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Simple Summary: Tumor budding is a promising and cost-effective histological biomarker with
strong prognostic value in colorectal cancer. It is defined by the presence of single tumor cells
or small clusters of cells within the tumor or at the tumor-invasion front. Deep learning based
tumor bud assessment can potentially improve diagnostic reproducibility and efficiency. This study
aimed to develop a deep learning algorithm to detect tumor buds in cytokeratin-stained images
automatically. We used a semi-supervised learning technique to overcome the limitations of a small
dataset. Validation of our model showed a sensitivity of 91% and a fairly strong correlation between
a human annotator and our deep learning method. We demonstrate that the automated tumor bud
count achieves a prognostic value similar to visual estimation. We also investigate new metrics for
quantifying buds, such as density and dispersion, and report on their predictive value.

Abstract: Tumor budding is a histopathological biomarker associated with metastases and adverse
survival outcomes in colorectal carcinoma (CRC) patients. It is characterized by the presence of single
tumor cells or small clusters of cells within the tumor or at the tumor-invasion front. In order to obtain
a tumor budding score for a patient, the region with the highest tumor bud density must first be
visually identified by a pathologist, after which buds will be counted in the chosen hotspot field. The
automation of this process will expectedly increase efficiency and reproducibility. Here, we present
a deep learning convolutional neural network model that automates the above procedure. For model
training, we used a semi-supervised learning method, to maximize the detection performance despite
the limited amount of labeled training data. The model was tested on an independent dataset in
which human- and machine-selected hotspots were mapped in relation to each other and manual and
machine detected tumor bud numbers in the manually selected fields were compared. We report the
results of the proposed method in comparison with visual assessment by pathologists. We show that
the automated tumor bud count achieves a prognostic value comparable with visual estimation, while
based on an objective and reproducible quantification. We also explore novel metrics to quantify
buds such as density and dispersion and report their prognostic value. We have made the model
available for research use on the grand-challenge platform.

Keywords: deep learning; computational pathology; colorectal carcinoma; tumor budding; object
detection

1. Introduction

Tumor budding is characterized by the presence of isolated single cancer cells or clus-
ters of up to four cancer cells of epithelial origin. This phenomenon is widely recognized as
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a prognostic biomarker, predicting lymph node metastasis, disease progression, and unfa-
vorable survival in colorectal cancer (CRC), among others [1,2]. In 2016, a standardized
reporting method of assessing tumor budding in CRC was established (ITBCC, 2016) [3].
According to this recommendation, pathologists should scan the invasive tumor front
at low magnification and select the area with the highest tumor bud density, a circular
‘hotspot’ with a radius of 0.5 mm.

Next, they should identify and count the tumor buds at higher magnification and
convert the count into a score according to a three-tier system (Bd1 -low budding- 0–4 buds;
Bd2 -intermediate budding- 5–9 buds; Bd3 -high budding- 10 or more buds). Traditionally,
this procedure is performed on routinely available H&E-stained tissue sections. However,
peritumoral inflammatory infiltration may mask tumor buds, making it challenging to
detect them on H&E. Additionally, tumor buds and reactive stromal cells can occasionally
be difficult to distinguish in H&E.

Under these circumstances, an immunohistochemical (IHC) pan-cytokeratin (CK)
stain can be used to highlight the epithelium versus activated fibroblasts and immune cells
(see Figure 1). Therefore, IHC is frequently used to help pathologists identify tumor buds
(TBs) [2]. Several studies involving experienced gastrointestinal pathologists have reported
the prognostic value of TB based on H&E staining, as well as on IHC [3–5]. At the same
time, moderate-to-substantial inter-observer variability has been reported for TB scoring in
both H&E and IHC, including our recent work [6]. This variability can potentially increase
when non-subspecialist gastrointestinal pathologists are involved, especially when H&E
slides are inspected.

Figure 1. Tumor buds in a corresponding H&E-stained (left) and pan-CK stained (right) image from
the same histology slide after destaining. Note the red arrow that shows a tumor bud that is not visible
in the H&E-stained image, buds that are visible in both stains are shown by the blue arrows.

Concerns over interobserver variability as well as the labor-intensive aspect of manual
TB detection suggest the potential role of a computer-aided approach to TB quantification.
The advent of digital or computational pathology allows the development of computer
algorithms that can improve the reproducibility of the tumor bud identification process.
In particular, convolutional neural network (CNN) systems have shown their ability to
match or even exceed the performance of human experts in medical object recognition
and classification tasks. Several authors studied the development of an automatic or semi-
automatic tumor bud detection method, reviewed in a post-ITBCC review in 2021 [7]. IHC
can help assess tumor buds more easily by the effect of the CK stain, which stains the
epithelium and removes other single-cell objects, e.g., activated fibroblasts. For this reason,
attempts have predominantly been made in CK-stained tissue.

1.1. Related Work

Several computer methods have been proposed to address the detection of tumor
buds in IHC. Most methods usually require a manual selection of a region of interest (ROI),
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typically selected at specific predetermined locations, e.g., the invasive front region, or by
explicitly excluding areas such as necrosis. Within these ROIs, tumor bud detection is
achieved using classical image analysis operations, sometimes in combination with some
form of machine learning. Fischer et al. [4] used QuPath software to classify tumor buds
in digitized CRC tissue microarrays (TMAs) based on the color and measured cluster size
(area instead of nuclei number) and compared the results with manually obtained tumor
bud yields in H&E and CK per count and in a bud-by-bud fashion. They analyzed the
impact of all methods on patient survival. They found a strong correlation between manual
CK and semi-automated methods and, for each method, reduced survival at higher tumor
bud scores. However, TB selection based on size might result in false-positive detections
for compact tumor clusters of up to four cells. To overcome this problem, Fauzi et al. [8]
followed a similar approach but added nuclei detection to reduce the number of false
positives. Methods that rely on stain intensity might not generalize well to the stain
variations found in clinical practice. These methods use predetermined constants that are
often fine-tuned on a dataset with limited variation. CNNs can be trained using stain-
augmentations [9] to overcome this. Therefore, Bergler et al. [10] proposed a two-step
hybrid approach, in which possible TB candidates are first selected by color and minimum
size using image processing methods as described above, after which a CNN is used to
achieve a reduction in false-positive candidates. Weis et al. [11] followed a similar path,
first using image processing steps for the pre-selection of TB candidates on a CK-positive
area and size, after which CNN training takes place and validation is performed on 20 TMA
cores, manually labeled by a pathologist. The network trained in this way is used to
post-classify the real TB against any lookalikes. In the test phase performed on whole slide
images, this author finds a connection between the number of significant hotspot locations
and the latter parameter in a small group of patients. However, no significant correlations
between the TB number(-derivatives) or TB score and nodal status.

1.2. Our Contribution

Although tumor budding scoring by pathologists is primarily performed in H&E,
IHC still plays a vital role in clinical routine as it helps pathologists identify TB in diffi-
cult (inflammatory) regions. Therefore, an IHC tumor bud detection tool is desirable, to
(1) assist pathologists in clinical routine of the detection of TB; (2) as a research tool; and
(3) as an initial step for the development of an algorithm for TB detection in H&E, as it will
provide an indirect reference material for this purpose. In this work, we introduce several
contributions to the field of automated TB detection in the IHC-stained whole-slide images
of CRC patients. We address the problem of limited availability of manually annotated
tumor buds to train computer algorithms, given that it is an expensive procedure subject to
high inter-observer variability. We leveraged a collection of n = 1765 manually annotated
objects which were either tumor bud or non-tumor bud from a previous study [6], repre-
senting a set of sparse annotations (i.e., not all objects of interest were annotated) at the
WSI level. This scenario poses problems when training traditional object detection models,
which typically need exhaustive manual annotations of objects to detect during training.
To address this problem, in this work, we use a semi-supervised learning approach to train
object detection models using sparsely annotated data, analogous to Niazi et al. [12] who
utilized stain deconvolution to create a reference standard directly based on the positive
cytokeratin objects. As cytokeratin highlights all epithelium and not just TBs, here we use
a small sparsely annotated dataset of TBs and non-TBs. The proposed approach is based
on training two deep learning networks and it makes it possible to combine the advantages
of a small, labeled dataset to guide the learning process and a large, exhaustive, pseudo-
labeled dataset to increase the robustness to variations in object appearance, without the
need for time-consuming exhaustive manual annotations. Because the second model uses
the information learned from the first, we will refer to this method as a teacher–student
approach. Although the teacher–student is commonly associated with knowledge distil-
lation, where the teacher and students are not identical in the complexity of the model,
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in this work, we propose to keep this terminology to emphasize the sequential nature of
learning and knowledge transferred from the first model to the second model. As a result,
the proposed method allows training computer models to detect TBs in any region of
the slide, de facto stepping away from TB detection in pre-selected regions and allows
a complete analysis at the whole-slide image level. Thanks to this characteristic, in this
work, we also propose a method to compute a tumor bud density map at the WSI level,
which allows to (1) identify the TB hotspot and extract TB count as a biomarker, in line
with the ITBCC guidelines; (2) explore novel biomarkers based on the spatial heterogeneity
of TB distributions, and investigate their predictive value, which represents additional
contributions of our work. We validated every step of the proposed approach (TB detec-
tion, hotspot detection, prognosis) using manual annotations from a panel of experienced
pathologists and clinical and survival data from a cohort of n = 40 patients.

Finally, we make the algorithm publicly available for research purposes as a stand-
alone application running on the grand-challenge.org platform (https://grand-challenge.
org/algorithms/colon-budding-in-ihc/, accessed on 1 February 2023). As such, we en-
vision that this algorithm will serve as a testing tool for researchers and clinicians in
the computational pathology field, which can be used for exploratory purposes and for
comparison with other algorithms.

2. Materials and Methods
2.1. Materials

Two sets of resected CRCs were collected. The first set was used to develop and
validate the tumor bud detection model(s). The second set was collected to test the deep
learning model on (cor-)relations with manual TB counts and hand-selected hotpots for
patient survival analyses. In the next section, both datasets are described in detail. An
overview of the datasets can be found in Table 1.

Table 1. Overview of the different datasets used in this study.

Dataset Number of WSIs Origin (# of Slides) Annotations

dev-l 51 Bern (3), Dublin (1), Nijmegen (47) 480 tumor bud candidates and 321 non-tumor-bud candidates
dev-v 23 Bern (1), Dublin (0), Nijmegen (21) 200 tumor bud candidates and 151 non-tumor-bud candidates
dev-t 10 Bern (2), Dublin (1), Nijmegen (8) 330 tumor bud candidates and 283 non-tumor-bud candidates

eval 240 Bern (240) Manual hotspot locations and number of tumor buds within
this hotspot

2.1.1. Model Development Data

In a previously published study on human visual budding scoring, we used 84 tissue
sections taken from 45 patients [6]. Six of these slides were IHC-stained with AE1/AE3 and
scanned at the Institute of Pathology, University of Bern (Switzerland), two were stained
with AE1/AE3 immunohistochemistry and scanned at the Dublin University Hospital
(Ireland). The remaining 76 slides were stained with CK8-18 immunohistochemistry and
scanned at the Radboud University Medical Center, Nijmegen (The Netherlands).

In our previous work, all slides were scanned with a Pannoramic P250 Flash II scanner
(3D-Histech, Hungary) using a 40× objective lens (yielding a specimen-level pixel-size
of 0.24 × 0.24 µm). Digital image analysis was used to pre-select 3000 bud candidates,
which were subsequently independently classified by seven experienced pathologists from
the ITBCC as either (1) TB; (2) poorly differentiated cluster (PDC, defined as clusters of
five or more tumor cells without gland formation); or (3) neither, in accordance with
current definitions. For the purposes of this study, we grouped PDCs and objects labeled as
neither group.

After calculating the majority votes, this resulted in a reference set of 1010 buds and
755 non-bud objects. In the current study, we used a subset of n = 74 whole slide images
for training and model optimization. The remaining WSIs (n = 10)—one from Dublin, two

https://grand-challenge.org/algorithms/colon-budding-in-ihc/
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from Bern, and eight from Nijmegen—were used as a multi-centric test-set. This test set
contains 330 TB and 283 non-TB candidates. When composing these subsets, we ensured
that all WSIs from a single patient were included in the same subset. In the following,
we will use these codes for the three aforementioned train, validation, and test subsets,
respectively: dataset dev-l(earning), dataset dev-v(alidation), dataset dev-t(est).

2.1.2. Validation Data

From a cohort of 40 CRC patients from the Institute of Pathology, the University of
Bern n = 240 tissue sections and associated clinical pathology reports were obtained. At
Bern University Labs, the sections were stained with AE1/AE3 and CD8 to highlight the
epithelium and cytotoxic t-cells, respectively. DAB staining was used for the cytokeratin
stains and a red dye was used for CD8; however, in practice this red dye does not hamper
the results of the algorithm as it was trained on DAB. Afterwards, the slides were scanned
with a Pannoramic P250 Flash II scanner (3D-Histech, Hungary) at a spatial resolution of
0.24 µm/px. In all WSIs, a tumor budding hotspot and tumor bud count were established
by an expert according to the ITBCC recommendations. This dataset is referred to as
dataset eval.

2.2. Model Development

We hypothesized that the performance of a detection network would be adversely
affected by incomplete (i.e., sparse) annotations, something that classification networks
do not suffer from. To see the extent to which the expected adverse effect, we included
a detection network alongside a classification network. The two deep learning networks
were trained solely on our small, expert-labeled dataset dev-l, and were used to identify
the additional candidates for training the student network. We will hereafter refer to these
networks as the teacher networks.

The best performing teacher network was applied to the WSIs of the dataset dev-l
and dev-v, after which the candidates detected by the teacher model were added to the
dataset dev-l and dev-v. Thereafter, two new deep learning networks, called student, will
be trained on the combined dataset. A schematic overview of the method can be found
in Figure 2.

2.2.1. Sparsely Annotated Data and Object Detection

Classification networks are able to predict whether an image contains a specific ob-
ject or not, but provide no further information as to the location of the classified object.
Detection networks, on the other hand, provide information about the class and location.
Therefore, a detection network, such as faster R-CNN [13], YOLO [14], and SSD [15], is
usually the first and best choice for a detection task, such as tumor bud detection. We
selected the faster R-CNN network because it is known to perform well in the medical
image analysis field [16–19]. As with most region-proposal-based network architectures,
faster R-CNN works in a two-step fashion. Regions of interest are proposed in the region
proposal part of the network at first, and then, in a second step, objects in these regions of
interest are classified. During training, the locations of the proposed regions and the object
classification within these regions are fine-tuned based on the reference standard. Because
of this architecture, these network types are less suitable for sparsely annotated inputs,
as objects without labels are falsely assumed to be negatives/background. With sparsely
annotated data, this leads to a significant number of potential positive objects (unanno-
tated TB) in data for training that are marked as negatives, which may deteriorate the
network performance. In connection with the above, we also opted for a fully convolutional
DenseNet network as an alternative teacher network architecture. The fully convolutional
network is trained as a patch classifier, solely sampling patches from annotated regions,
and labeling those patches with a single value based on the annotation.
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Figure 2. Schematic overview of the model development. (A) Training of the two teacher models
(DenseNet and faster R-CNN) and the sparse dataset dev-l. Note that the 1152 candidates consist of
680 + 472 tumor bud/non-tumor-bud candidates, respectively; (B) training of the student models
(DenseNet and faster R-CNN) and the fully exhaustive dataset dev-l+. Dataset dev-l+ was created by
applying the teacher model to dataset dev-l.

2.2.2. Student Development

The teacher network with the highest sensitivity on dataset dev-v was used to identify
the additional candidates for training the student networks. This network was applied
to the entire WSIs, without excluding specific regions. To maximize the precision of our
model, only candidates for which the model gave a likelihood of >0.80 were included in
the combined dataset. To further reduce the amount of mislabeled objects outside the DAB
positive pixels, we used color deconvolution [20] to isolate the DAB-positive image pixels,
which were grouped to form binary objects. This binary mask was used to remove pseudo-
labeled buds when not present in the DAB mask. The new training dataset, dev-l+, now
containing not only the initial n = 1200 candidates but also approximately 20,000 pseudo-
labeled candidates. Because we did not pre-select any regions, no bias was introduced
in the network by the manually selected objects from the previous study. Therefore, this
network should be able to cope with all the cell types found in the entire WSIs, including
the cell types found outside the tumor region. This ensures that the network is applicable at
the WSI level without the need to manually pre-select a region. Due to the expected greater
number of false positives among the pseudo-labeled tumor buds, these candidates were
given a lower certainty (0.80) of representing a bud (the certainty of 0.8 was empirically
found). In contrast, manually selected buds received a certainty of 1.0, which means that,
during the training, a student network was less penalized when making a mistake with a
pseudo-labeled object compared to the manually labeled data.

We trained a faster R-CNN and a DenseNet as student networks. These networks
were trained on dataset dev-l+ and validated during training on dataset dev-v.

2.2.3. Training Parameters

The input for the faster R-CNN network and DenseNet network was an RGB patch of,
respectively, 1024 × 1024 px and 512 × 512 px (pixel size 1 µm). To enable the classification
of arbitrary input sizes at test time, the average-pool layer of the DenseNet models were
removed and the final convolutional layer was replaced with two 1 × 1 filters that represent
each output class. During training, the random flipping, rotation, elastic deformation,
blurring, brightness (random gamma), color, and contrast change augmentations were used
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for data augmentation. An adaptive learning rate scheme was used where the learning rate
was initially set to 1 × 10−4 and then multiplied by a factor of 0.5 after every 25 epochs if no
increase in performance was observed on the validation set. All networks were initialized
with pre-trained ImageNet weights. The mini-batch size was set to one instance per batch,
and the networks were trained for a maximum of 600 epochs, with 200 iterations per epoch.
The training of the networks was stopped when no improvement of the validation loss
was found for 50 epochs. The output of all networks with the DenseNet architecture is in
the form of C likelihood maps. The arg-max of these likelihood maps was taken to obtain
a final detection output. The output of the faster R-CNN network is all region proposals
with a corresponding probability of it belonging to class C.

2.2.4. Automated Hotspot Selection

In contrast to manual TB assessment, in which (according to ITBCC protocol) hotspot
selection precedes tumor bud counting, in the automated procedure, all tumor buds are
first detected and recorded in terms of location, after which the hotspots were selected. To
identify the number of tumor buds within every potential hotspot, the following procedure
was applied (Algorithm 1).

Algorithm 1 Create tumor budding density map.
Ensure: The network was applied to the entire slide

1: for every pixel in the WSI do . identified by its x and y coordinate
2: Draw a circle with an area of 0.785 mm2.
3: Count the number of tumor buds within each circle.
4: Note the number of tumor buds within the circle on each (center) pixel of this circle.
5: end for
6: Normalize the density map based on the total number of tumor buds per slide.

This density map can also be visually displayed as a heat map of the whole slide to
facilitate the visual identification of the region with the highest tumor buds.

Based on the density map, we could extract the regions with the highest amount of
tumor buds within the hotspot. We simply cannot select (center-)pixels with the highest TB
density, as the related hotspot areas might overlap. To prevent this, we used the following
steps within the whole slide image: (1) the location with the highest tumor bud number
within the whole slide image was selected; and (2) we label any pixel within the selected
hotspot area of a TB with a value of 0. By doing this, the next hotspot has a minimum
distance of the radius of the hotspot, resulting in a maximum overlap of 50% between the
hotspots; (3) repeat steps 1 and 2 until 10 locations are found.

We determined the overlap between the manually and ten automatically selected
hotspots per slide using the dice coefficient. If a dice score of 0.7 or higher was observed,
we registered that as a good overlap between the two hotspots.

2.2.5. Tumor Bud Distribution

The density map reflects how the tumor buds are distributed throughout the tissue. We
hypothesize that tumor bud distribution might be a predictor for patient outcome. Tumor
bud spread can be quantified in terms of entropy, which can be defined by a measure of
system heterogeneity. Shannon’s entropy was calculated for every density map of the
dataset eval.
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2.2.6. Statistical Analysis

Statistics were performed on dataset Val using R 4.1.3 (R Foundation College Station,
TX, USA). The Cox proportional hazards regression models were performed in univariate
and multivariate settings to calculate the hazard ratios (HRs). Multivariate adjustments
were age (<65, ≥65), sex (male, female), T (1 and 2, 3 and 4), N (0, 1, and 2). Sixteen patients
with insufficient follow-up data were removed from this analysis. A complete overview of
the patient information can be found in Table 2.

Survival analysis was performed on three different budding counts, all on continuous
values: (1) tumor bud counts by the expert; (2) tumor bud counts by the detection system
in the same hotspot; and (3) tumor bud counts in the automatically selected hotspot by
the algorithm.

Table 2. Clinicopathological characteristics of the patient cohort eval for analysis. Note: because of
the limited number of patients within every group, we merged T-stages 1 and 2; 3 and 4; and N 0, 1,
and 2.

n %

Sex
Male 15 62.5

Female 9 37.5

Age, years
<65 14 58.3

≥65 10 41.6

Invasion depth
T1T2 7 29.1

T3T4 17 70.9

Nodal status
0 and 1 18 75.0

2 6 25.0

Death
Yes 14 58.3

No 10 41.6

We applied cut-off values to categorize the continuous tumor bud values for clinical
decision making. For the tumor bud counts in the manually selected hotspots, we used
the ITBCC (H&E) cut-off values. We applied the median as a cut-off value for the fully
automated assessment. For Shannon’s entropy, we also applied the median value as
a cut-off value.

3. Results
3.1. Detection Model Performance

The four different AI models were assessed on 613 tumor bud/non-tumor-bud can-
didates extracted from dataset dev-t. For these 613 candidates, we can only identify true
positives and false negatives, resulting in a sensitivity score. Given the nature of the dataset
and the training method, we have many detected objects without a reference label, which
we cannot identify as true/false positives. Because of this, we cannot calculate a specificity.

The DenseNet model obtained the highest sensitivity score from the teacher models
(0.83). The teacher faster R-CNN model scored worse, with a value of 0.47. All student
models reached a higher sensitivity compared to the teachers’ networks. The student faster
R-CNN model performed the best with a score of 0.91. The student DenseNet obtained
a score 0.87. An overview of the different scores can be found in Table 3. The results of the
different models are depicted in Figure 3.
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Table 3. Sensitivity scores of different teacher and student models on dataset dev-t. The overall best
performing model was highlighted.

Model Sensitivity

Teacher
DenseNet 0.83

Faster R-CNN 0.47

Student
DenseNet 0.87

Faster R-CNN 0.91

Figure 3. Model output on (A) tumor bud and (B) no tumor bud. The pixels in green/blue indicate
the automatically predicted tumor bud/non-tumor-bud regions. The reference standard labels are
related to the object in the center of the image.

3.2. Automatic vs. Manual Tumor Bud Count

The faster R-CNN student network was applied to the n = 240 slides of dataset eval,
which had already been provided with the hotspot location and corresponding tumor
bud count by an expert, conforming to the ITBCC protocol. We compared the manually
obtained tumor bud counts with the automatically detected tumor bud numbers from the
same hotspot area location using the Pearson correlation coefficient (Figure 4). The faster
R-CNN network showed a correlation of 0.72 with the manually detected tumor buds. The
network detected an average of 30% more tumor buds than the expert (Figure 5B).
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Figure 4. Manual selected hotspots with the automatic detections as overlay: (A) manual count: 13,
automatic count: 17; (B) manual count: 20, automatic count: 15; (C) manual count: 23, automatic
count: 86; (D) manual count: 24, automatic count: 72.

Figure 5. (A) Examples of a density heatmap generated based on the automatic tumor bud detections;
(B) correlation between the manual tumor bud counts in the manual hotspot and the automatic count
in the same hotspot; (C) Manually selected hotspots (green) vs. automatic hotspots (red). (A) cases
with overlap; and (D) cases with no overlap.
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3.3. Automatic vs. Manual Hotspot Detection

We found that the manually selected hotspot areas corresponded in 48% of the WSIs
with the top three of the automatically chosen areas, in 72% of the cases with one of the top
ten of these areas and in 28% of the cases with none of the automatically generated hotspots
Figure 5C,D. Examples of density maps used for the hotspots can be seen in Figure 5A.

3.4. Survival Analysis

No relationship was observed between the budding (assessed either visually or by
the automated method) and the overall survival (HR = 1.06; p = 0.06 and HR = 1.03;
p = 0.31, respectively) in univariable Cox regression in the manually selected hotspots. A
hazard-ratio of 1.56 (p = 0.55) was found with the fully automated method. Shannon’s
entropy over the density maps resulted in a hazard ratio of 3.96 (p = 0.03). The multivariate
analysis resulted in hazard ratio values of 1.07 (p = 0.05), 1.02 (p = 0.63), 1.63 (0.61), 3.96
(p = 0.06) for the manual count, automatic count in the same hotspot, fully automated
method, and Shannon’s entropy, respectively.

4. Discussion

Tumor budding is a well-established prognostic feature in CRC in several clinical
settings [2]. Despite substantial evidence, tumor bud assessment is still not part of rou-
tine clinical practice. One of the main contributing factors is intra-observer variability;
agreement on the individual tumor buds in IHC is only moderate. To overcome this, we
focused on developing an algorithm for TB detection in IHC-stained WSIs. The data [5]
have shown the vital role of IHC in clinical practice to identify the tumor buds in difficult
regions. Therefore, we envisioned the role of the proposed method as a support tool for
both research and clinical practice, potentially as a complementary system to increase the
efficiency and reproducibility of TB scoring.

One of the essential elements for developing a deep learning network is a large and
high-quality labeled dataset, which is often difficult to obtain. To overcome this limitation,
we propose leveraging a large set of pseudo-labeled data using a semi-supervised learning
technique referred to as the teacher–student approach in this paper. Using this technique,
we showed that, across the board, all student methods obtained a higher performance
compared to their teacher counterparts (Table 3), which shows the potential of using pseudo-
labeled data, which could improve the robustness. Additionally, this method allows us to
train detection networks that typically need the exhaustive manual annotations of objects
to detect during training. Because the quality of the pseudo-labeled data might be lower,
a ‘human in the loop’ approach could be used to overcome this.

In line with the described semi-supervised method, two different networks (faster
R-CNN and DenseNet) were trained as teacher models and subsequently the same types
of networks were trained on the output of the best teacher. DenseNet was chosen as it
is trained as a patch classifier that is unaffected by sparse annotations. Our results show
that it indeed outperforms the faster R-CNN network as a teacher. The lower performance
of DenseNet after training on the extended dataset may be related to its lower output
resolution, an inherent limitation in this model that results in overlapping objects. Since we
are using IHC-stained slides, this can be solved by multiplying the DenseNet output with
the CK-positive channel of the image. However, this approach would move the problem to
an accurate separation of signals (i.e., hematoxylin and DAB) in immunohistochemistry,
potentially introducing additional noise (i.e., when the stain is weak) and is therefore
suboptimal. As a detection network, we selected faster R-CNN because of the higher
performance compared to other, faster popular detection networks, such as SSD [15].
However, for smaller objects, such as tumor buds, SSD performs significantly worse than
faster R-CNN [21]. As speed was not our primary concern, we opted for faster R-CNN.
This allows us to process the entire whole-slide image in approximately six minutes.

Typical detection networks, such as faster R-CNN, are less suited for training on
sparse annotated data. The DenseNet performed better in the teacher training, but in the
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student training of the two networks on the full, pseudo-labeled dataset, the faster R-CNN
detection network had the highest sensitivity of 0.91. Bergler et al. [10] achieved a similar
sensitivity (0.93) with a hybrid method; in a first step, all cytokeratin-positive objects are
selected, followed by a CNN in a second step to identify the true tumor buds. An inherent
problem of this hybrid method is the hypersensitivity to stain variation. With our one-step
approach, we can achieve greater robustness against these stain variations.

In the training set of the student networks, artifacts (such as cytokeratin remnants)
are likely present as negative examples, which can improve the robustness of the model,
and therefore make it capable of dealing with the multiple sources of noise that can be
found in the images. In the current versions of all networks, but to a greater extent with the
student models, there is an increase in false-positive classification at the large necrotic tissue
parts, as we have not specifically trained in these areas. Other methods have specifically
excluded these kinds of regions. With our approach, this could be addressed by adding
examples with the manual annotations of necrotic tissue to the dataset, which were not
available in this study.

The developed network can be directly applied to a WSI, without pre-processing
(i.e., selecting a specific region-of-interest). Since the spatial distribution of tumor budding
is important, our approach allows larger areas to be scored, something that was not possible
with visual assessment, which might give insights in tumor heterogeneity. To investigate
this, we calculated the entropy values on the machine-detected TB in the whole slide images
(density maps) and found the highest impact with the patient survival data here with the
single (median) cut-off value of 0.77. Future work on the spatial relationship of tumor buds
should provide more insight in tumor heterogeneity. We graphically displayed the human
and machine-produced TB counts per hotspot in Figure 5B, illustrating a deviation from the
expert scoring starting in the presence of more than 20 TB per hotspot. We hypothesize that,
because of the increased density, counting becomes more complicated for the pathologist,
who might ignore doubtful TB and difficult areas (e.g., near ruptured glands, as shown
in Figure 4C,D). The upper limit of 10 TB in the current ITBCC scoring system also might
lead to higher discrepancy between the algorithm and a pathologist in case of many TB.
Despite the fairly strong correlation (see Section 3.3), the TB counts of the student faster
R-CNN network within the hand-selected areas from the dataset are on average 1.3 times
higher than the numbers reported by the expert. A previous study [22] showed significant
discrepancy between the human observers, with a variation between pathologists of up
to 1.8 times—the number of TBs within the same hotspot. The observed variation with
the algorithm is thus in line with human interobserver variability. Other algorithms [4]
based on CK-positive objects detected approximately 2.5 times more buds than with a
manual count.

A good match was found between the network-selected top 3 and the expert-selected
hotspots in almost half of the number of the test images, and approximately three of
the four hand-selected hotspots matched at least 1 of the ten automatically generated
samples. Where no overlap was found, we see cases where the algorithm selects locations
in the main tumor mass, where manually selected hotspots are located in the invasive
front area in accordance with the ITBCC guideline. Although the prognostic significance
of intratumoral TB is uncertain, Pai et al. [23], in a recent study, found almost equal
associations with outcome data for WSI segmented proportions TB/PDC (taken as one
feature) in the tumor edge region and for the TB/PDC proportions in the main tumor mass,
suggesting that there is also a role for intratumoral TB/PDC. Other reasons for these ‘full
mismatch’ cases are that these are caused by the poor images quality, for example, artifacts
as a result of mechanical processing, which should be avoided with better quality control
(see Figure 5C,D). Observer variability in hotspot selection was not considered in this study.
Further research should determine whether this variability is reduced when pathologists
are presented with a TB density map, as shown in Figure 5A. Using the clinical data of a
small group of patients, we investigated the relationship between the outcome and tumor
buds on survival. We found that all methods (manual and automatic) show a similar effect
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on survival based on the measured amount of tumor buds. Large, multicenter validation
studies can now commence in order to determine the validation before the implementation
of this algorithm.

5. Conclusions

We developed a fully automatic TB detection system that obtained high correlation
with manual TB assessment. With a view to possible clinical application, it could primarily
be used for the selection—and therefore also registration—of the hotspot location, which
could already partly solve the problems with reproducibility. The automatic detection
of TB at the WSI scale makes it possible to determine and further investigate promising
indicators, such as entropy values derived from TB numbers as a biomarker, especially
since we made the model publicly available for research use.

6. Code Availability

The faster-RCNN student model is available for research use on https://grand-
challenge.org/algorithms/colon-budding-in-ihc/, accessed on 1 February 2023).
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