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Abstract

Background and Purpose: The lack of a robust diagnostic biomarker makes understand-

ing depression from a neurobiological standpoint an important goal, especially in the

context of brain imaging.

Methods: In this study, we aim to create novel image-based features for objective

diagnosis of depression. Resting-state network time series are used to investigate neu-

rodynamics with the help of wavelet coherence and Granger causality (G-causality).

Three new features are introduced: totalwavelet coherence, wavelet lead coherence, and

wavelet coherence blob analysis. The fourth feature, pair-wise conditional G-causality,

is used to establish the causality between resting-state networks. We use the proposed

features to classify depression in adult subjects.

Results:We obtained an accuracy of 86% in the wavelet lead coherence, 80% in Granger

causality, and 86% in wavelet coherence blob analysis. Subjects with depression showed

hyperconnectivity between the dorsal attention network and the auditory network as

well as between the posterior default mode network and the dorsal attention network.

Hypoconnectivity was found between the anterior default mode network and the audi-

tory network as well as the right frontoparietal network and the lateral visual network.

An abnormal co-activation pattern was found between cerebellum and the lateral motor

network according to the wavelet coherence blob analysis.

Conclusion: Based on abnormal functional dynamics between brain networks, we were

able to identify subjects with depression with high accuracy. The findings of this study

contribute to the understanding of the impaired emotional and attention processing

associated with depression, as well as decreasedmotor activity.
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INTRODUCTION

Depression is a highly prevalent neuropsychiatric disorder and is char-

acterized by depressed mood (feeling sad, empty), loss of interest

and pleasure, sleep disturbances (insomnia or hypersomnia), fatigue,

and feelings of worthlessness and guilt.1 Currently, it is diagnosed

based on symptomatic criteria, making the diagnosis of depression

highly subjective. Up until now, there are no objective diagnostic tests

available.2

Objective biomarkers of depression can help to improve the selec-

tion of particular treatments and constitute a step further toward

personalized medicine. One of the most widely used brain imaging

techniques is functional magnetic resonance imaging (fMRI). Resting-

state functional MRI (rs-fMRI) is sensitive to blood-oxygenation level

changes in the brain while the subject performs no particular task.

These changes in bloodoxygenation are indirectly associatedwith neu-

ral activity and therefore reflect brain activity alterations over time.

Brain connectivity refers to the idea that the brain is a network

consisting of different regions or networks that are involved in exe-

cuting one or more tasks. Effective connectivity is concerned with the

influence of one neuronal system over another.3–5 Functional connec-

tivity (FC) represents the temporal correlation between different brain

regions or networks, reflecting synchronous activation andhas beenan

important topic among rs-fMRI studies in the recent years.6–9 Quanti-

tative analyses of rs-fMRI have shown that depressed subjects exhibit

network abnormalities.10,11

Hu et al. used a deep learning-based Granger causality (G-causality)

estimator on rs-fMRI and structural MRI data to identify subjects

with Alzheimer’s disease using a support vector machine (SVM) clas-

sifier, yielding an accuracy of up to 91.49%.12 In another study by Luo

et al., G-causality analysis was used to identify the direct functional

connectivity between resting-state networks (RSNs) in participants

with depression. The study found that subjects with depression had

significantly decreased intra-FC within the lateral visual network

(VIS), parietal network, and posterior default mode network (DMN);

decreased inter-FC between the frontoparietal network (FPN) and

subcortical network and between the posterior DMN and anterior

DMN; and increased inter-FC between the salience network (SAN)

and FPN.Moreover, subjects with depression demonstrated enhanced

effective connectivity from the VIS to both the parietal network and

cerebellum network.13

The G-causality analysis algorithm was used in another study by

Zheng et al. to demonstrate that patients with depression show

enhanced effective connectivity from the left superior parietal gyrus

and superior and middle occipital gyrus to the left hippocampus.14

Additionally, the G-causality method was used in the investigation of

other neuropsychiatric disorders: in a study byDeshpande et al., a clas-

sifier for Autism Spectrum Disorder (ASD) was proposed.15 Further-

more, a study byHaghighat et al. used bivariate G-causality in RSNs for

classification of ASDwith amaximum accuracy of only 66.66%.16

Yu et al. identified seven main networks in a study about connec-

tivity in subjects with depression suffering from childhood trauma.

The mentioned networks are as follows: FPN, DMN, dorsal attention

network (DAN), sensorimotor network (SMN), SAN, cingulo-opercular

network, and VIS. The study reported an increased connection

between DMN and FPN, DMN and DAN, as well as between DMN and

SAN. Moreover, a decreased connectivity was found between DMN

and SAN.17

Wavelet decomposition is yet another method that can be used to

analyze functional connectivity. Although thismethod has not yet been

used for depression classification and is rather unexplored, there are a

couple promising studies suggesting that the wavelet method is worth

investigating.

Bernas et al. presented a classifier based on wavelet coherence

maps that could be used to analyze fMRI signals in both the time

and frequency domains. The coherent patterns or time synchronic-

ities between different network activations could be visualized and

used to discriminate between subjects with ASD and neurotypical sub-

jects with a reported accuracy of 86.7%.18 In a study by Khan et al.,

wavelet coherencewas applied toelectroencephalogramsignalswithin

the DMN of 30 subjects with depression and 30 healthy controls. The

obtained biomarker was used to train a 2-dimensional convolutional

neural network that obtained a test accuracy of 98.1% for detecting

depression.19

A feature selection algorithm is a desirable addition to this study

since it is important to identify the most relevant RSN pairs for each

classification experiment in order to ensure that the most informative

features are selected while minimizing overfitting. For this reason, the

Maximum Relevance and Minimum Redundancy (MRMR) algorithm is

used. MRMR is an algorithm that aims to identify a small set of fea-

tures that, when put together, yield the maximum possible predictive

power.20

In this study, we propose three new features based on the wavelet

coherence map as well as using the pairwise conditional G-causality.

The RSNs that appear to be abnormal in subjects with depression,

as found by previous studies, include the DMN, executive network,

SAN, SMN, DAN, FPN, and visual cortex. This constitutes our hypoth-

esis as we expect to identify atypical correlations as well as abnormal

dynamical patterns between pairs consisting of these networks that

are present in subjects with depression.

For the classification of the subjects with and without depression,

two popular classifiers were used: SVM and decision tree. SVM is a

superviseddiscriminative classifier that constructs hyperplanes to sep-

arate data into groups using labeled data with which it is trained. The

decision tree classifier uses a tree representation of nodes to test sev-

eral attributes of the data and learn decision rules inferred from the

features to predict the label of a target variable. Both classifiers have

been successfully applied in neuroimaging studies and are therefore

implemented in this study.21–23

METHODS

The dataset, containing a total of 72 subjects, was obtained from

OpenNeuro.org.24 The participant selection aswell as the image acqui-

sition were performed by Bezmaternykh et al. and the methods are
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406 OBJECTIVE BIOMARKERSOFDEPRESSION

TABLE 1 Demographic and clinical characteristics of the groups
involved in the study

Control Depressed

Sex 6M, 15 F 13M, 38 F

Age (years) 33.8± 8.5 33.1± 9.5

IQ 106.0± 16.1 103.7± 14.6

MADRS Not applicable 26.7± 4.4

BDI 4.6± 4.5 20.7± 10.0

ZSRDS 32.1± 5.9 46.4± 7.0

Note: All the data represent mean ± standard deviation unless otherwise

indicated.

Abbreviations: BDI, Beck Depression Inventory; F, females; IQ, intelligence

quotient;M,males;MADRS,Montgomery-AsbergDepression Rating Scale;

ZSRDS, Zung Self-Rating Depression Scale.30.

presented in detail in their study.25 The study involves 51 medication-

free patients with a diagnosis of mild depressive episode, moderate

depressive episode, or dysthymia according to the International Clas-

sification of Diseases 10th Revision, as established in the multiprofile

clinic Pretor and International Institute of Psychology and Psychother-

apy, Novosibirsk, Russia. The control group consists of 21 healthy

control subjects without a psychotic, neurological, or somatic disorder

or anyMRI contraindication. There is no significant difference between

the two groups in terms of gender, age, and intelligence level (Raven’s

ProgressiveMatrices test). All subjects signed informedconsent topar-

ticipate in the experiment.25 Demographic and clinical characteristics

of the groups involved in the study are presented in Table 1.

The fMRI scans were obtained using a 3T Ingenia Philips scan-

ner. The following parameters were used to acquire the T2*-weighted

single-shot echo planar imaging scans: 2 × 2 × 5mm spatial resolution,

repetition time (TR)/echo time 2500/35ms, and fat suppression mode.

The reference anatomical image was acquired using a T1-weighted

3-dimensional turbo-field echo sequence with a spatial resolution of

1×1×1mm.All subjectswere instructed to lie stillwithout performing

any specific task for a duration of 4 minutes. With a TR of 2.5 seconds,

this resulted in 100 volumes per subject.25

Data preprocessing is necessary in order to reduce the effects of

artifacts, caused by movement and physiological confounders, sepa-

rate brain tissue from nonbrain tissue such as the skull, as well as

bringing all participants scans in the same reference space by regis-

tration. The preprocessing of the data was carried out using FMRIB

Software Library (FSL) and it consisted of two main stages.26 In the

initial stage, the following set of operations was applied using the

MELODIC 3.0 (multivariate exploratory linear optimized decompo-

sition into independent components [ICs]) tool within FSL: motion

correction (MCFLIRT), nonbrain tissue removal, slice timing correction,

spatial smoothing using a Gaussian kernel of 5.0 mm full width at half-

maximum, intensity normalization, and high-pass temporal filtering at

0.01 Hz. Single-session independent component analysis (ICA) was

performed on each subject using automatic dimensionality estimation

to find components that are of neuronal origin. With ICA, we separate

fMRI signal sources in the brain that allows us to find spatially inde-

pendent, yet coherent brain activation patterns present in the data,

resulting in so-called ICs. These can be of neural or nonneural origin.

The denoising stage consisted of classifying and removing noise

components that were found by the single-session ICA. The FSLeyes

tool within FSL was used to visualize and label each component within

the single-session ICA as either signal or noise. The labeling process

was performed manually by following the guidelines and methods

imposed byGriffanti et al.27 The removal of noisy componentswas car-

ried out using the “regfilt” tool within FSL, which applies regression to

remove the unwanted components and create a “clean” version of the

ICA signal. The reason for manually removing the noisy components

from the single-session ICA was to ensure that no useful signal was

discarded that could decrease the quality of the data.

Using the denoised signal obtained from the preprocessing stage

described above, group ICA is carried out on each subject group:

depressed and control. At this stage, one depression subject had to be

discarded due to corrupted data and, therefore, the analysis continued

with 50 depressed subjects and 21 controls. Group ICAwas performed

using the MELODIC tool within FSL to find the common components

shared by all the subjects within one group. Registration to Montreal

Neurological Institute standard space was applied before group ICA.

From the obtained ICs, 10 were selected as RSN based on the

Smith et al. RSN atlas.28 This atlas is established following network

analysis of resting-state functional imaging studies with over 30,000

healthy subjects and is therefore a condensation of themost commonly

found networks in the brain. The RSNs in this study were selected

using a “goodness-of-fit” approach,18 where thedegreeof resemblance

between each of the IC map and the RSN atlas was calculated. The

resulting RSNs were identified based on the highest score obtained as

well as by visual inspection to verify and confirm the results obtained

in the previous steps. Lastly, dual regression was applied to obtain the

RSN spatial maps and time series for each subject separately.29

The RSNs selected from the Smith et al. atlas were the follow-

ing: Primary/Medial Visual Network (VISU1), Lateral Visual (VISU2),

DefaultModeNetwork Anterior (DMN1), DefaultModeNetwork Pos-

terior (DMN2), Cerebellum (CEREB), SMN, Auditory Network (AUDI),

Executive Network, Frontoparietal Right Network (FPR), Frontopari-

etal LeftNetwork aswell as twoadditional networks, the LateralMotor

Network (LMN) and DAN.30,31 Figure 1 is a representation of the 12

identified RSNs that will be used in this study.28,30,31

After obtaining the time series fromall the RSNs, thewavelet coher-

ence maps and the pair-wise G-causality are computed. All possible

permutations of RSN pairs were used (12 × 12 networks= 144), while

removing identical network pairs (e.g., DMN-DMN). This resulted in a

total of 132 network pairs.

The wavelet coherence map was obtained for each RSN pair. Three

distinct features were extracted from the wavelet coherence map as

described in the methodology: total wavelet coherence, wavelet lead

coherence, and wavelet coherence blob analysis. Subsequently, pair-

wise conditional G-causality was calculated between all RSN pairs

using themultivariate G-causalityMATLAB toolbox.32

For each of the features mentioned above, the feature selec-

tion algorithm was employed to rank the most relevant features for
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OBJECTIVE BIOMARKERSOFDEPRESSION 407

F IGURE 1 The visual representation of
the 12 resting-state networks

depression classification. Subsequently, an SVMand decision tree clas-

sifier were used to classify subjects with and without depression. The

classifications were validated using leave-one-out cross-validation.

To compare the results obtained from the experiments with previ-

ous findings, a validation session was performed that consisted of the

samemethods appliedononly theRSNpairs that havebeen found tobe

abnormal in depression in the literature. A list of 19RSNpairs between

which altered connectivity patterns were found in depression, accord-

ing to the studies mentioned in the introduction, was compiled. The

same feature selection and classification algorithmswereused as in the

original experiments. Comparisons were made between the results of

the original and literature-based validation feature sets. Figure 2 is a

schematic of the methodology of this study, starting from acquisition

of the raw fMRI data and ending with the detection of subjects with

depression, based on the proposed features.

Wavelet coherence

Wavelet analysis has become a useful tool in seismology studies

because it allows the analysis of both time and frequency content in a

time series. In other words, the wavelet analysis decomposes the time
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408 OBJECTIVE BIOMARKERSOFDEPRESSION

F IGURE 2 Flowchart of the feature extraction and classification process containing themain steps: extraction of RSN time series, analysis of
the RSN pair connectivity with wavelet coherence and Granger causality, the extraction of the three wavelet-based features and PCGC feature,
feature selection withMRMR, and finally classification using SVM and decision tree classifiers. The classification takes place using each of the four
metrics separately and obtains performance scores corresponding to each individual metric. RSN, resting-state network; PCGC, pairwise
conditional Granger causality; SVM, support vector machine;MRMR, maximum relevanceminimum redundancy

F IGURE 3 Wavelet coherencemaps between Primary/Medial Visual Network (VISU1) and Lateral Visual Network (VISU2) of subject 1. The
map offers information about the type of coherence present at each time and period. The faded area on themargins of themap represents the
cone of influence where edge effects might be present. The color bar shows the type of phasing between signals. s, second; Sig, signal

series into several time blocks to determine the dominant frequency

components in a given period.33

In this paper, wavelet coherence is used to find out how activa-

tion patterns between two network signals interact (synchronous,

anticorrelated, causal, or no interaction) within a given time period

per frequency. Specifically, the wavelet coherence determines the

level of coherence of the cross-wavelet transform of two signals.

Based on the cross-wavelet phase, we can deduce a directionality

in the coherence between time series (in-phase, antiphase, lead, and

lag). This indicates how the brain activation between two networks

changes over time for each frequency. Two network time series in-

phase are activated synchronously, whereas two time series antiphase

might indicate anticorrelated activation. Lead and lag patterns reflect

potential causality (one network activates another network or vice

versa). A detailed explanation on the construction of wavelet coher-

ence maps can be found in the study by Grinsted et al.33 We can

extract wavelet coherence maps from the RSNs time series by calcu-

lating the cross-spectrum between the two signals. In this way, the

common power is measured as well as their phase information at var-

ious times and scales. Figure 3 is an example of a wavelet coherence

map.

Wavelet total coherence

The total wavelet coherence map is calculated by binarizing the

obtainedwavelet coherencematrices. This binarization step assigns 0s

to elements with no coherence and 1s to any coherence regardless of

the type (lead, lag, in-phase, antiphase). Therefore, it reflects the dura-

tion and presence of any type of coherence between the activation of

two networks. An example of a total wavelet coherence map is visual-

ized in Figure 4A. The total time of coherence is measured by counting

the number of elements equal to 1 and averaging over the number of

periods in the coherencemap (n= 50). This featurematrix contains for

each participant one number—the total coherence between RSN1 and

RSN2—and has the size equal to the number of participants by number

of pairs (71× 132).

Coherence blob analysis

The coherence blob count reflects the amount of discontinuity in the

coherence of activation between RSN1 and RSN2. This can be visu-

alized in Figure 4B. Simply put, this algorithm counts the coherence

blobs in the map, and indicates how often the participant switched on

and off the coherence betweenRSN1 andRSN2. This algorithmutilizes

a simple blob analysis method, identifying clusters of more than two

adjacent nonzero elements in the matrix and counting it as one blob.

A blob indicates a period of time in which there is any type of temporal

coherence in the activation between two networks, often covering a

specific frequency range. This feature matrix contains one number per

participant—the number of blobs in the coherence map of RSN1 and

RSN2—and has the size equal to the number of participants by number

of pairs (71× 132).
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OBJECTIVE BIOMARKERSOFDEPRESSION 409

F IGURE 4 (A)Wavelet total coherencemap of the RSN pair
Primary/Medial Visual Network (VISU1) and Lateral Visual Network
(VISU2) for subject 1. (B)Wavelet coherence blob count for the same
RSN and subject; each blob of coherence on themap is markedwith a
red circle. (C)Wavelet lead coherence of the same RSN pair and
subject; only the lead coherence type is present, that is, when VISU1
signal leads VISU2. s, second

Wavelet lead coherence

The lead coherence was extracted from the wavelet coherence map

obtained in the previous stage (sum of elements indicating a lead of

activation ofRSN1with regard toRSN2). This is visualized in Figure 4C.

Lead coherence tells us how much time signal X spent leading signal

Y and is therefore comparable to the G-causality since it is an indica-

tor that network Y causes X. Wavelet coherence also yields frequency

information about the coherence of our signals. In this case, we have

obtained50 separate Fourier periods thatwehave averaged to simplify

the interpretation of the results of this metric. Therefore, for each par-

ticipant the wavelet lead coherence algorithm counts the time RSN1

leads RSN2 for each period and then averages over all 50 periods to

obtain a matrix where each participant is assigned one number—the

average lead time between RSN1 and RSN2—and has the size equal to

the number of participants by the number of possible pairs (71× 132).

Granger causality

The G-causality algorithm used in the analysis of the time series of this

study is based on themultivariate G-causalityMATLAB toolbox.32 This

toolbox utilizes vector autoregressionmodeling.

In essence, G-causality is used to find out whether the activation

of one RSN is causing the activation of another RSN. By using the

aforementioned toolbox, we obtained the G-causality matrix for each

subject where each element of the matrix represents a directed pair-

wise G-causal (PCGC) connection. Since the PCGC matrix contains a

causality score for everyRSNpair, thismatrix is usedas a featurevector

for the classifiers.

Feature selection and classification

A feature selection algorithm is a desirable addition to this study since

it is important to identify the most relevant RSN pairwise connectivity

for each classification experiment and aims to prevent overfitting. For

this reason, the MRMR algorithm was implemented.20 MRMR ranks

the feature importancebyapplyingeachmetric separately according to

their relevance/redundancy score. This algorithm operates iteratively

calculating the factor of the relevance and the redundancy of the fea-

ture (relevance/redundancy).20 With each iteration, the relevance is

computed as the F-test between the feature and the target variable,

while the redundancy is computed as the Pearson correlation between

the feature and all the features previously computed. MRMR is a strict

algorithm, selecting only themost valuable features.20

Two classifiers were used: an SVM classifier with a polynomial

kernel of order 4 and a decision tree classifier.

RESULTS

The classification results discussed in this section can be found in

Table 2.
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TABLE 2 Performance of classifiers

Wavelet total coherence

Nr feat AUC Accuracy Sensitivity Specificity Precision

SVM 2 .70 75% 33% 92% 67%

Tree 49 .76 80% 67% 86% 67%

Wavelet coherence blob analysis

Nr feat AUC Accuracy Sensitivity Specificity Precision

SVM 2 .75 79% 57% 88% 67%

Tree 3 .84 86% 71% 92% 79%

Wavelet lead coherence

Nr feat AUC Accuracy Sensitivity Specificity Precision

SVM 7 .72 76% 71% 78% 58%

Tree 7 .83 86% 76% 90% 76%

Granger causality

Nr feat AUC Accuracy Sensitivity Specificity Precision

SVM 6 .62 68% 52% 76% 46%

Tree 2 .76 80% 71% 84% 65%

Abbreviations: AUC, area under the curve; Nr feat, number of features; SVM, support vector machine classifier; Tree, decision tree classifier.

The wavelet coherence map

Figure 3 represents an example of a wavelet coherence map obtained

from subject 1 (depression) from the VISU1-VISU2 pair. The maps tell

us at each period (y-axis) and point in time (x-axis) what coherence type

was present. The coherence type is color coded, and it can be either

in-phase, antiphase, signal 1 leads, signal 1 lags, or no coherence at all.

FromFigure 3, it appears that subject 1 exhibits a lot of in-phase coher-

ence between the two networks that suggests that VISU1 and VISU2

are synchronously activated in this case.

Wavelet total coherence

Figure 4A shows an example of a wavelet total coherence map. For

thismetric, themost informative pairs, according to theMRMR feature

selection algorithm, were VISU1-DAN and VISU1-VISU2. An accuracy

of 80% and area under the curve (AUC) of .76 was obtained for the

decision tree classifier when trained with the values of wavelet total

coherence of the top 49 RSN pairs. Figure 5A represents the box-

plots of the twomost relevant RSN pairs per group and shows that the

depression group exhibits more variation and outliers in the average

time of total wavelet coherence than the control group. The RSN pairs

VISU1-DAN and VISU1-VISU2 are not on the list of most relevant RSN

pairs that was ensembled based on the results of previous studies.

Wavelet coherence blob analysis

Figure 4B shows the wavelet coherence map and an illustration of

the blob counting process. This metric measures how many times the

coherence, independent of coherence type, of the two RSNs activates

and deactivates by counting the number of blobs in each map. The

best performing RSN pairs according to the MRMR feature selection

algorithm were CEREB-LMN and DMN2-AUDI. The highest classifica-

tion performancewas obtainedwhen trainedwith the blob numbers of

threeRSNpairs andyieldedanaccuracyof86%andanAUCof .84using

the decision tree classifier. From the trends illustrated in the boxplots

in Figure 5B, it can be observed that in the case of CEREB-LMN pair,

the depression subjects contain more blobs in the wavelet map than

the controls. On the other side, the boxplots of the DMN2-AUDI pair

show that the depression subjects have less blobs than the controls.

The wavelet coherence blob analysis is a novel metric and cannot be

directly comparedwith the literature.

Wavelet lead coherence

The map of the wavelet lead coherence contains only nonzero values

for the elements of the coherence map that correspond to the time

when RSN1 leads RSN2 and can be seen in Figure 4C. The top selected

features for this metric are DAN-AUDI and DMN1-DAN according to

the employed feature selection algorithm. The classification accuracy,

according to the decision tree classifier and leave-one-out cross-

validation, is 86%, while the AUC is .83 when trained with the values

of the top sevenRSNpairs. This is one of the best performingmetrics in

terms of accuracy and AUC and matches well with the validation set

where the top two most relevant pairs are the same in both experi-

ments. From Figure 5C, we can see that the depression group tends to

have higher means and larger ranges for the wavelet lead coherence

values than the control group. The depression group also displaysmore

outliers.
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OBJECTIVE BIOMARKERSOFDEPRESSION 411

F IGURE 5 Boxplots showing the distributions for each subject group for eachmetric. (A)Wavelet total coherence—the depressed group
exhibits more variation and outliers than the control group. Themedian for the depressed group is lower than the control in VISU1-DAN, while for
VISU1-VISU2 it is higher. (B)Wavelet coherence blob analysis—the pair CEREB-LateralMotor Network (LMN) shows a higher number of blobs in
the depressed group. DMN2-AUDI presents a lowermedian value for the depressed group. (C)Wavelet lead coherence—the pairs DAN-AUDI and
DMN1-DAN present higher variation andmedians for the depressed group. (D) Granger causality—the pairs DMN2-AUDI and Right
Frontoparietal Network (FPR)-VISU2 show a lowermedian causality score in depressed subjects. s, second; nr, number; PCGC, pairwise
conditional Granger causality

Granger causality

The G-causality top selected RSN pairs consist of DMN2-AUDI and

FPR-VISU2. The best classification performance for this metric was

obtained using thePCGCvalues of the twoRSNpairsmentioned above

and yielded 80% accuracy and .76 AUC. The general trend between

groups is illustrated in the boxplots from Figure 5D where it appears

that the depression subjects show smaller PCGC values than the con-

trol group for both top RSN pairs. Agreement with the literature

was found when classifying based on PCGC between the original and

validation features as one RSN pair appears in the highest feature

importance list for both feature sets (FPR-VISU2).

DISCUSSION

The top performing metrics are wavelet lead coherence and wavelet

coherence blob analysis with an accuracy score of over 85%. Figure 6

visualizes the most important interactions between the RSN pairs that

have yielded the highest classification scores in predicting depression.

The DMN encompasses multiple brain regions including the ante-

rior medial prefrontal cortex, posterior cingulate cortex, and angular

gyrus.34 It has been found to be responsible of several functions

including emotion processing as well as the allocation of attention

resources for cognitive processing.35–36 Many studies show that sub-

jectswithdepressionhaveanhyperactiveDMNas compared to control

subjects.11,13,17,20 These findings correspond with our own results,

which show the increased activity between posteriorDMNandDAN in

subjects with depression when employing the wavelet lead coherence

metric.

The DAN is responsible for tasks that require attention to external

stimuli and includes the visual motion area, frontal eye fields, superior

parietal lobule, intraparietal sulcus, and ventral premotor cortex.31 In

our study, the depression subjects show on average more wavelet lead

coherence between the DAN and DMN1 than the control group. This

is in accordance with previous studies and suggests that the abnor-

mal interaction between the two brain regions may be responsible

for anomalous attention to the external world and internally directed

mentation.36 Hu et al. also found abnormal connectivity within the

DMN.12 These findings are comparablewith our results for thewavelet
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412 OBJECTIVE BIOMARKERSOFDEPRESSION

F IGURE 6 Diagram describing themain interactions between
RSNs that contributed to the highest performance scores for
depression classification. The arrows in wavelet lead coherence and
Granger causality represent the importance of direction between RSN
pairs. The plus sign showswhen themean value was greater for the
depressed group than the control group, while theminus sign shows
when themean value was lower for the depressed group than the
controls. The wavelet total coherence and the wavelet coherence blob
analysis do not depend on direction. LMN, Lateral Motor Network;
VISU1, Primary/Medial Visual Network; VISU2, Lateral Visual
Network; FPR, Frontoparietal Right Network

total coherence metric that is decreased between DAN and VISU in

participants with depression.

The abnormalities within and between AUDI and VIS have also

been linked to depression. Studies show that dysfunctions in these

sensory systems, specifically hypoconnectivity, may lead to impaired

facial processing, sound processing, and integration of visual and audi-

tory information in subjects with depression.36–38 In our study, both

AUDI and VISU appear frequently in the top selected features of the

best performing metrics. Moreover, Yu et al. also discuss the increased

connectivity between the FPN and visual system, while in our study

the FPR-VISU2 pair showed decreased G-causality scores for the

depressed subjects.17

One of the best performing metrics utilized in this study is the

novel concept of wavelet coherence blob analysis that measures the

discontinuity in coherence between RSN pairs. This method is novel

and its results are therefore not comparable to any existing literature

so far. However, the involvement of the cerebellum and the lateral

motor network in depression has been previously documented and

linked to cognitive control and emotional processing.39 In our study,

CEREB-LMN is one of the best performing pairs in the blob analysis

metric showing more discontinuity on average in the depression group

than in the control subjects. This may suggest that in depression sub-

jects, the coherence between the cerebellum and the control network

switches on and off more often, while the control subjects maintain

the connectivity between the two RSNs for longer periods of time. The

literature shows that a significant decrease in motor activity is linked

to depression.40–43 The abnormal co-activation pattern between the

cerebellum and the lateral motor network may explain this lack of

movement-related activation compared to the control subjects.

The wavelet coherence maps were generated using the Morlet

wavelet due to the highest frequency/time resolution ratio. A study

compared three popular wavelet types such as PAULwavelet, a deriva-

tive of Gaussian, and Morlet wavelet for the classification of ASD

adolescents. They demonstrated that the Morlet wavelet is the most

suitable for analyzing neurodynamics, hence our choice for thewavelet

type used in the generation of the coherence maps between RSN time

series.44

The feature selection algorithm is a strength of this study since it

provides theopportunity to test all possibleRSNpair combinations and

select only themost informative pairs while minimizing overfitting. Ini-

tially, three feature selection algorithmswere tested on a sample of the

data: MRMR, chi-squared test, and neighborhood component analysis.

Since MRMR outperformed chi-squared test and neighborhood com-

ponent analysis in almost all situations, we decided to exclude these

two algorithms for the other experiments. In the classification phase,

four classifiers were initially tested: SVM with a polynomial kernel,

SVM with a radial basis function kernel, linear discriminant analysis,

and a decision tree. Based on the performance scores obtained using

these four classifiers, only two—the SVM with polynomial kernel and

the decision tree—were selected.

In some of the cases, the sensitivity of the prediction is quite low

(33% for wavelet total coherence SVM) despite high specificity scores.

Thismaybea result fromtraining and testingonan imbalanceddataset,

which contained more than double the amount of depression subjects

compared to healthy control subjects (50 vs. 21). In this case, the clas-

sifier learns and adapts the model for depression quite well due to the

larger sample size. Therefore, the model tends to classify more sub-

jects as depression, rather than healthy control. This fact inevitably

lowers the overall AUC and decreases the reliability of the results. A

good improvement for the future of this study would be to introduce

a dataset balancing technique such as undersampling, oversampling, or

nested cross-validation.

In terms of future work and limitations of this study, it is important

to mention the relatively small sample size of subjects (50 depressed

and 21 control) and short acquisition time. As suggestions for future

work, a larger andmore balanced sample size as well as includingmore

hyperparameter variation in terms of classification and feature selec-

tionalgorithms is recommended. In addition to this, a longer acquisition

timewith a shorter TRwould benefit this study.

The aim of this studywas to develop novel image-based features for

the objective diagnosis of depression. We introduced novel highly dis-

criminating features based on wavelet coherence and G-causality that

led to depression classification accuracies of 80% and above. These

algorithms, being explainable, offered new insights into the role of

brain dynamics in depression and therefore have potential of being

adopted in clinical practice.

The highest performing metrics involved in depression were the

wavelet lead coherence, G-causality, and wavelet coherence blob

analysis (86%, 80%, and 86% accuracy, respectively) showing the

importance of dynamic features of resting-state activity. The first two

metrics measure the amount of causality between brain regions and

show that the DMN, DAN, AUDI, VISU, and FPR are heavily involved
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OBJECTIVE BIOMARKERSOFDEPRESSION 413

in medication-free adults with depression. These RSNs are known to

be linked to emotional and attention processing as well as facial and

sound processing that can be anomalous in subjects with depression.

The third highest performing metric shows abnormal activation pat-

terns between DMN2 and AUDI but also between CEREB and LMN in

depression subjects thatmay be linked to the decreasedmotor activity.
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