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A B S T R A C T

Screening of lymph node metastases in colorectal cancer (CRC) can be a cumbersome task, but it is
amenable to artificial intelligence (AI)-assisted diagnostic solution. Here, we propose a deep learning
ebased workflow for the evaluation of CRC lymph node metastases from digitized hematoxylin and
eosinestained sections. A segmentation model was trained on 100 whole-slide images (WSIs). It
achieved a Matthews correlation coefficient of 0.86 (±0.154) and an acceptable Hausdorff distance of
135.59 mm (±72.14 mm), indicating a high congruence with the ground truth. For metastasis
detection, 2 models (Xception and Vision Transformer) were independently trained first on a patch-
based breast cancer lymph node data set and were then fine-tuned using the CRC data set. After
fine-tuning, the ensemble model showed significant improvements in the F1 score (0.797-0.949; P
<.00001) and the area under the receiver operating characteristic curve (0.959-0.978; P <.00001).
Four independent cohorts (3 internal and 1 external) of CRC lymph nodes were used for validation in
cascading segmentation and metastasis detection models. Our approach showed excellent perfor-
mance, with high sensitivity (0.995, 1.0) and specificity (0.967, 1.0) in 2 validation cohorts of
adenocarcinoma cases (n ¼ 3836 slides) when comparing slide-level labels with the ground truth
(pathologist reports). Similarly, an acceptable performance was achieved in a validation cohort (n ¼
172 slides) with mucinous and signet-ring cell histology (sensitivity, 0.872; specificity, 0.936). The
patch-based classification confidence was aggregated to overlay the potential metastatic regions
within each lymph node slide for visualization. We also applied our method to a consecutive case
series of lymph nodes obtained over the past 6 months at our institution (n ¼ 217 slides). The
overlays of prediction within lymph node regions matched 100% when compared with a microscope
evaluation by an expert pathologist. Our results provide the basis for a computer-assisted diagnostic
tool for easy and efficient lymph node screening in patients with CRC.

© 2023 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy
of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
Introduction
The Tumor-Node-Metastasis staging system, defined by the
American Joint Committee on Cancer, is a prognosis-prediction
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factor and a determining factor in decisionmaking for stage-based
therapeutic strategies in patients with colorectal cancer (CRC). N-
staging of a patient with CRC is determined by the number of
metastatic lymph nodes, which includes the presence of micro-
metastases, ranging in size from 0.2 to 2.0 mm.1 A minimum of 12
lymph nodes need to be assessed, but the number of lymph nodes
actually resected can often exceed 50. Therefore, the histologic
evaluation of lymph node metastasis in patients with CRC can be
laborious and would benefit from artificial intelligence (AI)-assis-
ted workflow,2 as already implemented for breast and gastric
cancer.3-5 A superviseddeep learningmethod requires annotations
of tumor regions onwhole-slide images (WSIs) for training, which
can be intensive and time consuming for pathologists. Multiple
instance learning and end-to-end training with annotation-free
WSIs have shown better performance without any regional anno-
tation requirements.6,7 To train such pipelines and achieve
reasonable performance requires thousands of WSIs, with global
slide labels of “positive” and “negative,” which is not practical.

In this study,wesought todevelopanAI-basedscreeningmethod
for lymphnodemetastases in CRCusing amore feasiblemethod.We
used the former methods based on regional annotation, but instead
of performing a vast amount of regional annotations, we trained
deep learningmodels on apubliclyavailable data set of lymphnodes
from breast cancer cases.8,9 Using transfer learning to fine-tune the
models on a few WSIs (n ¼ 14) from CRC lymph node tissues, we
achieved exceptional performance in multiple validation cohorts.
Our workflow consisted of 3 parts: first, a segmentation model
trained to segment the lymph node tissues and, second, a convolu-
tional neural network (particularly, Xception), and a Vision Trans-
former (ViT16),first trainedonabreast cancerdata set and thenfine-
tuned using a CRC data set. On training, both models were used to
create an ensemble model to detect metastases in each segmented
lymph node region. Third, the cascaded model’s workflow
segmented the lymph node, classified the WSI as “positive” or
“negative,” and eventually generated overlays of the potential met-
astatic regions for further evaluation by experts.
Materials and Methods

Data Sets

For the 2main tasks (lymph node segmentation andmetastasis
detection), 7 different data sets with hematoxylin and eosin (HE)e
stained slides were used as summarized in Table 1; these included
3 data sets for model training and development and 4 indepen-
dent validation cohorts. For the segmentation model develop-
ment, 100 WSIs of lymph node regions from 14 patients with CRC,
annotated by 2 expert pathologists (A.B., F.M.), were used. We will
refer to this data set as LnSegment throughout the article.
Table 1
Seven different types of data sets used in this study to develop and validate the colorect
patients with CRC, except for the PatchCamelyon data set, which is from patients with

Model type Data set Image type No. of patients

Lymph node segmentation LnSegment WSIs 14

Metastasis detection PatchCamelyon Tiles d

PatchCRC Tiles 5

Internal cohort 1 WSIs 298

Internal cohort 2 WSIs 34

Internal cohort 3 WSIs 16

External cohort WSIs 400

WSIs, whole-slide images.

2

To develop a metastasis detection model, the PatchCamelyon
tiles from lymph nodes in breast cancer cases, extracted from the
Camelyon16 challenge data set, were used.5,8 PatchCamelyon data
set had 327,680 tiles, of size 96 � 96 pixels, from normal and
tumoral lymph node tissue. Within each tumor tile, the central
32 � 32 pixels contained at least 1 tumor pixel. Similarly, the
PatchCRC data set was constructed, which consisted of the normal
and tumoral regions within the lymph nodes of 5 patients with
CRC, annotated by 2 expert pathologists (A.B., F.M.). Those anno-
tated regions were used to extract 53,814 patches of the same size
as PatchCamelyon. The PatchCRC was used to fine-tune the
metastasis detection model. In addition, 4225WSIs consisting of 4
independent cohorts from the internal patient repository (Insti-
tute of Tissue Medicine and Pathology, University of Bern,
Switzerland) and an external center (Department of Pathology,
Radboud University Medical Centre, Netherlands) were used to
validate the deep learning workflow. The external validation
cohort contained mostly metastatic slides from patients with
stage 3 CRC, whereas the internal cohorts were scanned regardless
of patient stage and included both metastatic and normal slides.
Internal cohort 1 consisted of 2803WSIs (metastatic: 609, normal:
2194) from 298 patients with CRC. The external validation cohort
contained 1033 WSIs (metastatic: 1019, normal: 14) of 400 pa-
tients with CRC. Both internal cohort 1 and the external cohort
contained adenocarcinoma cases of no special type. Additionally,
internal cohort 2 contained 172 WSIs of mucinous adenocarci-
noma and signet-ring cell carcinomas (metastatic: 94, normal: 79)
from 34 patients. Similarly, a consecutive case series of 217 WSIs
(metastatic: 23, normal: 194) from 16 patients with CRC, regard-
less of histologic subtypes, diagnosed within the last 6 months,
were acquired to form internal cohort 3, which was used to vali-
date the workflow in clinical settings. In the validation cohorts,
the slides with a pathologist’s report of the presence of any met-
astatic cancer cells were labeled as “positive” and slides without
any reported metastases were labeled as “negative.” All above-
mentioned data sets (except PatchCamelyon) were scannedwith a
Pannoramic P1000 digital slide scanner (3DHistech) at 40�
magnification (ie, 20� objective magnification and 2� aperture
boost), with a 0.243-mm pixel resolution. The validation WSIs
contained lymph node tissues; 1 slide with no lymph node tissue
was discarded.

Model Development

The complete deep learning methodology followed in this
study is shown in Figure 1. In the first step, the segmentation
model (UNet) was trained using the LnSegment data set to
segment the lymph node tissue on each WSI using 5-fold cross-
validation.10 In the next step, 2 neural network models, Xception
and ViT16, were independently trained on the PatchCamelyon
al cancer (CRC) lymph node metastases-detection workflow. All data sets are from
breast lymph nodes

Lymph node type No. of tiles/WSIs Tile size (pixels) Model operation

Colon 100 d Training

Breast 327, 680 96 � 96 Training

Colon 53, 814 96 � 96 Fine-tuning

Colon 2803 d Validation

Colon 172 d Validation

Colon 217 d Validation

Colon 1033 d Validation



Figure 1.
The deep learning workflow for colorectal cancer (CRC) lymph node quantification consisting of 3 main tasks. In the first task (A), the segmentation model (UNet) is trained using
the LnSegment data set to segment the lymph node tissue fragment on each whole-slide image (WSI) using 5-fold cross-validation. In the second task (B), 2 neural network
models, Xception and Vision Transformer (ViT16), are independently trained on PatchCamelyon (a publicly available breast cancer lymph node data set) for a positive and
negative tissue classification task, by initializing them on ImageNet weights for a long training cycle and are then fine-tuned on a PatchCRC data set for a short cycle. Once these
models are successfully trained, they are validated on the corresponding test data set, where the average outcome of both models is used to generate the final probability per tile.
In the third task (C), by cascading both segmentation (A) and metastasis detection models (B), validation is performed. Each WSI in the validation cohorts is first passed through
the segmentation model (A) to segment the lymph node tissues. Each segmented tissue is then split into 96- � 96-pixel tiles and passed to the metastasis detection model (B) to
obtain the per-tile probability. The most probable tiles, with a class score of 85% or higher and with the absence or presence of more than 2 such connected tiles, are used to
define the slide-level label as negative or positive, respectively. Finally, the per-tile probability within each tissue fragment is used to aggregate the overlays on WSIs in QuPath
(as shown in red).
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data set for a positive and negative tissue classification task, by
initializing them on ImageNet weights for a long training cycle,
and were then fine-tuned on the PatchCRC data set for a short
cycle.11,12 Once these models were successfully trained, they were
validated on the corresponding test data set, where the average
outcome of both models was used to generate the final probability
for each tile. In the final step, cascading both segmentation and
metastasis detection models, validation was performed in large
cohorts of lymph node WSIs from patients with CRC. Each WSI in
the validation cohort was passed through the segmentationmodel
to obtain the lymph node tissue. Each segmented tissue fragment
was then split into tiles and fed to the metastasis detection step to
obtain a per-tile probability. In the absence or presence of more
than 2 connected tiles, with a class probability higher than a given
threshold, the slide-level label was defined either as negative or
positive, respectively. Finally, the per-tile probability within each
tissue fragment was added to the aggregated overlays associated
with WSIs in QuPath.13 The following subsections will explain the
model training and validation steps in detail.
Segmentation Model Training

Precise lymph node segmentation is a critical factor in proper
metastasis detection. The segmentation model training was
derived from our recent study on the impact of scanner variability
on lymph node segmentation and generalizing such models on
3

WSIs from different scanners.14 We rescanned 100 glass slides of
CRC lymph nodes by using 4 different scanners from 3 different
vendors. Digitized WSIs were annotated by 2 experienced pa-
thologists for lymph node regions (ie, the LnSegment data set). We
performed extensive and systematic experiments to evaluate the
impact of scanner variability and generalizability of lymph node
segmentation methods.10,15-17 To cope with performance vari-
ances, we evaluated various stain normalization approaches by
creating reference mosaic images from the foreground and back-
ground regions of lymph node WSIs.18-21 Similarly, domain
generalization techniques, such as stain mix-up, domain adver-
sarial learning, and fine-tuning were evaluated to generalize the
segmentation methods.14,22,23

The workflow of the lymph node segmentation method is
shown in Figure 1A. From eachWSI in the LnSegment data set, the
first 20� magnification images were obtained and subsequently
downscaled by a factor of 64, to allow them to fit intomemory. The
corresponding ground truth annotations were similarly down-
scaled. To train the UNet, the downscaled WSIs were rescaled
further to fit the network. To evaluate the method across all
samples, the LnSegment data set was divided into training (n ¼
80) and test (n ¼ 20) sets by using 5-fold cross-validation. To
minimize overfitting, the training samples were augmented
mainly using methods that could imitate data sets from different
sources, such as using contrast and stain variations as described in
Table 2.24-29 The network was trained for 200 epochs with a
learning rate of 1 � 10�3 which was reduced by a factor of 0.1 on



Table 2
Different data augmentation strategies and training specifications used during the development of segmentation and metastasis detection models

Data augmentation and training
specifications

Segmentation model Metastasis detection Model

Xception ViT16

Flipping horizontal and vertical ✓ ✓ ✓

Rotation 7 (0�-45�) (0�-90�)

Shifting 7 7 (0%-2%)

Scaling 7 7 (0%-2%)

Brightness change Multiplying by a factor [0, 0.75] and
adding a constant between 0 and 1524

7 7

Stain augmentation By RGB to HED and using linear contrast
between 0.5 and 0.224,25

By Staintools StainAugmentor
(method ¼ Macenko, s1 ¼ 0.2, s 2 ¼ 0.5)18,26

By RGB to HED and using linear
contrast function with a factor
between 0.2 and 0.319,24

Elastic transform 7 (a ¼ 1, s ¼ 3, affine ¼ 1, interpolation ¼ 1)27 7

Contrast change 7 Contrast limited adaptive histogram
equalization (clip limit ¼ 7.0, tile grid
size ¼ [8,8])27

7

Rescaled input size (pixels) 512 � 512 150 � 150 224 � 224

Input intensity normalization Between 0 and 1 Between �1 and 1 Between 0 and 1

Loss function Binary cross-entropy Binary cross-entropy Sparse categorical
cross-entropy

Optimizer Adam28 Adam28 Adam with weight decay29
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reaching a plateau. In the postprocessing step, the binary mask
was obtained by including the pixels with a probability higher
than 50%. The binary mask was refined further by using a condi-
tional random field30 and dilatedwith a filter of size 5� 5 pixels to
maximize it beyond the capsular sinus regions for the metastasis
analysis in the next step.
Metastasis Detection Model Training

We anticipated that tumor and normal regions from both
breast and CRC lymph nodes would have similar morphology
when considering a small, tiled region. However, the data sets may
also have differences owing to varied staining and scanning con-
ditions. Therefore, to fit the model to the new data set, we used a
transfer learning approach,31-33 where we established a model on
a largely annotated and publicly available data set from a different
tissue type (breast cancer lymph nodes) and then retrained it with
a new, small, annotated data set (CRC lymph nodes), to account for
any differences. As shown in Figure 1B, first, we independently
trained Xception and ViT16 neural networks on the PatchCa-
melyon training set for a tumor and normal tissue classification
task, by initializing them with ImageNet weights. Both models
were slightly modified by introducing resizing, preprocessing, and
dropout layers. For the Xception model, the input size was resized
by the preprocessing layer using the bilinear interpolation
method, and pixel values were scaled per sample to allow the use
of ImageNet weights for the initialization (Table 2). After global
average pooling and before the final output layer, a 50% dropout
was used to prevent potential overfitting. Initially, the Xception
model was trained for 5 epochs on a batch size of 256 by freezing
all of the layers containing the ImageNet weights, with a learning
rate of 1 � 10�3. The whole model was then trained by unfreezing
the ImageNet weight layers for another 25 epochs, with the same
batch size, but with a lower learning rate of 1� 10�5. Similarly, for
ViT16 training, the input was resized, and pixel values were
normalized with respect to the ImageNet data set, by resizing and
preprocessing layers, respectively. The model was trained for 30
epochs on a batch size of 64 by using a learning rate and a weight
decay factor of 2 � 10�6 and 5 � 10�7, respectively. In ViT16, each
4

input sample of 224 � 224 pixels was divided into 196 small
patches, called visual tokens, with each token having the size of
16 � 16 pixels. To learn different features on the same training
data set, different augmentation strategies were used for the 2
models. The data augmentation methods and other training
specifications for both Xception and ViT16 are presented in
Table 2. During the training iterations of both models, only the
weights with the best validation performance were saved.

On completion of the training cycle on PatchCamelyon, the
best-validated weights from both Xception and ViT16 models
were used to fine-tune the training set of PatchCRC. In the fine-
tuning cycle, all abovementioned parameters described for each
model remained the same, except that both models were trained
up to 15 epochs on the new data set (22,269, 16,770, and 14,775
tiles for training, validation, and testing, respectively). After the
fine-tuning step, the outcome of each model was combined by
averaging the probabilities to obtain the score per tile. Finally, the
performance on the corresponding test sets before and after
creating an ensemble model was reported.
Validation and Visualization

On successful training and testing of both segmentation and
metastasis detection models on the corresponding training and
test data sets, they were cascaded into a validation workflow
(Figure 1C). In the first step, each WSI from the validation co-
horts was passed through the segmentation model to obtain
the lymph node tissue fragments. Each segmented region was
then divided into 96 � 96 pixels tiles to pass over to the
metastasis detection model to obtain the per tile probability for
a tumor or normal class. In every WSI, each segmented lymph
node tissue was screened to find more than 2 connected tiles,
each with a probability of 85% or higher. In the presence or
absence of such a single region, the slide was marked as posi-
tive or negative, respectively. These predicted slide labels were
compared with ground truth labels provided by pathologists to
report the final score per validation cohort. To visualize the
potential metastatic areas within each lymph tissue fragment
on a positive WSI, a heat map was generated for each WSI by
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aggregating the per-tile probability. During the inference, the
information about the coordinates of the lymph node tissue,
per-tile probability, and corresponding coordinates within each
tissue were exported into a standard comma-separated value
(CSV) file for each WSI. The CSV file was then imported to the
QuPath project, where all processed WSIs were already set up.
Using a Groovy script (ie, the standard scripting language used
in QuPath), the CSV file information was used to generate
overlays or heat maps. These overlays were useful to assess the
potential metastatic regions within each lymph node tissue
visually.
Performance Evaluation

The lymph node segmentation model was quantified using 2
metrics: Matthews correlation coefficient (MCC)34,35 and the
Hausdorff distance (HD).36 The MCC between the ground truth
and segmented labels was calculated as follows:

MCC¼ TP � TN � FP � FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð1Þ;

where TP is the number of true positives, TN is the number of
true negatives, FP is the number of false positives, and FN is the
number of false negatives. MCC ranges between �1 and þ1,
where þ1 represents a perfect prediction, 0 an average random
prediction, and �1 an inverse prediction, when compared with
the ground truth. Boundary differences were measured using
the HD. HD calculates the maximum Euclidean distance from all
minimum distances between the boundaries of ground truth
(A) and the boundaries of the segmentation region (B), as
follows:

HDðA;BÞ¼maxðhðA;BÞ; hðB;AÞÞð2Þ;

where h(A, B) is the directed HD, based on the following equation:

hðA;BÞ¼maxa2A minb2B k a� b k ð3Þ;

where ka� bk represents the Euclidean distance. The HD between
2 perfectly overlapping boundaries is equal to zero. Expected
ranges of HD for good, acceptable, and bad scores could be <100
mm, 100-150 mm, and >150 mm, respectively.14 Similarly, for eval-
uating our metastasis detection model, we used a weighted F1
score, the area under the receiver operating characteristic curve
(AUROC), sensitivity, and specificity. For statistical analysis, the
Wilcoxon signed-rank test was used.37
Table 3
The results of lymph node segmentation and metastases detection (ensemble) model w
such as MCC, HD, AUROC, F1 score, sensitivity, and specificity

Model type Data set MCC (±SD)

Lymph node segmentation LnSegment 0.860 (±0.15

Metastasis detection PatchCamelyon d

PatchCRC (without fine-tuning) d

PatchCRC (with fine-tuning) d

Internal cohort 1 d

Internal cohort 2 d

Internal cohort 3 d

External cohort d

MCC, Matthews correlation coefficient; HD, Hausdorff distance; AUROC, area under the

5

Results

The results obtained in different experiments, using various
test and validation data sets, as evaluated using metrics such as
MCC, HD, AUROC, F1 score, sensitivity, and specificity, are pre-
sented in Table 3.
Lymph Node Segmentation

As an initial step in this study, the UNet model was trained on
the LnSegment data set to segment the lymph node tissue on
WSIs. We evaluated the trained UNet model using 5-fold cross-
validation and achieved an MCC score of 0.86 (±0.154) and
boundary losses (HD) of 135.59 mm (±72.14 mm).14
Metastasis Detection

For metastasis detection, the Xception and ViT16 models
were independently trained on PatchCamelyon and fine-tuned
on PatchCRC data sets. The results of both training and fine-
tuning cycles and of the ensemble model, along with AUROC
curves, are presented in Figure 2. The Xception model achieved
AUROC and F1 scores of 0.968 and 0.902, respectively, when
evaluated on the PatchCamelyon test set. Likewise, when the
ViT16 model was assessed on the same test set, it yielded an
AUROC and F1 score of 0.962 and 0.891, respectively. The
Xception and ViT16 models showed statistically significantly
different performance on the same test samples (P <.00001).
Therefore, their ensemble model showed slightly improved
AUROC and F1 scores (0.974 and 0.910, respectively) when
compared with the Xception (P ¼.012) and ViT16 (P <.00001)
models alone (Fig. 2A).

When tested on the PatchCRC data set, the Xception, ViT16, and
ensemble model trained on the PatchCamelyon data set attained
AUROCs of 0.949, 0.958, and 0.959, respectively, and F1 scores of
0.775, 0.799, and 0.797, respectively (Fig. 2B). The ensemblemodel
did not show statistically significantly improved performance
when compared with the ViT16 (P ¼.673) model on the PatchCRC
test set. However, other comparisons (ie, Xception vs ViT16 and
Xception vs ensemble model) were statistically significantly
different (P <.00001).

The fine-tuning step, which used the PatchCRC data set for
further training of the models that had previously been trained
only on the PatchCamelyon data set, yielded improved perfor-
mance (P <.00001) compared with the PatchCamelyon-only
trained models when both were evaluated using the PatchCRC
hen evaluated on various test and validation data set using corresponding metrics,

HD (±SD), mm AUROC F1 score SN SP

4) 135.59 (±72.14) d d d d

d 0.974 0.910 d d

d 0.959 0.797 d d

d 0.978 0.949 d d

d d 0.974 0.995 0.967

d d 0.901 0.872 0.936

d d 1.0 1.0 1.0

d d 1.0 1.0 1.0

receiver operating characteristic curve; SN, sensitivity; SP, specificity.



Figure 2.
The areas under the receiver operating characteristic curves (AUROC) for Xception, ViT16, and their ensemble model: (A) trained and tested on the tiles from PatchCamelyon, (B)
trained on PatchCamelyon and tested on PatchCRC, and (C) trained on PatchCamelyon, fine-tuned on PatchCRC, and tested on PatchCRC. The AUROC scores show that the model
trained on breast lymph nodes has improved performance on the colorectal cancer (CRC) data set when the model is fine-tuned on the CRC lymph node data set.
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data set. The fine-tuned Xception and ViT16 models yielded
AUROCs of 0.974 and 0.977, respectively, and F1 scores of 0.939
and 0.949, respectively. Their fine-tuned ensemble model
presented the highest performance, with an AUROC of 0.978
and an F1 score of 0.949, when tested on the PatchCRC data set
(Fig. 2C).
Validation on 3 Independent Cohorts

On successful evaluation of both segmentation andmetastasis
detection models on the respective testing data sets, they were
applied to validation cohorts by following the steps of the vali-
dation workflow in Figure 1C. The final ensemble model showed
excellent performance in both external and internal validation
cohorts when comparing predicted positive and negative slide-
level labels with the pathologists’ ground truth. The ensemble
model performed 100% accurately on the external cohort of pa-
tients with CRC when evaluated by using F1 score, sensitivity,
and specificity metrics. Some examples of detected lymph node
metastases in the external validation cohort are shown in
Figure 3A, B.
Figure 3.
Examples from the external cohort. The detected metastatic lymph node and overlays of pr
the right), showing (A) a detected micrometastasis and (B) a tumor deposit.

6

However, in internal cohort 1, consisting of the same type of
patients, the model performance dropped slightly to 0.974, 0.995,
and 0.967 on F1, sensitivity, and specificity, respectively, compared
with the external cohort results. Approximately 0.5% of positive
slides were incorrectly classified as negative, owing to small,
isolated tumor cell clusters (<110 mm). Figure 4 shows some ex-
amples of lymph node metastases from internal cohort 1, with
Figure 4A, B showing correctly detectedmetastases and Figure 4C-
E showing micrometastases that went undetected by the model.
Moreover, approximately 3.3% of negative slides were falsely
detected as positive, mainly owing to tissue folds and active
germinal centers.

A subgroup of validation cases from internal cohort 2
consisted of mucinous adenocarcinoma and signet-ring cell
carcinoma cases. In this group, the performance was slightly
worse because of limited examples of mucinous adenocar-
cinoma and signet-ring cell carcinoma in the data sets used
for training both the segmentation and metastasis detection
models. Owing to the presence of this subgroup, the per-
formance in internal cohort 2 yielded an F1, sensitivity, and
specificity of 0.901, 0.872, and 0.936, respectively. A few
examples from internal cohort 2 with overlay predictions are
shown in Figure 5A, B.
edicted regions (with a tile probability between 0 and 1; see the color-map legend on



Figure 4.
Examples from internal cohort 1. The lymph node whole-slide images (WSIs) of patients with colorectal cancer (CRC) showing the heat map overlays (with a tile probability
between 0 and 1; see the color-map legend on the right) of metastasis regions (A and B) detected by our ensemble model. The model missed 3 cases (C, D, and E) with a
maximum metastasis of <110 mm in diameter.
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Figure 5.
Examples from internal cohort 2. The detected metastatic lymph node and overlays of predicted regions (with a tile probability between 0 and 1; see the color-map legend on the
right) with detected mucinous adenocarcinoma regions (A and B).
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Validation on Consecutive Case Series

To determine the performance of our approach in a simulated
real-life setting, we scanned consecutive cases diagnosed between
January 2022 and June 2022, comprising an additional indepen-
dent internal cohort, internal cohort 3, without any selection for
histologic subtypes.We applied our approach to all 217 CRC lymph
node WSIs and generated overlays of the metastatic regions in
QuPath. To validate our findings, the same glass slides were scored
by a pathologist using a microscope. In parallel, another expert
verified the model’s predictions with the pathologist’s outcome
and reported any discrepancies. In this experiment, the lymph
node status assigned by the model was a 100% match to the
outcome of the pathologist. A few examples of metastatic detec-
tion from internal cohort 3 are presented in Figure 6A, B. Our
approach was able to detect additional useful information for
pathologists on a few WSIs, such as those where tumor deposits
andmetastatic fragments from the primary colon appeared on the
slides along with lymph nodes (Fig. 6C). Similarly, in rare cases,
such as sinus histiocytosis (ie, a benign disorder of lymph nodes),
despite resembling tumor cell morphology, was correctly detected
as normal tissue (Fig. 6D). Furthermore, a lymph nodewith cutting
artifacts was correctly detected by the model as negative (Fig. 6E).
Discussion

In this study, we used segmentation, transfer learning, and
ensemble methods to generate a workflow for a lymph node
metastasis detection algorithmwith high accuracy across multiple
validation sets from 2 different institutions.

Deep learning models for histopathology images are typically
trained on small tiles extracted from larger WSIs or annotated
regions owing to computational memory constraints. Such small
tileebased approaches have successfully been performed for
various tasks at the cost of extensive regional annotations.5,6,38-41

Previous studies have shown that such methods for lymph node
8

metastasis detection in breast cancer, using 399 regionally anno-
tated slides for model development, performed better (AUROC ¼
0.885) than pathologists (AUROC¼ 0.808) with a time constraint.5

Similarly, the application of such a method to clinical experiments
has shown significant improvement in sensitivity, from 83% to 91%
(P ¼.02), when used as an assisting tool.3 The multiple instance
learning method, which requires slide-level labels to train the
model, has previously achieved an AUROC of 0.966 when trained
on 6,500 slides from axillary lymph nodes.6 End-to-end WSI-
based methods have shown improved performance over previous
methods (with AUROCs of 0.959 and 0.941 for adenocarcinoma
and squamous cell carcinoma) when trained on lung cancer on
5,045 slides.42 A similar method has succeeded in obtaining even
higher scores (AUROC of 0.999) when trained and tested on 1963
and 1000 CRC lymph node slides, respectively.7

To reduce the workload of collecting regional annotations,
we developed a computer-assisted diagnostic workflow based
on segmentation, slide-level classification, and visualization of
potential metastatic lymph node regions for patients with CRC
by leveraging a public data set of breast cancer lymph nodes.
Our study had the following advantages: by using transfer
learning and ensemble models, we developed a workflow for
accurate detection of metastatic CRC lymph nodes with less
effort in collecting regional annotations and without a large
stack of globally labeled WSI data sets. Our workflow has
shown excellent performance with very high sensitivity (0.995,
0.872, 1.0, and 1.0) and specificity (0.967, 0.936, 1.0, and 1.0) on
3 internal and 1 external validation cohorts (n ¼ 4225 slides)
when comparing slide-level labels with the pathologist ground
truth. Moreover, regarding performance, our approach was in
line with other similar approaches used for lymph node
metastasis detection in different contexts, requiring larger
regional or global annotated data sets for development.3,5-7,42-44

Additionally, as our workflow is validated on large independent
cohorts with higher sensitivity and specificity scores, our
approach could significantly reduce the workload of patholo-
gists for N-staging of patients with CRC.



Figure 6.
Examples from internal cohort 3. The lymph node whole-slide image of samples from patients with colorectal cancer showing the heat map overlays (with a tile probability
between 0 and 1; see the color-map legend on the right) of metastases regions. (A) A lymph node metastasis of around 400 mm in diameter is detected accurately. (B) An example
of a tumor deposit that is detected with positive results. (C) A case with a negatively detected lymph node surrounded by colon cancer tissue. A sinus histiocytosis (ie, a benign
disorder of lymph nodes) having a very distinct morphology similar to tumor cells in hematoxylin and eosin staining, and a lymph node with cutting artifacts (D and E,
respectively). In both cases, the model correctly assigned the lymph node tissue as negative.
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Despite an excellent performance, our study had some limi-
tations. The training and validation data sets mostly contained
adenocarcinoma cases (no special type) and only a few cases of
other histologic subtypes. Nonetheless, our workflow showed
9

high accuracy in cases with mucinous and signet-ring cell his-
tology. In addition, to simulate the real-life diagnostic slide quality
setting, no slide was excluded up front. There were 2 different
types of artifacts considered: scanning artifacts (which were
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eliminated at the source after the original scanning step and were
considered to be of insufficient quality for diagnostics) and his-
tologic artifacts (eg, folds, stain, and ink), which were still
included. Therefore, the internal validation cohorts were selected
without any quality control (for histologic artifacts, such as folds,
stain, and ink) on the scanned WSIs, which resulted in a higher
false-positive rate caused by tissue folds (~70% of all false-positive
cases) and other artifacts (~30% of all false-positive cases). For
clinical workflow implementation, some form of quality control
could be automated to avoid false positives. Tools, such as His-
toQC,45 may be implemented to request rescans and ensure that
this pipeline is robust to such problems. Similarly, in the HE-
stained slides, cells from the reactive germinal centers may be
confused with tumor cells and could contribute to higher false-
positive rates. Furthermore, the external validation cohort
lacked negative cases and was highly imbalanced. It was also
observed that this cohort contained mostly larger metastasis re-
gions, thus making it easier to outperform. However, we com-
plemented this cohort with a consecutive series of unselected
cases and achieved perfect agreement between the pathologist
report and AI output. Extensive validation of diverse CRC lymph
node data sets from different centers would be essential to assess
the generalizability of the approach.

In addition, to address the question of isolated tumor cells, we
performed immunohistochemistry staining on a series of appar-
ently node-negative cases (n ¼ 272 slides) and found 15 slides
with isolated tumor cells. Moreover, these could not be detected
on the corresponding HE-stained slides by our approach. Finally,
our approach was limited to a classification task, rather than a
segmentation task. This further restricts accurate measurement of
the diameter of metastatic regions, which is useful for evaluating
the detected lymph node metastases. Therefore, in the future, it
would be interesting to obtain an accurate measurement of the
detected regions and compare this with immunohistochemistry
reference standards. Moreover, although our models are intended
for HE-stained slides, the overlaid probability maps could help in
deciding whether further immunohistochemistry staining is
required. An interesting premise for future work is the automatic
“labeling” of cases for subsequent immunohistochemistry based
on these maps.

In conclusion, our lymph node metastasis detection approach
is reproducible, sensitive, and specific; provides a visualization of
the predicted region; and saves computational resources. This
provides an excellent basis for future implementation in routine
histopathology workflows.
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