polis with a major sanctuary. In this respect, Aphrodisias presents the anything but unique case of a community named after the major deity it worshipped, gradually appropriating the myths and properties of the patron goddess, and exploiting them for the construction of an identity and the endorsement of diplomatic enterprises. Exceptional in the case of Aphrodisias is only the wealthy source material that permits a better study of this phenomenon from the early first century B.C. to Late Antiquity. The role played by Aphrodite in the civic life, self-representation, and collective memory of the Aphrodisians is evident in the epigraphic material summarized in this paper (the ideological connotations of Aphrodite’s epithets and attributes, the position of priesthoods in the civic cursus honorum, benefactions and festivals, the association of Aphrodite with other divinities and divine personifications, references to Aphrodite in documents concerning the history of the relations between Aphrodisias and Rome, and personal names inspired by Aphrodite and her myths). The prominent position of Aphrodite in the civic ideology of “her city” should be seen in the context of the latent rivalries between Aphrodisias and her neighbors, as a study of similar phenomena in other Carian cities may show. The close association of these civic communities with a single local divinity and the ostentatious commemoration of traditions related to their patron deity enabled them to strengthen their identity and to accentuate their individuality in an era of cosmopolitanism.

SESSION IIIA: COLLOQUIUM: WATER USE IN THE ANCIENT CITY

GEOLcGICAL DIFFERENCES IN ANCIENT WATER SUPPLY: SYRACUSE AND AGRIGENTO: Dora P. Crouch, Rensselaer Polytechnic Institute

The cities of Syracuse and Agrigento are similar, being founded in Archaic times and located at coastal sites that began with trade posts (emporia) and grew by the fifth century B.C. into very extensive cities. Yet in some crucial ways they are different, and those differences relate very strongly to the geology of the two sites. Both locations have karst shafts and channels, but the kind of rock has made important differences in longevity of the channel systems and their suitability as long-distance water lines. Both occupy saucer-shaped terrain, but that of Agrigento is much more steeply tilted.

The stone at Syracuse is two kinds of limestone, the upper one being relatively soluble. This has meant that karst channels have cut through the limestone, in some cases along fault lines, creating the openings that became Classical Greek aqueducts and Early Christian catacombs.

In Agrigento similar passages were first cut by water dissolving stone and later by humans enlarging the openings. The water channels known from the work of Schubring (1860s) and Arnone (1940s) are aligned with the geological discontinuities of the site, indicating that the human builders utilized natural features when building the water drainage system. The stone at Agrigento, however, is weak calcarenite. Therefore, the site is more susceptible to earthquake and landslide damage.

IMPERIAL WATER PIPES IN ROMAN CITIES: Christer Bruun, University of Toronto

Frontinus writes that about 17% of the water that reached Rome was distributed sub nomine Caesaris (Aq. 78), the rest being delivered to a small number of privileged private users and for the public at large (usilus publicus). Frontinus’ information can be verified from numerous stamps on Roman lead water pipes (fistulae), which mention Roman emperors. The amount of water that was reserved for the emperor and the court seems disproportionately large. Or was it? What was meant by the phrase sub nomine Caesaris? Was this portion intended wholly for the personal use of the emperor and the court, or was water distributed "under the emperor’s name" to other destinations as well? Archaeological evidence proves that the latter could be the case; the large public Baths of Trajan, e.g., were undoubtedly supplied by water pipes bearing the name of the emperor Trajan.

This paper investigates whether one can establish a public destination for other imperial water pipes in Rome and elsewhere. I have collected, with some omissions, the inscriptive evidence from lead pipes for Rome and the rest of the empire (Ostia, Lugdunum, Syracuse, etc.) and argued that also the Castra Praetoria received water sub nomine Caesaris. Many other stamps still need to be analyzed in regard to content and archaeological context. This investigation also concerns general questions of imperial policy: upon what social groups and purposes did the emperor in Rome put a high value; in which cities is there an imperial involvement in the distribution of water?

WATER USE IN PRIVATE BATHS AT POMPEII: Nathalie de Haan, Catholic University, Nijmegen

Ancient Pompeii contains at least 28 houses with a private bath suite, a number which is far higher than previously known. This paper explores the use of water in these private baths. First, I focus on a set of "practical questions" and the archaeological evidence for solutions: how did the house owners provide their baths with water? How did they get rid of the waste water? How was water heated for the bathing tub in the caldarium?

The demand for water depended on the size of the private baths and on the facilities offered. I can now distinguish three groups of private baths based on their need for water. Furthermore, there is a direct link between the building of the so-called Serino aqueduct in Campania in the Augustan period, which presumably also branched off to Pompeii, and the increase in construction of private baths in the last decades of the first century B.C. Only from this period on did the more lavish private bath suites come into use, with a corresponding greater demand for water. For such baths, which are sometimes equipped with an open air piscina, tap water was a conditio sine qua non. Finally, consideration of the private baths in Pompeii contributes significantly to the ongoing debate about the ex-
Water Pipe Systems in the Houses of Pompeii: Distribution and Use: Gemma C.M. Jansen, Catholic University, Nijmegen

Although Roman aqueducts have been researched for many years and recently the distribution of the main water lines has been investigated in various ancient cities, no attention has been paid to the layout, distribution, and function of the water pipe system inside private houses and to the question of what water was used for inside these houses. Pompeii, with its well-excavated houses, offers good opportunities for such an exploration.

During the last few years these unstudied aspects of the water supply system at Pompeii have been the focus of researchers from the University of Nijmegen and engineers from the Technical University of Delft. Because only a few lead pipes have remained in situ, together with some bronze fittings and metal detectors, we have been able to obtain a clear picture of the whole system. However, on the basis of small indications (e.g., indentations in the tufa impluvia) and with the help of metal detectors, we have arrived at a reconstruction.

This paper presents the separate elements of the internal network and places them in the context of the pipe system in the house as a whole. I also discuss how the pipe system operated. The reconstruction reveals to what parts of the house the water was directed and for what it was used: to supply the fountains, as drinking water, and for domestic uses.

Urban Water Storage, Distribution, and Usage in Roman North Africa: Andrew Wilson, Institute of Archaeology, Oxford University

Models of Roman urban water distribution are usually based on the well-preserved evidence for urban water supply from Pompeii and the literary evidence of Frontinus for Rome, and Roman aqueducts are generally assumed to have worked on the principle of constant offtake. Data from North Africa, however, suggest different arrangements for urban water supply networks in this region of unpredictable rainfall.

Examination of large aqueduct-fed cistern complexes in North Africa reveals a range of functions—sealing tanks, regulating reservoirs, and as storage chambers to which people might resort to draw water through openings in their vaults. Abundant evidence for sluices and stopcocks suggests the creation of reserves to balance supply against demand and to cope with drought.

Water distribution networks frequently lack intermediate pressure towers, and at some sites (Volubilis and Timgad) users drew water directly from the main conduit without a distribution castellum. Evidence from Volubilis and Djenina suggests the use of stopcocks to switch supply on or off at the point where it enters a house.

Different qualities of water were rationally used for appropriate purposes, with poorer quality water used for industrial processes or watering gardens, and better water reserved for drinking. Combined use of wells, cisterns, springs, and aqueducts with reservoir complexes suggests a multifaceted approach to the risk of drought.

Templum Pacis: The Surviving Architecture Reconsidered: James Packer, Northwestern University

Two fundamental articles publish the excavated antiquities of the Forum of Peace in Rome: BullCom 15 (1937) 7–40; BullCom 86 (1956–1958) 119–42. Only a limited number of other relevant materials survive in the city archives of Rome—although measurements on the original drawings render legible the occasionally indecipherable reproductions of the published versions. Examination of these figures and the other existing evidence thus suggests an explication and revision of the famous Colinigissomondi reconstruction of the complex.

The high stone wall around the Templum Pacis resembled that of Augustus's Forum. The east and west Corinthian colonnades had red granite shafts, high attics, flat roofs, and aedicula. Behind each were two rectangular recesses (the northeast one built into the medieval Tor deConti). The unfluted African colonnacens on the north side of the Forum were probably the prototypes for the neighboring "Colonnacee" in the Forum Transitionorum.