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Deep learning for multi‑class 
semantic segmentation enables 
colorectal cancer detection 
and classification in digital 
pathology images
John‑Melle Bokhorst 1*, Iris D. Nagtegaal 1, Filippo Fraggetta 2, Simona Vatrano 2, 
Wilma Mesker 3, Michael Vieth 4, Jeroen van der Laak 1,5 & Francesco Ciompi 1

In colorectal cancer (CRC), artificial intelligence (AI) can alleviate the laborious task of characterization 
and reporting on resected biopsies, including polyps, the numbers of which are increasing as a 
result of CRC population screening programs ongoing in many countries all around the globe. Here, 
we present an approach to address two major challenges in the automated assessment of CRC 
histopathology whole‑slide images. We present an AI‑based method to segment multiple ( n = 14 ) 
tissue compartments in the H &E‑stained whole‑slide image, which provides a different, more 
perceptible picture of tissue morphology and composition. We test and compare a panel of state‑
of‑the‑art loss functions available for segmentation models, and provide indications about their 
use in histopathology image segmentation, based on the analysis of (a) a multi‑centric cohort of 
CRC cases from five medical centers in the Netherlands and Germany, and (b) two publicly available 
datasets on segmentation in CRC. We used the best performing AI model as the basis for a computer‑
aided diagnosis system that classifies colon biopsies into four main categories that are relevant 
pathologically. We report the performance of this system on an independent cohort of more than 1000 
patients. The results show that with a good segmentation network as a base, a tool can be developed 
which can support pathologists in the risk stratification of colorectal cancer patients, among other 
possible uses. We have made the segmentation model available for research use on https:// grand‑ chall 
enge. org/ algor ithms/ colon‑ tissue‑ segme ntati on/.

Colorectal cancer (CRC) is the third most commonly occurring cancer in men and the second in women and is 
expected to affect more than 2.2 million new cases and cause 1.1 million deaths by  20301. The diagnostic pathway 
of CRC often begins with the detection of cancer in histological samples of polyps or biopsies, identified and 
acquired during colonoscopy procedure. The detection of polyps is often the result of colorectal cancer screen-
ing, a program that targets 110 million people a year in Europe, triggering the need for further examination via 
colonoscopy for about 5% of the participants.

Histopathology in colorectal cancer diagnosis. In order to diagnose CRC, histopathologists initially 
analyze the tissue morphology of polyps and biopsies to differentiate normal epithelial cells, lying in the usual 
glandular formation, from epithelial cells in a different configuration that display characteristics associated with 
the progression towards cancer. This assessment, called grading, concerns the degree of glandular arrangement, 
ranging from normal glands to cancer, with intermediate grades like hyperplasia and dysplasia (see Fig. 1).

When CRC is suspected, an additional tissue characterization step is needed, often performed on surgically 
resected specimen, to guide the decision on the best therapeutic procedure and patient follow-up. In this context, 
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in recent years several prognostic biomarkers have been introduced and investigated in the field of CRC. Exam-
ples are the tumor-stroma  ratio2, based on the assessment of the tumor region and the tumor-associated stroma; 
tumor  budding3, based on the detection of small tumor clusters (up to four tumor cells) at the invasive margin 
of the tumor; tumor  deposits4, i.e., a discrete nodules of cancer in pericolic/perirectal fat or adjacent mesentery, 
based on the assessment of small tumor aggregates located in the adipose tissue.

On the role of computers in CRC diagnosis. The increasing amount of screening-detected polyps, 
together with the high percentage of negative (i.e., not containing cancer) samples represents a burden in the 
diagnostic pipeline, where pathologists have to inspect a large amount of benign tissue. The presence of com-
puter-aided diagnosis systems applied to digital pathology whole-slide images could ease the diagnostic pro-
cedure by pre-screening of digitized tissue slides and classifying them based on their clinical outcome, ideally 
asking pathologists to diagnose only cases containing suspicious lesions. At the same time, the quantification of 
aforementioned biomarkers often relies on visual estimation of morphological tissue compartments, a task that 
implicitly carries the subjectivity of pathologists’ opinion. Computers can play a role by assisting pathologists 
in the detection and recognition of tissue compartments, allowing their objective quantification, towards more 
reproducible and therefore reliable biomarkers. Two main tasks are common to most of the aforementioned 
steps in the diagnostic procedure: (1) the detection of tumor cells, to diagnose the presence of the malignancy, 
and (2) the characterization and detection of multiple tissue compartments, to characterize the morphology of 
the histology. Examples are regions containing the tumor and its invasive margin, the stroma, as well as regions 
that might be excluded during biomarker’s assessment, such as the muscle layer, presence of necrotic regions, or 
healthy glands and related lamina propria.

Semantic segmentation as a computer aided diagnosis building block. In recent years, Deep 
Learning methods based on Convolutional Neural Networks (CNN) have been successfully applied to multi-
ple tasks in the medical domain, showing human-level performance in the field of  dermatology5,  radiology6, 
 ophthalmology7, and  pathology8. In digital pathology, computer algorithms based on tissue segmentation can 
be used as the main component of approaches to automate the interpretation of tissue morphology. With seg-
mentation, an image is divided into a set of non-overlapping regions, each with its particular shape, border, and 

Figure 1.  Schematic overview of glandular (de)formation with associated grading class. (a) Normal glands; 
small, organized nuclei and round lumen. (b) Hyperplastic gland; small nuclei, saw-tooth like formed lumen. (c) 
Low-grade dysplasia; characterized by unorganized, stacked epithelium cells possibly with enlarged nuclei. (d) 
High-grade dysplasia/tumor; Unorganised fusing glands that oppress the lumen. This figure has been created 
with Adobe Illustrator 23 https:// www. adobe. com/ produ cts/ illus trator. html and Procreate https:// procr eate. 
com/ ipad.

https://www.adobe.com/products/illustrator.html
https://procreate.com/ipad
https://procreate.com/ipad
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semantic meaning. When applied to multiple tissue compartments, i.e., in a multi-class fashion, tissue segmenta-
tion can allow to distinguish the tumor from other tissues, to be used for biomarker assessment. Furthermore, 
the multi-class segmentation output can be used as input to classification models that can be trained to make 
predictions at whole-slide image-level, with possible applications to grading of polyps and biopsies. Kather et al.9 
was one of the first who used patch classification to segment nine different tissue types. Since they released their 
dataset publicly, a large corpus of deep learning  methods10 has been developed to segment CRC using the same 
nine  classes11–13. Bustos et al.14 also use these 9 classes but use the output of the segmentation model to identify 
microsatellite instability-status. Others focused on gland segmentation (often including their lumen)15, as well 
as segmenting all their instances, also fostered by the introduction of international challenges such as  GLAS16 
and CRAG 17. One recent  study18 used tumor segmentation to predict disease free survival for stage II and III 
colorectal cancer patients.

What loss function for semantic segmentation? Within the medical image analysis as well as the 
computational pathology community, deep learning models based on an encoder-decoder architecture such as 
U-Net19 are nowadays considered the premier choice for image  segmentation20,21. During training of deep learn-
ing models for segmentation, the parameters of the model are optimized by minimizing the difference, encoded 
by the loss function, between the model’s predictions and the real label from the reference standard. Therefore, 
the selection of an effective loss function to address the segmentation problem is a relevant yet open question in 
order to maximize the performance of the trained model. Traditionally, most segmentation models proposed in 
the computer vision and medical imaging community have used pixel-wise categorical cross-entropy. However, 
this loss function performs suboptimally in the presence of over- or under-represented classes in the image, 
causing the over-represented class to dominate the training of the CNN, leading to a biased model. This prob-
lem is especially apparent in digital pathology for segmentation tasks where small tissue compartments (e.g., 
erythrocytes) need to be segmented correctly next to larger components (e.g., muscle). To address this, some 
authors have proposed the use of weights or penalty terms to the categorical cross-entropy loss  function22.  In12, 
the authors proposed the use of a focal loss, which adds a term to reduce the contribution of easy examples to 
improve CNN focus on the difficult examples while  others23 have made modifications to counteract undesirable 
effects of noise in the reference standard. In conjunction with an increasing use of the Dice score and the Jaccard 
index as a metric to assess model performance, differentiable approximations of these two metrics have recently 
been formulated, known as surrogates, such as soft-Dice24, soft-Jaccard25 and Lovasz-softmax26; their differential 
property makes them usable as a loss function for model training.

Our contribution. In this paper, we introduce several contributions within the context of computed aided 
diagnosis of colorectal cancer. First, we introduce a deep learning based algorithm for multi-class semantic 
segmentation addressing fourteen different tissue types in whole-slide images of colorectal cancer, including 
not only the primary cancer-associated epithelial and stroma classes but also some other more peripheral tissue 
types. The selection of these fourteen classes allows us to provide a detail characterization of the colorectal tissue 
at hand, also beyond the detection of tumor regions. Although not shown in this paper, the same segmenta-
tion model could be used as a building block for a broad range of applications such as identifying peri-neural 
 invasion27, quantification of the tumor-stroma ratio, as we did in previous  research28, or move into quantification 
of multiple types of cells such as immune cells in different tissue compartments, which is the base for ongoing 
research on computational biomarkers based on spatial biology. We demonstrate the robustness of this seg-
mentation algorithm when applied to multi-centric data, acquired from different pathology laboratories and 
digitized with different scanners.

We also show the effectiveness of the segmentation algorithm on publicly available datasets such as  GLAS16 
and CRAG 17. Second, we dissected the design of convolutional neural networks for segmentation and investi-
gated the particular design choice of the loss function. For this purpose, we considered a pool of loss functions 
proposed and used in the computer vision community to address limitations of cross-entropy loss and improve 
performance in semantic segmentation problems. We selected four representative loss functions: (1) Categorical 
Cross-entropy loss, (2) Focal  loss29, (3) Bi-tempered  loss23 and (4) Lovasz-softmax  loss26. We report an experi-
mental comparison using a multi-centric dataset of CRC cases from five different centers, as well as two publicly 
available datasets. To the best of our knowledge, this is the first time that such a research question is addressed 
within the context of computational pathology and that such a comparison is performed. Third, we took the 
best performing segmentation model and use it to develop a computer aided diagnosis system to automate risk 
classification of CRC polyps and biopsies from population screening addressing four of the main diagnostically 
relevant categories, namely (1) high-risk (tumor and high-grade dysplasia), (2) low-grade dysplasia, (3) hyper-
plasia and (4) benign conditions. We validated this approach on an external dataset of polyps and biopsies from 
> 1000 patients. Korbar et al.30 directly addressed the problem of automatic classification of colon biopsies in 
whole-slide images, but solely focusing on five non-neoplastic conditions, namely hyperplastic, sessile serrated, 
traditional serrated, tubular, and tubulovillous/villous. Other  authors10 have focused on the classification of 
regions of interest (i.e., patches) of WSI as containing tumor or non-tumor tissue without attempting to assess 
entire colon resections or biopsies.

With the presented work we cannot only automate risk classification but the proposed method could also 
serve as the foundation for a wide range of applications, including those for diagnosis (biopsy classification, tumor 
size identification), research on the tumor micro-environment (tumor-stroma ratio, peri-neural invasion), and 
histological features for prognosis (tumor  shrinkage31). The presence of computer-aided diagnosis systems applied 
to digital pathology whole-slide images could support pathologists in their diagnostic procedure. Depending on 
the characteristics, performance, robustness, and generalizability of such a system, several scenarios of integration 
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of AI in diagnostics could be envisioned. One scenario could leverage AI to pre-read cases, extracting relevant 
information to pre-fill the report, and show the results to the pathologist, who just needs to check the case, the 
results and sign-off. Another scenario could leverage AI to pre-score cases based on their risk and use this to 
present cases to pathologists in some order of importance or diagnostic urgency. In all cases, these systems have 
the potential and the aim to support pathologists in spending less time on diagnostics while maintaining its 
quality, and therefore also reducing healthcare costs.

This paper goes as follows. The next chapter describes, by nature and origin, the data used for the develop-
ment of the multi-class segmentation model and of the independent data set that was used for the validation/
evaluation of the 4-class classification model. In section “Multi-class segmentation and loss functions” special 
attention is paid to the network architecture and the four loss functions mentioned above are described in 
more detail on their intended effects and limitations. Finally, section “Experimental results”  discusses how the 
computer aided diagnosis system is constructed for the performance of the -here secondary or derived- risk 
classification task. We present the findings of this study with considerations and recommendations in Sections 
“Discussion” and “Conclusion”.

Materials
In this study, we used multiple datasets of digital pathology images from polyps, biopsies and surgical resections, 
which were used for training, validation and testing of the segmentation model, as well as for training, validation 
and testing of the classifier for automated risk assessment of polyps and biopsies. All datasets are described in 
the next sections. An overview of all datasets used can be found in Table 3.

Tissue segmentation dataset. The first dataset ( Dseg ) was used for development and validation of the 
segmentation algorithm. A total of n = 79 formalin-fixed paraffin-embedded tissue samples, including surgical 
resections and biopsy specimen of colorectal cancer patients were collected in a multi-centric fashion from four 
different medical centers in the Netherlands and one medical center in Germany. All slides were stained with 
H&E in the pathology laboratory of each medical center, resulting in a large variety of staining. Furthermore, 
all slides were digitized using three different types of digital pathology scanners, resulting in a substantial tis-
sue appearance variation in whole-slide images. The Pannoramic P250 Flash II scanner (3D-Histech, Hungary) 
scanner was used to digitize n = 62 slides provided by Radboud University Medical Center (Nijmegen, Nether-
lands), n = 4 slides provided by Eindhoven Medical center (Eindhoven, Netherland), and n = 5 slides provided 
by Utrecht University Medical Center (Utrecht, Netherland). The IntelliSite Digital pathology slide scanner 
(Philips, the Netherlands) was used to digitize n = 5 slides provided by the Leiden University Medical Center 
(Leiden, Netherland). The NanoZoomer 2.0 HT scanner (Hamamatsu, Japan) was used for digitizing n = 3 slides 
provided by the University of Bayreuth (Germany). All slides were scanned at a spatial resolution of 0.24 μm/px.

In each WSI, regions of interest covering a broad range of different tissue morphology and tissue components 
were manually selected. In each region of interest, one pathologist and two trained medical/technical analysts 
manually annotated and checked pixels as belonging to one of the 14 following categories: (1) normal glands, 
(2) low-grade dysplasia, (3) high-grade dysplasia/tumor, (4) submucosal stroma, (5) desmoplastic stroma, (6) 
stroma lamina propria, (7) mucus, (8) necrosis and debris, (9) lymphocytes, (10) erythrocytes, (11) adipose tis-
sue, (12) muscle, (13) nerve, (14) background. Each region was exhaustively annotated, meaning that all pixels 
within the region of interest were labeled, accurately delineating interfaces of different tissue compartments. 
Annotations were made using the in-house developed open-source software ASAP https:// github. com/ compu 
tatio nalpa tholo gygro up/ ASAP. Visual examples of manually annotated regions are depicted in Fig. 2. An over-
view of the proportion of annotated classes compared to the total amount of annotations can be found in Fig. 3.

From the Dseg dataset, a set of n = 52 WSIs from a single center (Radboud University Medical Center) and 
their annotations were randomly selected and used to define a single-center training set ( Dtrain

seg  , n = 40) to develop 
segmentation models and a validation set ( Dval

seg , n = 12) used to optimize hyperparameters during training. The 
rest of WSIs ( Dtest

seg  , n = 27) and their manual annotations was used as a multi-centric test-set. Note that among 
the n = 27 test slides, n = 10 were originated in the same medical center as the training set, and the rest (n = 17) 
were originated in different medical centers, and partly scanned using different scanners.

Biopsy classification dataset. A dataset Dcls of colon biopsies resected from n = 1054 patients was col-
lected from the digital archives of the Cannizzaro hospital (Catania, Italy). For each case, digital pathology 
whole-slide images of H&E stained tissue section as well as the related pathology report was collected. Based 
on the conclusion of the report, each tissue sample was assigned by an export to a single label, corresponding to 
the most clinically relevant finding diagnosed by the pathologist. For this purpose, ”high-risk” (including tumor 
and high-grade dysplasia) was considered as the category with the highest relevance (n = 292 cases), followed 
by low-grade dysplasia (n = 693), followed by hyperplasia (n = 36) and finally by all other (non informative, 
n = 33) cases, such as but not limited to normal cases. When multiple findings were present in a single slide, 
e.g., both hyperplasia and high-grade dysplasia, the label with the highest associated risk was appointed to the 
case. This set of cases was used to develop and validate a prediction model that processes features derived from 
the segmentation map of each biopsy, and to automatically classify each biopsy into one of the aforementioned 
categories. All slides were scanned with a Aperio AT2 (Leica Biosystems) at a spatial resolution of 0.24 μm/px.

Ethical approval. The use of the fully anonymized data for training and validating the segmentation net-
work has been approved by the Ethical Committee of the Radboud University Medical Center (2015-1637). 
During their cancer treatment, patients were informed that left-over tissue material could be used for research, 
and at that time, they had no objections to such use and provided their informed consent. The Ethical Commit-

https://github.com/computationalpathologygroup/ASAP
https://github.com/computationalpathologygroup/ASAP
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Figure 2.  Left; example of manual annotations. Right; segmentation output on the private test-set. Every image 
shown is from another institute from the test-set. This figure has been created with Adobe Illustrator 23 (https:// 
www. adobe. com/ produ cts/ illus trator. html).

Figure 3.  Distribution of the annotated pixels of the training set ( Dtrain
seg  ) and test set ( Dtest

seg  ). This figure has been 
created with Microsoft Excel (https:// www. micro soft. com/ en- us/ micro soft- 365/ excel) and Adobe Illustrator 23 
(https:// www. adobe. com/ produ cts/ illus trator. html).

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.microsoft.com/en-us/microsoft-365/excel
https://www.adobe.com/products/illustrator.html
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tee approved the usage for training and validation of the biopsy classifier of the Cannizzaro Hospital (approval 
number 4428, 12/12/2018). This research was performed following the Declaration of Helsinki.

Multi‑class segmentation and loss functions
In this section, we detail the CNN model used for automated multi-class tissue segmentation based on the U-Net 
architecture, followed by the training procedure. Successively, we detail the different loss functions considered 
and compared in this work, and we provide a short description of each loss function’s main characteristics. Finally, 
we describe the prediction model developed for the automated classification of biopsies.

Segmentation model architecture and training. We designed our segmentation model based on the 
original formulation of the U-Net architecture; an overview of the used U-Net model is depicted in Fig. 4. As 
done in the original U-Net model, we have doubled the number of filters after every max-pooling layer, but we 
started with a lower number of filters in the first layer (n = 32). Additionally, inspired by the  ResNet32 approach, 
we introduced additional skip connections within every set of convolutional layers (which we call a U-Net block) 
before pooling, where the input of the U-Net block is concatenated with the last feature map produced by the 
block itself. This approaches was already used by  others20, and in this work, we observed experimentally that 
adding these skip connections allowed better flow of the gradients. Finally, we replaced transposed convolutions 
with nearest neighbor up-sampling operations followed by a 2 x 2 convolution layer in the expansion path.

Besides the loss function, the training settings and procedure were kept identical between the different experi-
ments. The input was a RGB patch of 512 × 512 px sampled from whole-slide images in Dseg at a pixel size of 1 μm 
(10 ×  magnification). The training procedure involved optimizing the multinomial logistic regression objective 
(softmax), using  Adam33 optimizer with momentum. Momentum values were identical to the original U-Net 
paper. During training data augmentation was applied to input patches by random flipping, rotation, elastic 
deformation, blurring, brightness (random gamma), stain, color, and contrast changes. An adaptive learning 
rate scheme was used, where the learning rate was initially set to 1e−4 and then multiplied by a factor of 0.5 after 
every 20 epoch if no increase in performance was observed on the validation set. The weights of the network 
were initialized as proposed  in34. The mini-batch size was set to 5 instances per batch, the networks were trained 
for a maximum of 500 epochs, with 300 iterations per epoch. Training of the networks was stopped when no 
improvement of the validation loss was found for 50 epochs. The output of all networks is in the form of C likeli-
hood maps. The pixel-wise arg-max was taken to obtain a final segmentation output.

Analysis of loss functions for multi‑class tissue segmentation. Categorical cross-entropy. In the 
context of image segmentation, the cross-entropy loss, also known as softmax loss, has been largely used both 
in binary and multi-class problems, referred to as categorical cross-entropy (CC) loss in the presence of a multi-

Figure 4.  Overview figure of the used U-Net architecture. The light-gray boxes represent copies of the feature 
maps. Each dark-gray box represents a multi-channel feature map. The input size is shown on the left of the box, 
and the number of channels on top.The arrows denote the different operations. This figure has been created with 
Adobe Illustrator 23 (https:// www. adobe. com/ produ cts/ illus trator. html).

https://www.adobe.com/products/illustrator.html
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class problem. This loss compares how well the probability distribution output ŷ of the final softmax layer of a 
deep neural network matches the value of the ground-truth data y. In segmentation tasks, this is done pixel-wise 
for every pixel in the image. Typically, the sum or mean of all values together gives the final single value for the 
entire input image. The categorical cross-entropy loss is computed as

where yi and ŷi are the ground truth and the softmax output of the model for each class i in C. Although being 
one of the most common loss functions, it is known to perform poorly under certain conditions, such as class 
imbalance or noise in the labels of the dataset.

Many authors have been concerned with the problem of imbalanced classes: negative examples significantly 
outnumber positive examples, and the huge number of background examples (or easy-negative examples) over-
whelms the training. Training a network with the categorical cross-entropy loss on an imbalanced dataset can lead 
to a network that is biased towards the data-dominated classes. This becomes especially apparent in segmentation 
tasks when small objects need to be segmented. Because of the low pixel count, these small objects don’t have a 
large contribution to the loss function.

Focal loss. To overcome this issue, Lin et al.29 proposed the Focal loss:

Presented initially to improve single-shot detection networks (such as  YOLO35, Single Shot  Detector36, and 
 Retinanet29), it has shown to work for segmentation problems as  well37,38. This loss modifies the cross-entropy 
loss, so objects/pixels that are ’easy’ to classify or are present abundantly are weighted lower, resulting in a smaller 
loss value. Objects/pixels that are more difficult to classify are weighted heavier, resulting in a higher loss value. 
How much up- or down-weighted the values are, is determined with two additional hyperparameters (α and 
γ). The authors have tested different values of the two hyperparameters in the original paper and suggested two 
optimal values. Given the scope of this paper, we have simply adopted both proposed values here.

Bi-tempered loss. The presence of small errors, flaws or defects (noise) in the dataset, for example as a result 
of small inaccuracies in the annotation can hamper the quality of a segmentation output substantially. In such 
scenarios, the categorical cross-entropy loss value can grow without boundary as these outliers can be far away 
from any decision boundary: the model is penalized by noise in the dataset. To compensate for this, the network 
stretches its decision boundary, resulting in a less robust model. To counteract this effect, Amid et al.23 intro-
duced the Bi-tempered loss function. They propose two changes to the default softmax categorical cross-entropy. 
First they replace the softmax output with a heavy tailed softmax, that acts as a form of ’label smoothing’. The 
replacement softmax function is given by:

such that 
∑C

j expt2
(

âj − �t2(â)
)

= 1 , where a are the activations from the final layer of the network, and ai is 
the output for class i, t2 is a hyperparameter. The second change they make is by replacing the entropy function 
with a tempered version, given by:

The two hyperparameters determine how heavy tailed the functions become. When both hyperparameters 
t1 and t2 are set to 1, the standard logistic loss is recovered. We have not tested this option either, but have kept 
the default values proposed by the authors.

Lovasz loss. Optimization for cross-entropy entails a problematic relationship between the learning optimiza-
tion objective (the loss) and the end target metric. Therefore, recent works in computer vision have proposed 
soft surrogates to alleviate this discrepancy and directly optimize the desired metric, either through relaxations 
(soft-Dice, soft-Jaccard/Intersection over Union) or submodular optimization (Lovasz-softmax). Dice loss is 
based on the Sorensen-Dice coefficient, which attaches similar importance to false positives and false negatives, 
and is less sensitive to the data-imbalance problem. Instead of a pixel-wise approach, the Dice or Intersection 
over Union (IoU) calculates the similarity between two samples of the same class resulting in a value between 
0 and 1. The scores are often averaged over all classes for multi-class problems, resulting in the mean-Dice or 
mean-IoU. Advantages of this index compared to per-pixel losses are scale invariance and appropriate counting 
of false negatives, although it tends to favor large objects over small objects. To deal with this  issue26 combined 
the Lovasz hinge with the IoU resulting in a loss function that seems to focus both on small and large objects:

(1)loss = −

C
∑

i

yi log ŷi ,

(2)loss = −

C
∑

i

α(1− ŷi)
γ yi log ŷi .

(3)ŷi = expt2(âi − �t2(â)),with �t2(â) ∈ R

(4)loss =

C
∑

i

(

yi(logt1 yi − logt1 ŷi)−
1

2− t1
(y2−t1

i − ŷ2−t1
i )

)

.

(5)loss =
1

| C |

C
∑

i

�Jc (m(i)),
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where �Jc  is the Lovasz hinge of the IoU and m(c) the class probabilities for class c.

Dice loss. In a previous  study39, we have studied and tested a number of different class balancing methods. The 
Dice loss proved difficult to implement in combination with our preferred class balancing method. We therefore 
chose to maintain/re-apply the relevant class balance method in this study and not to include the Dice loss in the 
comparative study. We will use the Dice metric however, to evaluate the models performance.

Biopsy classification
An additional classification step is needed to obtain a single label per slide from a segmentation output. To stay as 
close as possible to the segmentation output, without introducing complex models, we have opted for a random 
forest classifier, combined with five easy interpretable features. We extracted the number of pixels of every class 
in the segmentation output (histogram) and normalized it by dividing the histogram by the total number of 
segmented pixels as the first feature. The normalized histogram does not tell us anything about the spatial distri-
bution of, for example, the tumor epithelium, although that distribution may matter. Since tumor mostly comes 
in clusters we, in addition to the normalized histograms (1), used connected components to obtain the number 
of tumor clusters per case (2), along with the average (3), min (4), and max (5) size of all clusters. We noted that 
the segmentation model sometimes falsely segments small clusters as tumor. Therefore, we excluded all clusters 
smaller than 30 μm2 from the segmentation output to correct these mistakes. The exclusion cut-off value of 30 
μm2 was found empirically. Using the aforementioned features we trained a random forest with 1000 decision 
trees to classify a biopsy as either (1) high-risk (tumor and high-grade dysplasia), (2) low-grade dysplasia, (3) 
hyperplasia and (4) benign. A schematic overview of the approach is depicted in Fig. 5, a block diagram of the 
entire approach can be found in Fig. 8.

The random forest was trained in a five-fold cross-validation setup on dataset Dcls . Before training, all feature 
values were normalized to have zero mean and scaling to unit variance. The same normalization parameters were 
applied to the test-set before running the classifier. Per fold, a random forest was trained using four of the five 
folds as training data. The performance of the model is validated on the remaining part that was left out during 

Figure 5.  (1) Segmentation process; An encoder-decoder segmentation model based on convolutional neural 
networks processes colorectal tissue tiles with a size of 512 × 512 μm and segments up to 14 different tissue 
types. (2) From the segmentation map at slide level, we extract a set of features: (a) the normalized histogram 
of all tissue types, (b) the number of high-grade dysplasia/tumor clusters, (c) the average, minimum, and 
maximum size of these clusters. These features are processed by a random forest classifier that gives the final 
classification. This figure has been created with Adobe Illustrator 23 (https:// www. adobe. com/ produ cts/ illus 
trator. html).

https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
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training. We evaluated the performance of the trained model with a 1-vs-all Receiver Operating Characteristic 
(ROC) analysis.

Experimental results
Segmentation performance on a multi‑centric dataset. We evaluated the different loss functions’ 
effect on 999 non-overlapping tiles of 512 × 512 μm, extracted from a total of 27 WSI from 5 different centers, 
hereafter referred to as Dtest

seg  . The non-overlapping tiles were extracted from 165 manually annotated regions 
with an area between 0.05  mm2 and 4.08  mm2. The Dice-score was selected to evaluate the performance of the 
different models. As the Dice-score is for binary problems, we calculate an individual, (class) Dice-score as well 
as a mean overall Dice-score per model (see Table 1).

The model trained with the Lovasz-softmax loss achieves the overall best performance with a Dice-score of 
0.72, although this score is well matched by the Bi-tempered loss model (Dice-score = 0.71). Models trained with 
the categorical cross-entropy and Focal loss score slightly lower (Dice-score = 0.69). The Wilcoxon signed-rank 
test shows there is no significant difference between the overall scores of the loss functions.

Although the differences between the overall scores of models trained with different loss functions are mar-
ginal, there are sometimes notable differences for the results per class. For example, the Bi-tempered loss out-
performs the other loss functions on segmenting low-grade dysplasia. Results are depicted in Fig. 2.

The overall Dice-scores per test-center for the centers in dataset Dtest
seg  are in line with the overall average 

Dice-scores. However, in one of the external test-centers, all trained models show suboptimal performance in 
the presence of submucosal stroma, presenting a drop from an averaged Dice-score of 0.54 overall to 0.28. Fur-
ther investigation of this test-center shows that these slides have a very dark H &E staining that could harm the 
performance of the networks. An overview of all Dice-scores per center can be found in Fig. 9.

Segmentation performance on the CRAG and GLAS datasets. We applied our segmentation mod-
els to the public datasets of the CRAG and GLAS challenge. The CRAG challenge’s goal is to segment all glands 
(epithelium tissue, lumen included), either with or without pathological change. As our network also differenti-
ates between different epithelial conditions, we combined our classes ’normal epithelium’, ’low-grade dysplasia’, 
and ’high-grade dysplasia/tumor’, for the purpose of comparison with this dataset. Because the GLAS challenge 
distinguishes between benign and malignant epithelium, we combined our classes ’normal epithelium’ and ’low-
grade dysplasia’ for comparison in that context. For these comparisons, we further relabelled the lumen (pixels 
with a mean RGB value higher than 240) as background in both public datasets since our networks are designed 
to segment such regions separately. In Table  2, we report both results with and without lumen, to show the 
impact of this on our models’ performance.

The results on the GLAS and CRAG datasets deviate from the results on the multi-centric test-set. The 
categorical cross-entropy and Focal losses show increased performance on the CRAG dataset (without lumen) 
with a Dice-score of 0.77, and Lovasz-softmax loss performs slightly worse here (Dice-score = 0.76), but the 
aforementioned three loss functions perform almost equally well on the GLAS set (without lumen). Remarkably, 
the Bi-tempered model achieves the worst results on the two public data sets with Dice-scores of 0.69 and 0.75 
on CRAG and GLAS, respectively.

Without the removal of the lumen, all networks obtained lower Dice-scores. On the CRAG dataset, all 
networks show Dice-scores that are on average 0.1 lower. The categorical cross-entropy and Lovasz-softmax 
loss perform best with a Dice-score of 0.68, followed closely by the Focal loss with a Dice-score of 0.66, the Bi-
tempered loss obtained a Dice-score of 0.54. On the GLAS dataset, the differences with and without lumen are 
less evident. The categorical cross-entropy, Focal, and Lovasz-softmax loss obtain almost equal Dice-scores of 
0.79, 0.76, 0.79, respectively. The Bi-tempered loss achieves a Dice-score of 0.71. The Dice-coefficients are shown 
in Table 2. Visual results on Glas and CRAG data can be found in Fig. 6.

Evaluation of the colon biopsy classifier. Since the network trained with the Lovasz-softmax loss 
obtained the overall best Dice-scores and seemed to be the most stable across all different classes, this model was 
selected for the biopsy classification. One thousand fifty-four biopsies, including polyps, were collected from the 
Cannizzaro hospital’s pathology department in Catania (Italy) and were processed by the model trained with the 
Lovasz-softmax loss. We collected the normalized histogram, the total number of tumor clusters, average/min/
max size of all tumor clusters, and every tissue-fragment within the WSI from the segmentation output. Five-
fold cross-validation was used to train and validate the random forest classifier. The dataset was randomly split 
into five class-balanced folds. We report the aggregated results on the left-out cases. Before training, all features 
were normalized to have zero mean and scaled to unit variance. The same statistics learned from the training set 
were applied to the test-set before using the classifier. A WSI can contain multiple sections of a biopsy. Conse-
quently, it is not guaranteed that all tissue fragments contain tissue that have the same risk class, for example, one 
fragment can contain cancer while the rest only contains normal tissue. Therefore, all WSI tissue fragments are 
processed; the worst grade, i.e. the fragment with the worst classification, is then adopted as the final slide label. 
As shown in Fig. 7 we found an one-vs-all AUC of 0.87 ( ±0.03 ), 0.82 ( ±0.02) , 0.89 ( ±0.03) , and 0.79 ( ±0.05) for 
the classification of high-grade dysplasia/tumor, low-grade dysplasia, hyperplasia, and other respectively. Mis-
classification of healthy tissue by labeling it as tumor tissue is worse than mislabeling healthy tissue as hyperplas-
tic tissue. Therefore, we used the quadratic weighted kappa to evaluate the classifier’s results. An overall kappa 
score of 0.91 was reached. The confusion matrix for all cases and some examples of the segmentation output of 
the biopsies can be found in Fig. 7.
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Discussion
When developing a deep learning model, several components determine the quality of the final result. This 
paper has set out to determine the effects of different loss functions in a 14-class semantic segmentation task. We 
selected four different state-of-the-art loss functions, each with its own characteristics, and trained them on WSI’s 
of a single centre. The four models’ performance on all fourteen classes can best be judged on the private test-set. 
Although the differences are not significant, the Lovasz-softmax performs best overall on the segmentation task 
at hand. The score of the Bi-tempered loss is slightly lower and the same applies to the categorical cross-entropy 
and focal loss. Compared to the categorical cross-entropy, the focal loss shows added value neither on the private 
set, nor on the public datasets. It is conceivable that the potentially positive effect of the focal loss is lost with a 

Figure 6.  Segmentation output on the (A) CRAG and (B) GLAS challenge. The F1-scores are calculated on 
the reference standard images where the background (light-blue) has been removed. Note, because the CRAG 
challenge is a binary segmentation task, we marked the epithelium in the reference standard with a single color. 
This figure has been created with Adobe Illustrator 23 (https:// www. adobe. com/ produ cts/ illus trator. html).

https://www.adobe.com/products/illustrator.html
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Figure 7.  (A) ROC-curves of the random forest classifier. (B) Confusion matrix of the biopsy classifier. (C) 
Segmentation output of a healthy fragment. (D) Segmentation result that fails due to air bubble on the glass 
slide. This figure has been created with Adobe Illustrator 23 (https:// www. adobe. com/ produ cts/ illus trator. html).

Table 1.  Dice-scores of different loss functions on the entire private test-set. Significant values are in bold.

Categorical cross-entropy Focal Bi-tempered Lovasz

Tumor 0.89 0.87 0.87 0.83

Desmoplastic stroma 0.69 0.54 0.64 0.58

Necrosis and debris 0.46 0.49 0.47 0.45

Lymphocytes 0.61 0.82 0.82 0.84

Erythrocytes 0.62 0.66 0.65 0.68

Muscle 0.81 0.84 0.85 0.82

Submucosal stroma 0.50 0.58 0.55 0.54

Adipose tissue 0.85 0.85 0.89 0.86

Mucus 0.64 0.46 0.60 0.62

Nerve 0.63 0.54 0.69 0.83

Normal glands 0.85 0.87 0.82 0.88

Lamina propria 0.88 0.86 0.87 0.82

Background 0.46 0.45 0.36 0.51

Dysplasia low grade 0.80 0.78 0.88 0.77

Average 0.69 0.69 0.71 0.72

https://www.adobe.com/products/illustrator.html
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large/larger number of classes. When the number of classes is small a higher and -with two classes- even highest 
degree of class imbalance can occur, what is the intended type of scenario for this function.

The Bi-tempered loss almost equals the performance of the Lovasz-softmax loss on the private test-set and 
distinguishes itself positively from both the categorical cross-entropy and the focal loss on this set. We note that 
this model mainly underperforms on the background class, although all networks seem to perform less well with 
this class, in addition to the necrosis class. It achieves relatively good dice scores on the low grade and high-grade 
dysplasia (epithelium) classes, but falls back on the healthy epithelium class. We see this effect in particular in 
the segmentation output on the images of the other centers (see Fig. 9, Test-Center 2/3/4/5) and therefore were 
inclined to attribute it to stain variations in certain classes here. The Bi-tempered loss is performing worse on 
the public test-set however. Images from the Bi-tempered results on the public sets show over-segmentation of 
the high-grade dysplasia/tumor classes, which can explain these results. Both the Focal and the Bi-tempered 
loss have two hyperparameters that can influence the overall quality of the networks. For this study, we used the 
values that the authors of the original papers recommended. Further improvements can be made by searching 
for the optimal parameters but this falls out of this paper’s scope. The Lovasz-softmax loss also delivers a good 
performance on the public test-sets and seems to benefit from its relative scale insensitivity in this segmentation 
task. This also results in an overall smoother representation of the output compared to the other loss functions 
whose images look a bit grainier. To the eye, border definitions look clearer in the WSI’s processed with the 
Lovasz loss compared to the other networks. Although there is no significant difference between the metric 
sensitive Lovasz-softmax loss and the other losses on the various datasets, the Lovasz shows a good and stable 
prediction quality on the private and public datasets as well, with the convenience that no additional hyperpa-
rameter tuning is required. This result is in line  with40, who not only demonstrate the mathematical superiority 
of multiple metric-sensitive solutions compared to the categorical cross-entropy (inspired) loss functions, but 
also substantiate this with empirical research.

In the design of the classification model, we have chosen to stay as close as possible to the result of the segmen-
tation network, assuming that the output of an accurate segmentation model, next to being fully interpretable by 
pathologists, needs little engineering to generate discriminative features to stratify the risk of colon biopsies. For 
this reason, the relative amount of tissue per class (class histogram) has been introduced as a first feature. Because 
this factor lacks spatial distribution information, we decided to include such information for the epithelium class 
’tumor’ in the model, in order to be able to more accurately separate this class from related (epithelial-) classes. 
To this end, we selected the number of tumor clusters, the minimum, maximum and average cluster size as an 
additional feature. We have applied our segmentation & classification model to 1054 biopsies. We compared the 
class attributions obtained per network system and per pathologists on this series of biopsies. We performed an 
extensive error analysis on the mismatch cases with the involvement of pathologists. This analysis shows that 
roughly forty percent of the classification errors can be traced back to a faulty output of the segmentation model. 
In overstained specimen, the dark regions are sometimes incorrectly identified as tumor, while that tissue should 
have been given the status of healthy or low grade dysplastic epithelium. This effect can be addressed by a more 
substantial stain augmentation and a more extensive targeted training on dark-stained data, but requires retrain-
ing the network. An alternative would be to apply stain normalization during inference for which no retraining is 
required. An example of this is the use of Cycle-GANS as proposed  by41. In future work we will train with more 

Table 2.  F1-scores of different loss functions on the public CRAG and GLAS datasets. Significant values are in 
bold. Results are computed both when the luminal area (w lumen) is included as well as removed (w/o lumen).

CRAG GLAS

w lumen w/o lumen w lumen w/o lumen

Categorical cross-entropy 0.68 0.77 0.79 0.80

Focal 0.66 0.77 0.76 0.78

Bi-tempered 0.54 0.69 0.71 0.75

Lovasz 0.68 0.76 0.79 0.80
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dark-stained data and try stain normalization. Other sources of errors are related to incidental artifacts such as 
small air bubbles in the WSI’s and partly with staining (artifacts) (as shown in Fig. 7d). Suboptimal performance 
due to these kind of artifacts can be countered by adopting some form of quality control of digital slides, or by 
explicitly introducing regions with artifacts in the training set.

The network system generates relatively the most errors in the groups healthy and hyperplasia epithelium and 
the least in the low grade dysplasia and high gade dysplasia/tumor classes, but misses on the latter class should 
be considered heavily. To the extent that those errors occur on the tumor class, for example in biopsies where 
low grade dysplasia and high-grade dysplasia both occur, they are rather related to the classifier’s limitations 
and the same applies to problems with the classification of hyperplasia. We did not include the latter class in the 
development of the segmentation algorithm (out of necessity, i.e., in connection with too little visual material), 
but we did include it in the classification task, which relies on the aforementioned features during execution. 
With this approach we were able to correctly classify 29 cases of the 36 hyperplasia cases (see Fig. 7b), but the 
system appears to be insufficiently able to distinguish this class from the low grade dysplasia class. It is therefore 
recommended that this tissue type—in addition to the other epithelial types—be included directly in the seg-
mentation. Since information about low-grade dysplasia is only present in the normalized histogram, we expect 
that adding more features about these classes could improve the classification output. However, because our 
primary objective here is to develop a broad segmentation model, broadening of the model and optimization of 
the segmentation performance, including on the necrosis class, will be our first point of attention in the future.

Conclusion
In this paper, we have compared performance of semantic segmentation models for histopathology images in 
CRC using four different loss functions, three of which are per-pixel categorical cross-entropy (related) and one 
metric sensitive loss (Lovasz-softmax loss). All networks were trained on a single center dataset and evaluated 
on three medical segmentation tasks from multiple centers. We found no major differences between the per-
formance of the different loss models, but saw a consistently best performance of the Lovasz-softmax function 
on all tasks and a variable task-dependent prediction quality of the Bi-tempered loss. We definitely see the use 
of the Lovasz-softmax loss as the better alternative for both the categorical cross-entropy and the Focal loss, 
but also for the Bi-tempered loss, provided there is no significant degree of noise in the dataset. In practice the 
Lovasz-softmax performs equally or better than the other losses, and visually gives a more accurate, and cleaner 
segmentation result, and a better definitions of the borders. Since there are no hyperparameters to tune, it is 
easier to use in comparison to the Focal and Bi-tempered loss.

We used the model trained with the Lovasz-softmax loss to segment a series of more than thousand biopsies 
and classified them into four classes, in line with current pathology reports, using a simple classifier and a handful 
of features, derived directly from the segmentation output. We showed that with a good segmentation as base 
one can obtain very good results on a downstream task. The classifier could potentially support pathologists in 
diagnosing colon biopsies in the context of population screening.

Appendix
See Table 3.

Overview of proposed method. See Fig. 8.

Overview of DICE‑scores per center. See Fig. 9.

Table 3.  Overview of all datasets with technical information.

Purpose Center origin # of slides Tissue type Annotation types Scanner
Scanning resolution 
(μm/px)

Training Dseg
Radboud University Medical 
Center 40 Resections & biopsies Tissue annotations Pannoramic P250 Flash II 

(3D-Histech, Hungary) 0.24

Testing segmentation net-
work Dtest

seg

Radboud University Medical 
Center 12 Resections & biopsies Tissue annotations Pannoramic P250 Flash II 

(3D-Histech, Hungary) 0.24

Eindhoven Medical center 4 Resections Tissue annotations Pannoramic P250 Flash II 
(3D-Histech, Hungary) 0.24

Utrecht University Medical 
Center 5 Resections Tissue annotations Pannoramic P250 Flash II 

(3D-Histech, Hungary) 0.24

Leiden University Medical 
Center 5 Resections Tissue annotations IntelliSite (Philips, the 

Netherlands) 0.24

University of Bayreuth 3 Resections Tissue annotations NanoZoomer 2.0 HT 
(Hamamatsu, Japan) 0.24

Testing biopsy classifier Dcls Cannizzaro Hospital 1054 Biopsies Slide level label Aperio AT2 (Leica Biosys-
tems) 0.24



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8398  | https://doi.org/10.1038/s41598-023-35491-z

www.nature.com/scientificreports/

Figure 8.  Blockdiagram of the entire pipeline. We start with the segmentation process, which segments 14 
different tissue types. From the segmentation map a set of features is extracted: (a) the normalized histogram 
of all tissue types, (b) the number of high-grade dysplasia/tumor clusters, (c) the average, minimum, and 
maximum size of these clusters. These features are processed by a random forest classifier that gives the final 
classification. This figure has been created with DrawIO (https:// www. draw. io/ index. html).

https://www.draw.io/index.html
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Data availability
The GLAS and CRAG datasets are pubically available on https:// warwi ck. ac. uk/ fac/ cross_ fac/ tia/ data/ glasc ontest/ 
and https:// warwi ck. ac. uk/ fac/ sci/ dcs/ resea rch/ tia/ data/ mildn et. The datasets used to train the semgentation 
algorithm are available from the corresponding author on reasonable request.

Figure 9.  DICE scores of the different loss functions per class of; top-left) the entire test-set or per test-center in 
the private dataset. Note that if a specific class is not present the DICE-score is zero. This figure has been created 
with Adobe Illustrator 23 (https:// www. adobe. com/ produ cts/ illus trator. html).

https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/
https://warwick.ac.uk/fac/sci/dcs/research/tia/data/mildnet
https://www.adobe.com/products/illustrator.html
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Code availability
The segmentation model is available for research use on https:// grand- chall enge. org/ algor ithms/ colon- tissue- 
segme ntati on/.
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