-
sity Medical Center and predicting emphysema subtypes on a cohort of 9529 sub-
jects from the COPDGene study [23]. Both studies show that our approach can attain
impressive predictive accuracy compared to manual scores. Additionally, the high-
resolution activation maps produced by our method exhibit detailed object localiza-
tion and compare favorably with other standard weakly-supervised segmentation
algorithms in terms of segmentation performance.
The future potential of our approach lies in the integration of weakly-supervised
segmentation and semi-supervised segmentation in scenarios where a limited num-
ber of voxel-wise annotated scans are available, but a vast number of images are
labeled at the scan level. By combining our method with a semi-supervised training
schema, we can further utilize the limited labeled images to enhance segmentation
performance. We believe such use cases occur often, and our method, which we
have made publicly available, could have widespread application.

6.4 Future outlook

For many years, deep neural networks have been the subject of extensive research,
resulting in numerous state-of-the-art architectures for various tasks such as UNet [93]

for semantic segmentation, Resnet [77] for image classification, and Faster-RCNN [188]

for object detection. However, these models require the adjustment of the network
architecture and training hyperparameters to the specific data being used. This in-
volves setting, amongst others, the number of layers, learning rate, maximum itera-
tions for training, and the mini-batch size.
One limitation of the algorithms developed in this thesis is the tuning of the network
architecture and training hyperparameters based on the authors’ knowledge of deep
learning and radiology, as well as the use of specific data acquisition protocols and
refined scans from the COPDGene study (as presented in Chapters 3 and 5) during
the method development and evaluation. This dependence on domain expertise and
specific data may limit the reproducibility of these algorithms and their potential for
application on data with different population statistics and acquisition protocols,
which may require different training parameters and network architectures.
To simplify the process of network architecture and training hyper-parameter tun-
ing, self-adaptive deep learning has emerged as a promising solution. A well-known
example is nn-UNet (no new UNet) [178], which has demonstrated great success in
multiple medical image segmentation competitions. This method focuses on cre-
ating a self-adaptive protocol that automatically changes the model configuration
based on an analysis of the input data, making it more data-driven. However, de-
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spite its self-adaptive nature, the method still utilizes implicit rules that are based on
the authors’ understanding of neural networks and medical image processing when
designing the adaptation protocols.
Future research may aim to advance the field of self-adaptive deep learning by propos-
ing an automated adaptation protocol that is based on solving optimization prob-
lems. This approach aligns with the concepts of model selection [189], hyper-parameter
search [190], and data selection [191]. Thanks to recent advancements in hyper-parameter
search utilizing stochastic gradient-based methods [192] and non-gradient methods
based on evolutionary algorithms [193], the search process has become much more
efficient. This opens up the possibility of expanding the search space to include the
network architecture and even the type of input data, allowing the algorithm to iden-
tify the optimal network, data processing, and data selection protocol for the specific
task. Excellent reviews on current approaches for neural architecture search (NAS)
can be found [194,195]. This automation has the potential to significantly reduce the
effort required to adjust a state-of-the-art network to a new task.

6.5 Conclusion

The thesis outlines our contribution to the field of quantitative CT image analysis
with a focus on improving COPD treatment planning. In Chapter 2, we introduced
an accurate and robust approach for pulmonary lobe segmentation in CT images,
achieving relational modeling between features and a global field of view using non-
local neural networks. In Chapter 3, we explored the challenge of airway anatomical
labeling and found that the combination of convolution neural networks and graph
neural networks with positional embeddings effectively captures information about
the branch visual features and the topology of airway trees.
In Chapter 4, a novel weakly-supervised semantic segmentation method was intro-
duced, capable of producing high-resolution segmentation maps using only image-
level labels in training. This method was later extended in Chapter 5 to predict em-
physema subtypes and severity.
The methods presented in this thesis demonstrate significant progress in deep learn-
ing, incorporating various advanced techniques, including convolution neural net-
works, graph neural networks, and weakly-supervised training. In addition, the
algorithms have been validated on a diverse patient population across all stages of
COPD. The results show that they outperform state-of-the-art methods and are run-
time efficient.
The algorithms presented in this thesis offer practical applications in clinical set-
tings. In particular, during bronchoscopy procedures, the airway labeling algorithm
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(Chapter 3) can accurately and efficiently provide navigation for clinicians to reach
the target airway branch. Additionally, the lobe segmentation algorithm (Chapter 2)
allows clinicians to understand the distribution of emphysema across lobes, while
the emphysema subtyping algorithm (Chapter 5) provides a detailed per-lobe anal-
ysis at the subtype level with emphysema segmentation maps available for visual
interpretation. By leveraging these algorithms, clinicians can make more informed
treatment decisions for their patients with COPD.
In summary, the thesis presents a significant advance in COPD imaging analysis,
providing practical and efficient solutions that can potentially benefit patient care.
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In Chapter 1, we introduced chronic obstructive pulmonary disease (COPD) and
gave background information on COPD diagnosis and treatment planning. We de-
scribed the role of quantitative CT analysis in COPD treatment planning. Further-
more, we provided a short history of image analysis, from applying low-level image
processing to deep learning-based CT analysis, explaining the reason behind deep
learning prosperity on the road to being data-driven.

In Chapter 2, we presented a novel method using relational two-stage convolu-
tion neural networks for segmenting pulmonary lobes in CT images. The proposed
method uses a non-local neural network to capture visual and geometric correspon-
dence between high-level convolution features, which represents the relationships
between objects and object parts. Our results demonstrate that learning feature cor-
respondence improves the lobe segmentation performance substantially than the
baseline on the COPD and the COVID-19 data set.

In Chapter 3, we presented a method for labeling segmental airways given a seg-
mented airway tree. First, we train a convolution neural network to extract features
for representing airway branches. Then, these features are iteratively enriched in a
graph neural network by collecting information from neighbors, where the graph is
based on the airway tree connectivity. Furthermore, we leverage positional informa-
tion in our graph neural network, where the position of each branch is encoded by its
topological distance to a set of anchor branches. As a result, the learned features are
structure- and position-aware, contributing to substantially improved branch classi-
fication results compared with methods that use only convolution features or stan-
dard graph neural networks.

In Chapter 4, we proposed a novel weakly-supervised segmentation framework
trained end-to-end, using only image-level supervision. We show that this approach
can produce high-resolution segmentation maps without voxel-level annotations.
The proposed method substantially outperforms other weakly-supervised methods,
although a gap with the fully-supervised performance remains. Our method trained
a segmentation network to predict per-image lesion percentage. We made this train-
ing possible by proposing an interval regression loss, given only the upper and lower
bound of the target percentage, not the exact percentage as supervision. Further-
more, we stabilized the regression training using equivariant regularization. In the
refinement process, we proposed an attention neural network module that updated
activation maps in one location using nearby activations, acting similar to random
walkers, and seeded regional growth in standard post-processing pipelines, yet ours
is trained end-to-end.

In Chapter 5, we expanded on the method outlined in Chapter 4 to predict emphy-
sema subtypes. Our proposed algorithm generates high-resolution emphysema seg-
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mentation maps to aid in interpreting the prediction process, offering an improved
model interpretability compared to the baseline. To predict both subtypes together,
we employ the overlapping loss to ensure that each voxel is only assigned to one
subtype (centrilobular or paraseptal). We also use low-attenuation areas in the lung
(LAA-950) as visual cues in regression training, providing the network with local-
ized information. Our approach generates categorical visual scores, estimated em-
physema percentages, and high-resolution segmentation maps for both centrilobular
and paraseptal subtypes, making it more versatile than the baseline approach.
Finally, in Chapter 6, we reflected on this thesis’s main findings and contributions.
We also analyzed the advances and impact in the field and the existing limitations
of the proposed methods. Additionally, we provided a future outlook for research
opportunities in the field of deep learning for medical image analysis.
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Hoofdstuk 1 start met een introductie over de chronische obstructieve longziekte
(COPD). We gaan in op het stellen van de diagnose en het plannen van een behan-
deling. Vervolgens beschrijven we de rol van kwantitatieve CT-analyse bij COPD.
Daarna vatten we de geschiedenis van medische beeldverwerking samen en intro-
duceren we concepten uit de machine learning en deep learning die van belang zijn
voor het proefschrift.

In Hoofdstuk 2 presenteren we een nieuwe methode die gebruik maakt van relatio-
nele tweetraps convolutie neurale netwerken voor het segmenteren van longkwab-
ben in CT-beelden. De voorgestelde methode combineert visuele en geometrische
correspondentie tussen objecten en objectdelen. Dit resulteert in een niet-lokaal neu-
ral netwerk dat wordt gebruikt om het receptieve veld van convoluties effectief en
efficiënt te vergroten. Deze voorgestelde module kan eenvoudig worden gebruikt
als een standaard neurale netwerklaag in andere beeldanalysetaken zoals objectde-
tectie en classificatie. We laten met onze resultaten zien dat onze nieuwe methode
aanzienlijk beter werkt voor longkwabsegmentatie in een COPD- en een COVID-19
CT dataset.

In Hoofdstuk 3 presenteren we een methode die het labelen van luchtwegen for-
muleert als een classificatieprobleem van vertakkingen. Eerst trainen we een con-
volutienetwerk om functies te extraheren voor het weergeven van luchtwegtakken.
Vervolgens worden deze functies iteratief verrijkt in een neuraal graafnetwerk door
informatie van buren te verzamelen, waarbij de graaf is gebaseerd op de connecti-
viteit van de luchtwegen. Verder maken we gebruik van spatiële informatie in ons
netwerk, waarbij de positie van elke tak wordt gecodeerd door zijn topologische af-
stand tot een set ankertakken. Onze resultaten laten zien dat deze nieuwe elementen
leiden tot een aanzienlijke verbetering van de prestaties.

In Hoofdstuk 4 stellen we een nieuw, zwak gesuperviseerd segmentatienetwerk
voor dat end-to-end is getraind met alleen labels op beeldniveau en dat toch seg-
mentaties met hoge resolutie kan produceren. De voorgestelde methode presteert
aanzienlijk beter dan methoden uit eerder werk. Desondanks presteert een netwerk
dat direct getraind is met echte segmentaties nog beter.

Onze methode traint een segmentatienetwerk om het percentage aangedaan weefsel
per anatomische regio in een scan te voorspellen. Om dit te bereiken introduceren
we een nieuwe maat die het netwerk tracht te optimaliseren. Deze maat gebruikt
een intervalregressieverlies, waarbij alleen de boven- en ondergrens van het streef-
percentage worden gegeven in plaats van het exacte percentage. Verder hebben we
de regressietraining gestabiliseerd met behulp van equivariante regularisatie en voe-
gen we een aantal andere nieuwe elementen toe die de resultaten verder verbeteren.

In Hoofdstuk 5 hebben we het idee van hoge resolutie segmentaties genereren met
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alleen globale labels om mee te trainen verder uitgebreid en toegepast op automati-
seren van het Fleischer visuele scoresysteem voor centrilobulair en paraseptaal long-
emfyseem. Het voorgestelde algoritme presteert beter dan een eerdere methode uit
de literatuur. We hopen dat dit nieuwe algoritme, dat we publiek beschikbaar stel-
len, in de toekomst grootschalige en meer nauwkeurige klinische studies over COPD
mogelijk maakt.
In Hoofdstuk 6 reflecteren we op de belangrijkste bevindingen van dit proefschrift.
We analyseren de vooruitgang en impact van machine learning op het gebied van
medische beeldanalyse, en we identificeren beperkingen van de voorgestelde me-
thoden. Tot slot bieden we suggesties voor verder onderzoek.
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The research project described in this Ph.D. thesis uses an extensive amount of data
with the purpose of training and evaluating several machine learning algorithms.
This data consists of four main components: (1) CT images, (2) pixel-level annota-
tions associated with these images, (3) patient-level information that describes these
images, and (4) processed data for running experiments.

Regarding the origin, ownership, and permission to use this data, we strictly follow
the regulations of Radboud University Medical Center. For each dataset used in this
research, we have entered data license agreements with the datasets’ stakeholders
and obtained permission to use the data for research purposes.

All this data is securely stored within the Radboudumc storage system. More gen-
erally, all scientific experiments conducted within the context of this research project
have been executed exclusively within the Radboudumc IT infrastructure.

In order to protect patients’ privacy rights, all data used within the context of this re-
search project has been subject to pseudonymization. This process ensures that per-
sonally identifiable information is replaced by artificial identifiers or pseudonyms
before conducting any of the experiments described in this thesis.

We adhere to the FAIR data principles as findable, accessible, interoperable, and
reusable. All data, including their metadata and physical locations, are reported
and tracked in corresponding tickets in an internal ticket management system. Each
dataset has a person responsible for managing and maintaining it. Any research
project published in this thesis has a grand-challenge algorithm associated with it.
Each published algorithm also is open source and has a link to the published paper.
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