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Abstract

Balancing a bicycle is typical for the balance control humans perform as a part of a whole

range of behaviors (walking, running, skating, skiing, etc.). This paper presents a general

model of balance control and applies it to the balancing of a bicycle. Balance control has

both a physics (mechanics) and a neurobiological component. The physics component per-

tains to the laws that govern the movements of the rider and his bicycle, and the neurobio-

logical component pertains to the mechanisms via which the central nervous system (CNS)

uses these laws for balance control. This paper presents a computational model of this

neurobiological component, based on the theory of stochastic optimal feedback control

(OFC). The central concept in this model is a computational system, implemented in the

CNS, that controls a mechanical system outside the CNS. This computational system uses

an internal model to calculate optimal control actions as specified by the theory of stochastic

OFC. For the computational model to be plausible, it must be robust to at least two inevitable

inaccuracies: (1) model parameters that the CNS learns slowly from interactions with the

CNS-attached body and bicycle (i.e., the internal noise covariance matrices), and (2) model

parameters that depend on unreliable sensory input (i.e., movement speed). By means of

simulations, I demonstrate that this model can balance a bicycle under realistic conditions

and is robust to inaccuracies in the learned sensorimotor noise characteristics. However,

the model is not robust to inaccuracies in the movement speed estimates. This has impor-

tant implications for the plausibility of stochastic OFC as a model for motor control.

Introduction

Keeping balance is an important function for many organisms. With this function, the organ-

ism controls one body axis relative to gravity, and it achieves this by keeping the body’s center

of mass (CoG) above its area of support (AoS). In this paper, I will focus on balancing a bicycle.

However, much of what I will say also holds for other forms of balancing that involve a human

body: walking, running, skating, skiing, etc. For example, all forms of balancing a human body

involve the same two basic actions for keeping the body’s CoG above its AoS: (1) changing the

AoS while keeping the CoG fixed (e.g., by stepping out with one leg), and (2) shifting the CoG
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while keeping the AoS fixed (e.g., by leaning the upper body). Keeping balance during walking

is an active field of research, and the recent review paper by Bruijn and Van Dieën [1] gives a

good overview.

Keeping balance is a sensorimotor control problem: the central nervous system (CNS)

receives sensory information about the body, the body-attached tools (bicycle, skates, skis,

. . .), and their environment (turn radius, speed, . . .), and uses this information for calculating

actions with which it controls the position of body and tools relative to gravity. The dominant

model for sensorimotor control assumes that the CNS makes use of an internal model to deter-

mine these control actions [2, 3]. In some publications [4, 5], a distinction is made between

forward and inverse internal models, but here I will only consider forward models. The (for-

ward) internal model simulates the dynamics of the plant (body plus body-attached tools) it

attempts to control.

A very influential version of this model claims that this control is optimal in the sense that

it minimizes a cost functional that depends on movement precision (here, deviation from the

upright position) and energetic costs [2, 3]. This model is called optimal feedback control

(OFC), and in this paper I will apply the model’s stochastic version to bicycle balance control;

the deterministic version would predict that the CoG stays exactly above the AoS once this

position is reached, which is unrealistic.

To evaluate the plausibility of stochastic OFC as a model for bicycle balance control, one

must address at least the following questions: (1) Is the model good enough to balance a bicycle

under realistic conditions (lean and steering angles that are observed with real riders), and (2)

Is the model robust to inaccuracies in the model parameters? The relevance of robustness fol-

lows from the fact that the model parameters must allow for an accurate simulation of the

plant dynamics. However, in some inevitable cases (e.g., in the beginning of a learning pro-

cess), the parameter values cannot be very close to their optimal values, and therefore the

model must have some minimal robustness to inaccurate parameter values. Of course, the sta-

bilization performance (indexed by, e.g., lean angle variability) may decrease with parameter

inaccuracy, but for a realistic range of values (see Results), the bicycle and rider should not fall

over.

It is useful to distinguish different types of inaccuracies with respect to the time it takes to

reduce them. On the one extreme, there are inaccuracies that are reduced between (instead of

within) cycling trips. These inaccuracies pertain to slowly varying characteristics of the plant

(gain factors, moment arms, sensorimotor noise characteristics, . . .) that the CNS must learn

from experience.

At the other extreme, there are the inaccuracies in the state variables (i.e., the variables of

the equations of motion). In this paper, all state variables are related to limb configurations

and gravity (steering angle, upper- and lower body angle) about which the CNS obtains infor-

mation via the somatosensory (including proprioception) and the vestibular system. Inaccura-

cies in the CNS-estimated state variables are reduced on a timescale that is set by the delays in

these sensory systems, which are around 100 ms [6]. Although I will not investigate this in the

present paper, some minimal robustness is required to inaccuracies in these estimates. Fortu-

nately, there is good evidence from psychophysical studies that, in healthy humans, the CNS

obtains reliable sensory information about the body’s orientation relative to gravity: for body

orientations near the vertical axis, the noise standard deviation of the CNS’s estimate is

approximately 4 degrees [7].

In between these two extreme time scales (slowly varying plant characteristics and state var-

iables), there is an intermediate time scale that is characteristic for parameters such as move-

ment speed. According to the literature, movement speed estimates depend on optical flow

[8]. However, these estimates are very unreliable, as is clear from its Weber fraction (the
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smallest step increase in forward optical flow velocity necessary for the difference to be per-

ceived): to perceive an increase within 500 ms. the increase had to be at least 50% [9]. There-

fore, a plausible model for bicycle balance control must have some minimal robustness to

inaccuracies in movement speed estimates.

In the remainder of this introduction, I will first describe the mechanical aspects of bicycle

balance control, and next how bicycle balance control can be formulated as a stochastic opti-

mal control problem. In the Results section, I will first introduce a model of sensorimotor con-

trol that is based on the idea that a mechanical system (plant) is both controlled and learned by

a computational system that uses an internal model to calculate optimal control actions. Next,

in a simulation study, I will evaluate (1) whether this model is good enough to balance a bicycle

under realistic conditions, and (2) whether it is robust to inaccuracies in the values of two

parameters of the computational system, sensorimotor noise characteristics (slowly varying)

and movement speed (intermediate time scale).

Control actions for balancing a bicycle

Problem definition. A standing human is balanced when his center of gravity (CoG) is

above his area of support (AoS), which is formed by the soles of his two feet plus the area in

between. Balance follows from the fact that the gravitational force (a vector quantity in 3D

passing through the CoG) intersects this AoS. The situation is similar but not identical for a

bicycle. A stationary bicycle (i.e., a bicycle in a track stand) is balanced when the combined

CoG of rider and bicycle is above the one-dimensional line of support (LoS), the line that con-

nects the contact points of the two wheels with the road surface. In this position, the direction

of the gravitational force intersects the LoS. However, because of disturbances, the CoG cannot

be exactly above this one-dimensional LoS for a finite period. Therefore, a bicycle is considered

balanced if the CoG fluctuates around the LoS within a limited range, small enough to prevent

the bicycle from touching the road surface.

Compared to a stationary bicycle, the balance of a moving bicycle is more complicated

because, besides gravity, also the centrifugal force acts on the CoG. Crucially, the centrifugal

force is under the rider’s control via the turn radius [10]. The balance of a moving bicycle

depends on the resultant of all forces that act on the CoG: a bicycle is balanced if the direction

of this resultant force fluctuates around the LoS within a fixed range. Besides the forces that act

on the CoG, there are also forces that are responsible for the turning of the bicycle’s front

frame, and some of these do not depend on the rider [11]. These latter forces are responsible

for the bicycle’s self-stability and will be discussed later (see Bicycle self-stability).

The geometry of the rider-bicycle combination. The control actions with which a rider

can balance his bicycle are constrained by the geometry of the bicycle and the rider’s position

on it. To describe the possible control actions, I start from the kinematic variables of a model

of the rider-bicycle combination, shown in Fig 1. This model consists of three rigid bodies:

front frame, rear frame, and the rider’s upper body. The positions of these three bodies are

specified by three angular variables: (1) the steering angle (the position of the front frame rela-

tive to the rear frame), denoted by δ, (2) the rear frame lean angle (the position of the rear

frame relative to gravity), denoted by ϕ1, and (3) the upper body lean angle (the position of the

upper body relative to gravity), denoted by ϕ2.

I assume that the rider sits on the saddle and keeps his feet resting on the non-moving ped-

als. In this position, the rider’s lower body (the hips/pelvis and below) is firmly supported and

can be considered a part of the rear frame. This simplification implies that leg movements are

not used for balance control. However, the stochastic version of this bicycle model (see, Senso-
rimotor noise and stochastic OFC) allows for pedaling-related movements to be included as
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motor noise and, in this way, to produce associations between lean- and steering angles. In

sum, the only forces that can be used for balance control are (1) a steering torque Tδ on the

handlebars, and (2) a lean torque T�2
at the hinge between the rider’s upper body and the rear

frame, corresponding to the hips.

Cycling involves a double balance problem. Cycling involves a double balance problem,

of which I have described the first part: keeping the combined CoG of the rider and the bicycle

above the LoS. The second balance problem pertains to the rider only: keeping his CoG above

his AoS. In the bicycle model in Fig 1, the rider is represented by his upper body, of which the

CoG must be kept above the saddle. The balance problem with respect to the rider is further

simplified by only considering the balance over the roll axis (parallel to the LoS), which corre-

sponds to upper body movements to the left and the right. I thus ignore the balance over the

pitch axis (perpendicular to the LoS and gravity), which corresponds to upper body move-

ments to the front and the back, typically caused by accelerations and braking. With this sim-

plification, the joint between the rider’s upper body and the rear frame is a hinge with a single

degree of freedom.

Balance control strategies from a mechanical point of view. For keeping the combined

CoG over the LoS (the first balance problem), the relevant control actions must result in a tor-

que over the LoS (roll axis). Within the constraints of our kinematic model, there are two ways

for a rider to perform a control action: (1) by turning the handlebars, and (2) by leaning the

upper body. To explain these control actions, it is convenient to make use of Fig 1B. This is the

schematic of a double compound pendulum, of which the dynamics depend on how it is actu-

ated: (1) if the contact between the green rod and the road surface is controlled by a linear

Fig 1. Kinematic variables of the bicycle model plus the rider-controlled torques. (A) Side view. In green, the bicycle rear frame, characterized by its lean angle ϕ1 over

the roll axis (green arrow). In red, the bicycle front frame, characterized by its angle δ over the steering axis (red arrow). In blue, the rider’s upper body, characterized by its

lean angle ϕ2 over the roll axis (blue arrow). In black, (1) the steering torque Tδ and the lean torque T�2
, which are both applied by the rider, and (2) the steering axis angle

λ, which is set equal to 90 degrees for the purposes of the present paper (see text). (B) Rear view. In green, the bicycle rear frame (plus lower body) lean angle ϕ1. In blue,

the rider’s upper body lean angle ϕ2. The symbol ⊗ denotes the CoG of the upper body (in blue), the lower body (in green), and the combined CoG (in black).

https://doi.org/10.1371/journal.pone.0278961.g001
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force, the dynamics is known as the “double compound pendulum on a cart” [12], and (2) if

the angle between the green and the blue rod (the upper body lean angle) is controlled by a tor-

que at this joint, the dynamics is known as the Acrobot [13].

We first take the perspective of a double compound pendulum on a cart. This involves that,

by turning the handlebars, the contact point of the green rod (representing the combined front

and rear frame) with the road surface moves to the right under the combined CoG. In fact,

turning the handlebars changes the trajectory of the tire-road contact points and, because the

CoG wants to continue in its pre-turn direction (by Newton’s first law), this results in a centrif-

ugal force in the bicycle reference frame (of which the LoS is one of the defining axes). This

centrifugal force is perpendicular to the LoS and results in a torque over the roll axis in the

direction opposite to the turn (a tipping out torque). This steering-induced tipping out torque

can be used to move the combined CoG to the opposite side of the turn. Thus, steering in the

direction of the lean produces a tipping out torque that brings the combined CoG over the

LoS. This explains the name of this control mechanism: “steering to the lean”.

We now take the perspective of the Acrobot, which involves that, by applying a lean torque

at the hips, the lean angles of both body parts change. Consequently, the separate CoGs of both

body parts are shifted, and this in turn affects the gravity-dependent torques on these body

parts. Crucially, a lean torque at the hips does not shift the combined CoG, and therefore can-

not bring this combined CoG above the LoS in a direct way. However, it can do so in an indi-

rect way, namely by turning the front frame. This is essential for the mechanism via which a

bicycle can be balanced when riding no handed. First, when leaning the upper body suffi-

ciently to one side, the bicycle and the lower body lean to the other side. Next, depending on

properties of the bicycle (wheel flop, the wheels’ gyroscopic forces, the combined CoG [11,

14]), leaning the bicycle to one side turns the front frame to the same side. This lean-induced

turn of the front frame then initiates the same mechanism as when turning the front frame by

means of the handlebars: a change in the trajectory of the tire-road contact points results in a

centrifugal force perpendicular to the LoS, producing a torque over the roll axis in the direc-

tion opposite to the turn. This lean torque brings the LoS under the CoG.

For the second balance problem (keeping the upper body’s CoG over its AoS), the same two

control actions can be used: (1) turning the handlebars, and (2) applying a lean torque at the hips.

Turning the handlebars in the direction of the upper body lean produces a lean torque in the

other direction (i.e., away from the lean), and this allows to control this upper body lean angle. By

applying a lean torque at the hips, this upper body lean angle can be controlled in a more direct

way, but at the expense of leaning the bicycle (and the lower body) in the opposite direction.

Because the two balance problems use the same control actions, coordination is required.

For example, a torque at the hips can be used to counter the turning-induced centrifugal tor-

que on the upper body: by applying a hip torque of equal magnitude as this centrifugal torque

(but opposite direction), the position of the upper body can be controlled. There exists an

energy-efficient alternative for this upper body control strategy, well-known in motorcycle rac-

ing: leaning the upper body to the inside of the turn. When the upper body is sufficiently

leaned to the inside of the turn, the resulting gravity-induced torque will counter the centrifu-

gal torque on the upper body CoG.

Balancing and steering. When riding a bicycle, the rider typically does not only want to

balance his bicycle, but also wants to steer it over a chosen/indicated trajectory. This paper

only considers control actions for balancing the bicycle, and therefore will not consider con-

straints on the trajectory, such as obstacles and bicycle path edges. This pure balance task cor-

responds to cycling blindfolded on an empty parking lot. After a brief familiarization, most

humans can cycle blindfolded on an empty parking lot; a search on social media will show sev-

eral demonstrations of this.
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Bicycle self-stability. At this point, it is necessary to mention the self-stability of the bicy-

cle, the fact that, within some range of speeds, the bicycle is balanced without control actions

by the rider [11]. Self-stability is investigated by modelling the rider as a mass that is rigidly

attached to the rear frame and does not touch the front frame, allowing the handlebars to

move freely. Self-stability depends on multiple factors, such as geometric trail, pneumatic trail,

wheel flop, the wheels’ gyroscopic forces, and the combined CoG [11, 14]. These factors all

contribute to the bicycle’s tendency to steer in the direction of the lean.

The focus of the present paper is on the rider’s contribution to bicycle stability, and there-

fore I used a model bicycle from which I removed all known factors that contribute to the bicy-

cle’s self-stability (see Fig 2). Specifically, I removed the effects of pneumatic trail and the

wheel’s gyroscopic forces by replacing the wheels by ice skates (or, equivalently, tiny roller

skate wheels). And I removed the effects of geometric trail and wheel flop by choosing a verti-

cal steering axis (i.e., by setting λ in Fig 1 to 90 degrees), as in most bicycles for bicycle moto-

cross (BMX) and artistic cycling. I also keep the CoG at approximately the same position as on

a regular bicycle (i.e., 30 cm before the rear wheel contact point), because a CoG with a more

anterior position may result in bicycle self-stability [14]. Without all these effects, the bicycle’s

front frame does not steer in the direction of the lean unless the rider turns the handlebars.

Therefore, the balance control strategy for riding no handed that I described before, cannot be

used on this model bicycle. In the Methods and Models section, I will describe how this simpli-

fied bicycle-rider combination can be modeled as a double pendulum of which the base can be

moved by turning the front wheel/skate, and the joint at the hips can be actuated. This model

will be called the “steered double pendulum” (SDP).

Linear and nonlinear bicycle models. The SDP is a nonlinear model. This nonlinearity a

desirable property because the objective of the present paper is to demonstrate that a linear

control mechanism can balance a nonlinear mechanical system. The most popular bicycle

model is linear, and it was proposed by Meijaard, Papadopoulos et al. [11] as a benchmark for

studying the passive dynamics of a bicycle. Depending on the model parameters, this linear

model is self-stable in some range of speeds.

For comparison with the nonlinear SDP without self-stabilizing forces, I also used a linear

bicycle model with self-stabilizing forces (gyroscopic forces plus the forces that depend on

Fig 2. Bicycle model without the known factors that affect bicycle self-stability. Compared to Fig 1, this model has

ice skates instead of wheels and a vertical steering axis.

https://doi.org/10.1371/journal.pone.0278961.g002
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geometric trail and wheel flop) to check the generality of some results obtained with the non-

linear SDP without self-stabilizing forces. This linear model will be called the “benchmark

double pendulum” (BDP), and it is a combination of an existing benchmark model [11] and

the double pendulum.

Another nonlinear bicycle model has been proposed by Basu-Mandal, Chatterjee et al. [15].

Just like the linear benchmark model [11], this nonlinear model does not include an upper

body. However, it turns out to be straightforward to produce the BDP by linearizing the dou-

ble pendulum and combining these with the linear benchmark model. Such an extension was

much less straightforward starting from the nonlinear model by Basu-Mandal, Chatterjee et al.

[15]. This motivates my choice for the SDP and the BDP. For this paper, the mechanical details

of the bicycle model are not crucial. Instead, it is my objective to demonstrate that a linear con-

trol mechanism can balance a whole range of bicycle models and does so under realistic condi-

tions. Because almost all mechanical systems are nonlinear, I will focus on the SDP, and use

the BDP to investigate the generality of the SDP results.

Control and noise forces. For investigating balance control, one must distinguish

between control and noise forces. Loosely formulated, control forces are the forces that the

rider uses to balance the bicycle. For a more precise formulation, I use the optimal control

framework, which defines control actions as the actions that optimize a quantitative perfor-

mance index. Thus, control forces are the optimal forces for a given performance index.

Noise forces are the difference between the forces that are applied and the optimal control

forces. It is useful to distinguish between (1) noise forces that originate from the rider, and (2)

noise forces that originate from interactions of the bicycle with the environment (e.g., colli-

sions, gusts of wind). In this paper, I only consider noise forces that originate from the rider.

These noise forces affect the balance via the same contact points as the two control forces (the

handlebars and the saddle). These noise forces are an important instrument in the simulations

that I have run to investigate bicycle balance control: they distort the balance, and this allows

to investigate different stabilizing (balance-restoring) mechanisms.

Balancing a bicycle as a stochastic optimal control problem

Optimal feedback control. Every motor task can be performed in an infinite number of

ways, and this is for two reasons: (1) the human body has a very large number of joints that

can be used in various combinations to produce the same trajectory of the relevant body part

(the combined CoG in a balance task, an effector endpoint in reaching task, . . .), and (2) a

motor task unfolds over time and can be performed with different speed profiles. Nevertheless,

most motor tasks are performed in a highly stereotyped manner. For instance, reaching tasks

consistently show roughly straight-line paths with bell-shaped speed profiles [3].

To explain these highly stereotyped actions among skilled performers, Todorov and col-

leagues [3, 16] proposed optimal feedback control (OFC). This theory uses a scalar cost func-

tional that increases with time-integrated imprecisions and energetic costs. OFC involves that

the control actions are chosen such that this cost functional is minimized. OFC is sometimes

proposed as an alternative for feedforward trajectory planning [2], but this incorrectly suggests

that OFC and trajectory planning cannot be combined. In this paper, I will present a model for

the specific task of balance control, as when cycling blindfolded on an empty parking lot. For

this specific task, one can ignore all aspects of cycling that involve trajectory planning, such as

steering a bicycle over an indicated path or an obstacle course.

In previous work, OFC has been mainly applied to reaching tasks [2, 16–19]. For such

tasks, the overall precision predominantly depends on the precision at the endpoint of the

reaching movement. In line with this fact, the cost functional is dominated by imprecisions
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(distances between the end effector and the reach target) near the endpoint [16]. In contrast,

for tasks in which a state must be maintained over time, such as balancing a bicycle, the cost

functional must depend on the imprecisions uniformly across the theoretically infinite lean

angle trajectory.

For applying OFC, one needs the equations of motion (EoM) that describe the dynamics of

the system (here, the rider-bicycle combination) as a set of differential equations. The variables

of these differential equations are called state variables, and for my two bicycle models (SDP

and BDP) they are the following: the steering angle δ, the rear frame lean angle θ1, the upper

body lean angle θ2 (see Fig 2), plus their corresponding angular rates. In the Materials and
Methods, I will derive the SDP EoM from Lagrangian mechanics, and the BDP EoM by linear-

izing the double pendulum EoM and combining these with the linear benchmark model.

The fact that the SDP EoM are nonlinear has important implications for the use of OFC for

stabilization. Specifically, OFC does not provide general results for stabilizing a nonlinear sys-

tem. However, it provides very useful results for stabilizing a linear system, and this has led to

the common practice in robotics to linearize the nonlinear system, apply OFC for linear sys-

tems, and use the resulting optimal control signals to stabilize the nonlinear system [13]. I

hypothesize that the CNS implements a similar solution for stabilizing a bicycle and the rider’s

upper body: build an internal linear approximation of the external nonlinear system that the

CNS wants to stabilize and use calculations like those from OFC to achieve this. In a later sec-

tion, Stabilizing a nonlinear mechanical system by linear stochastic OFC, I will describe this

model in more detail.

OFC uses a scalar cost functional to define the optimal control actions. This is in line with

the fact that the CNS implements functions for setting goals and evaluating actions. For our

application to bicycle balance control, it is natural to define this cost functional as one that

increases with (1) deviations between the CoGs (combined and upper body) and their respec-

tive support, and (2) the energetic costs of the control actions. The control actions that result

from the minimization of this cost functional are the steering and the lean torque.

Sensorimotor noise and stochastic OFC. Because riders and other biological systems suf-

fer from sensor and motor noise [20], deterministic OFC is an unrealistic model for bicycle

balance control. As a result of this noise, the CNS cannot perfectly know nor control the out-

side world, which includes the body that is attached to the CNS. Specifically, if the sensory

feedback is noisy, the CNS cannot infer the state variables perfectly from this feedback. Also,

the CNS is unaware of the motor noise that is generated at the muscular level, which is added

after the CNS has produced the motor command. Therefore, even if the CNS were able to cal-

culate an optimal motor command based on perfectly accurate state information, that com-

mand would not fully control the muscles.

Fortunately, for a system whose behavior depends on noise, optimal control is still defined,

namely if the system is governed by linear stochastic differential equations (SDEs) with addi-

tive Gaussian noise and a quadratic cost functional. Under these conditions, control is optimal

if it is based on an optimal state estimate [21]. The optimality of this state estimate is relative to

the conditional probability distribution of the state estimate at time t given the values of all var-

iables on previous times. Therefore, this optimal estimate not only depends on the sensory

feedback at time t, but also on the optimal state estimate and the control action (actually, its

efference copy) just before this time. This optimal estimate involves the familiar Kalman filter,

which weights the sensory feedback in proportion to its reliability. Several empirical studies

have suggested that state estimation in the CNS involves this type of weighting in proportion

to the reliability of the available information [22–24].

The ability to correct for motor and sensor noise depends on the CNS’s internal model of

the dynamics of the plant and the sensory feedback. The CNS uses this internal model to
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estimate the current state from (1) the previous state, (2) the most recent control action, and

(3) the sensory feedback. Several psychophysical [25–27] and neurophysiological [28, 29] stud-

ies have provided evidence for such internal models. An internal model can be conceived as a

set of differential equations that allows the CNS to simulate state variables and to combine this

information with the sensory feedback to obtain an optimal state estimate.

The robustness of control based on an internal model. Because an internal model can-

not be directly observed, its hypothesized role in sensorimotor control must be evaluated

based on its performance. This performance pertains to how well the optimal controls under a

linear approximation can stabilize a nonlinear system. This linear approximation involves sev-

eral parameters, such as the matrices that define the linear approximation to the nonlinear

EoM and the noise covariance matrices (see Stabilizing a nonlinear mechanical system by linear
stochastic OFC). The larger the range of parameter and state values for which the internal

model can stabilize the nonlinear system, the more robust the control. Because the CNS must

learn the internal model from experience with the mechanical system, which may be a slow

process, the imperfect internal must be robust to some inaccuracies in the internal model.

In this paper, for two types of parameters, the learned sensorimotor noise characteristics,

and movement speed, I will determine the range of values for which the internal model can

stabilize the nonlinear bicycle model while producing realistic state values. From these values,

it can be concluded that the model is robust to inaccuracies in the learned sensorimotor noise

characteristics, but not to inaccuracies in the movement speed estimates.

Methods and models

Equations of motion (EoM) for the steered double pendulum (SDP)

The SDP is depicted schematically in Fig 1. The SDP contains ingredients of three familiar

models: the double compound pendulum on a cart [DCPC, 12], the Acrobot [13], and the tor-

sional spring-mass-damper system. Roughly speaking, the SDP is a double compound pendu-

lum of which the base can be steered by a wheel (instead of a cart) and the joint between the

two rods (at the hips) can be actuated, as in the Acrobot. Both actuated joints, one at the han-

dlebars and one at the hips, are modeled as a torsional spring-mass-damper system. I will

denote the lower and the upper rod as, respectively, the lower and the upper body. The lower

body represents the rear frame plus the rider’s lower body; the upper body only represents the

rider’s upper body.

The kinematic model. Fig 3 depicts the relevant kinematic variables in both an inertial

(yellow origin) and a rider/bicycle-centered (purple origin) reference frame. The inertial refer-

ence frame has an arbitrary origin, a vertical coordinate axis V perpendicular to gravity, and

an arbitrary horizontal coordinate axis H perpendicular to V. The rider/bicycle-centered refer-

ence frame has its origin at the orthogonal projection of the combined CoG on the LoS, and a

vertical and horizontal coordinate axis V’ and H’ that are parallel to those of the inertial refer-

ence frame. The rider/bicycle-centered reference frame is non-inertial because, when the bicy-

cle turns, the origin no longer moves in a straight line, and therefore accelerates in the inertial

reference frame.

I will use the rider/bicycle-centered reference frame to define three kinematic variables.

The first two kinematic variables are the lower and the upper body lean angles (ϕ1 and ϕ2),

which are defined relative to the vertical axis V’. The third kinematic variable is the yaw angle

ψ of the LoS, which is defined relative to the horizontal axis V’. When describing the dynamics

of the SDP, we need an expression for the centrifugal acceleration α at the combined CoG. I

assume identical speeds at the separate CoGs of the lower and the upper body as well as identi-

cal angular rates of the projections on the horizontal plane. Then, the centrifugal acceleration

PLOS ONE Balancing a bicycle

PLOS ONE | https://doi.org/10.1371/journal.pone.0278961 February 27, 2023 9 / 33

https://doi.org/10.1371/journal.pone.0278961


only depends on the yaw angular rate _c ¼ @c=@t and the speed v:

a ¼ v _c

Crucially, _c depends on the steering angle δ, and this allows the rider to control the LoS.

For the SDP EoM, one must know the precise dependence of _c on δ. Deriving this depen-

dence is a well-known problem in vehicle dynamics [30], and here I use the known result. This

result involves the so-called slip angle β(δ), which is the angle between the velocity vector of

the combined CoG and the LoS. This slip angle can be obtained as follows:

b dð Þ ¼ tan� 1 wr tan dð Þ
W

� �

In this equation, W is the wheelbase and wr is the position of the combined CoG on the

LoS. More precisely, wr is the distance between the road contact point of the rear wheel and

the orthogonal projection of the combined CoG on the LoS. For realistic values (W = 1.02, wr
= 0.3, -20˚ < δ< 20˚), the slip angle β(δ) is almost a linear function of δ:

b dð Þ �
wrd

W

For steering angles -20˚ < δ< 20˚, all deviations from linearity are less than 0.36%. I will

continue to use this approximation. Following [30], one can obtain the centrifugal acceleration

α(δ) as follows:

a dð Þ ¼ v2 cos b dð Þð Þ

W
tan dð Þ Eq 1

For a constant speed v, the centrifugal acceleration is only a function of the steering angle δ.

Fig 3. The relevant kinematic variables of the SPD in both an inertial (yellow origin) and a rider/bicycle-centered

(purple origin) reference frame. The inertial reference frame has an arbitrary origin, and the rider/bicycle-centered

reference frame has its origin at the orthogonal projection of the combined CoG on the LoS. These reference frames

have parallel coordinate axes. In green and blue, I depict the lean angles of the lower and the upper body (ϕ1 and ϕ2),

and in red, I depict the yaw angle ψ of the LoS. The horizontal plane (road surface) is colored light yellow.

https://doi.org/10.1371/journal.pone.0278961.g003
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The steering model. The steering model assumes that the steering angle δ is fully con-

trolled by rider-applied forces on the handlebars. Thus, I ignore all forces that may contribute

to the bicycle’s self-stability.

The steering assembly consists of the front wheel, the fork, the handlebars, and the rider’s

arms. I model this assembly as a torsional spring-mass-damper system:

Isteer d
::

þCsteer
_d þ Ksteerd ¼ Td Eq 2

In Eq 2, Isteer is the assembly’s rotational inertia, Csteer its damping, and Ksteer its stiffness.

The input to the steering assembly is the net torque produced by the rider’s muscles and

denoted by Tδ on the right-hand side of Eq 2.

The double compound pendulum with a steer-actuated base. I model the lean angles ϕ1

and ϕ2 as the result of a double compound pendulum on a virtual (zero mass) cart with accel-

eration equal to α(δ), the centrifugal acceleration derived under our kinematic model (see Eq

1). Like the Acrobot, this double compound pendulum has an actuated joint between the

upper and the lower body (the hips). To make the model more biologically realistic, I add stiff-

ness and damping to the hips.

The EoM for ϕ1 and ϕ2 are obtained by first applying the Euler-Lagrange method to the

DCPC with a zero-mass cart, and then adding the constraint that the cart is controlled by the

steering-induced centrifugal acceleration α(δ). The derivation of the DCPC EoM using the

Euler-Lagrange method can be found in the literature. Here, I started from Bogdanov (12) and

added stiffness, damping and torque input at the joint between the two rods (the hips). Next, I

added the constraint that the angles ϕ1 and ϕ2 have no direct effect on the position of the base

of the first rod (in the DCPC, the point where the cart is attached). This constraint follows

from the fact that the bicycle’s wheels are oriented perpendicular to the cart’s wheels. Under

this constraint, the position of the base of the first rod is fully controlled by the steering-

induced centrifugal acceleration α(δ). The result is the following:

d1 cos �1ð Þ

d2 cos �2ð Þ

" #

a dð Þ þ
d3 d4 cos �1 � �2ð Þ

d4 cos �1 � �2ð Þ d5

" #
�
::

1

�
::

2

2

4

3

5

þ
0 d4 sin �1 � �2ð Þ�2

d4 sin �1 � �2ð Þ�1 0

" # _�1

_�2

2

4

3

5

þ
� f1 sin �1ð Þ

� f2 sin �2ð Þ

" #

þ

Kpelvis �1 � �2ð Þ þ Cpelvis
_�1 �

_�2

� �

� Kpelvis �1 � �2ð Þ � Cpelvis
_�1 �

_�2

� �

2

4

3

5 ¼

0

T�

2

4

3

5

Eq 3
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The crucial difference between Eq 3 and the corresponding equation for the DCPC is that α
(δ) replaces the acceleration of the cart. The constants in Eq 3 are defined as follows:

d1 ¼ m1l1 þm2L1

d2 ¼ m2l2
d3 ¼ m1l12 þm2L1

2 þ I1
d4 ¼ m2L1l2
d5 ¼ m2l22 þ I2
f1 ¼ m1l1 þm2L1ð Þg

f2 ¼ m2l2g

Eq 4

The constants m1, L1, l1 and I1 are, respectively, the mass, the length, the CoG (L1/2) and

the mass moment of inertia of the double pendulum’s first rod, which represents the bicycle

and the rider’s lower body. The constants m2, L2, l2 and I2 are defined in the same way, but

now for the second rod, which represents the rider’s upper body. Further, g is the gravitational

constant, and Kpelvis, Cpelvis and Tϕ are the stiffness, the damping, and the torque at the hips.

The SDP EoM are obtained from Eqs 2 and 3 by deriving expressions for the second deriva-

tives d
::

and �
::

1
; �
::

2

� �T
. These expressions are complicated and not insightful. I use these EoM to

define the state-space equations _x ¼ O x; uþmð Þ for the state variables

x ¼ d; �1; �2;
_d; �1

_
; �2

_
h iT

, external forces u ¼ Td;T�2

h iT
, and motor noise m.

An optimal linear approximation of the SDP EoM. In our model for sensorimotor con-

trol, the computational system is a linear approximation of O(x, u). I find an optimal linear

approximation by calculating the Jacobian ofO(x, u) at the unstable fixed point x = 0 and with-

out external input (i.e., u = 0). I obtained this Jacobian using the Matlab function jacobian.m.

By taking the Jacobian of O(x, u) with respect to x and u, I obtain, respectively, the matrices A
and B. This allows for the following approximation near the unstable fixed point:

_x � Ax þ Bu

I numerically evaluated the accuracy of this approximation by calculating finite differences

[F(ε, 0) - F(0, 0)]/ε (for A) and [F(0, ε) - F(0, 0)]/ε (for B) for decreasing values of ε. I

found that for ε! 0 the finite difference approximations converged to A and B.

Equations of motion (EoM) for the benchmark double pendulum (BDP)

The BDP is based on three ideas. The first idea is to follow the approach of Meijaard, Papado-

poulos et al. [11] and derive linearized EoM for a bicycle with the rider’s lower body rigidly

attached to the rear frame and no upper body. These linearized EoM depend on a number of

constants, and I chose these constants such that (1) the front frame is as similar as possible to

the self-stable benchmark bicycle model described by Meijaard, Papadopoulos et al. [11], and

(2) the lengths and masses are as similar as possible to the SDP. The second idea is to model

the interactions between the upper body and the rear frame (which includes the lower body)

by the linearized EoM of the double compound pendulum, similar to Dialynas, Christoforidis

et al. [31]. The nonlinear EoM of the double compound pendulum are obtained from Eq 3 by

removing the terms that correspond to the centrifugal acceleration α(δ), the stiffness and the

damping. Finally, the third idea is to first derive the BDP EoM without stiffness and damping

terms, and to add these terms only in the last step.
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The approach of Meijaard, Papadopoulos et al. [11] involves a method to calculate the

defining matrices of linearized EoM of the following type:

M

d
::

�
::

1

�
::

2

2

6
6
4

3

7
7
5þ C

_d

_�1

_�2

2

6
6
4

3

7
7
5þ K

d

�1

�2

2

6
4

3

7
5 ¼ 0

The matrices M, C and K are functions of several constants (angles, lengths, masses, mass

moments of inertia, gravitational acceleration, speed) that characterize the bicycle components

and the internal forces that act on them. However, Meijaard, Papadopoulos et al. [11] only

derived linearized EoM for bicycles with a rider that was rigidly attached to the rear frame.

Thus, the upper body lean angle ϕ2 is absent from their EoM. This missing component can be

obtained by linearizing the double pendulum EoM which models the interactions between ϕ1

and ϕ2. Schematically, each of the matrices M, C and K is composed as follows:

MP 1; 1ð Þ MP 1; 2ð Þ 0

MP 2; 1ð Þ MP 2; 2ð Þ 0

0 0 0

2

6
4

3

7
5þ

0 0 0

0 DP 1; 1ð Þ DP 1; 2ð Þ

0 DP 2; 1ð Þ DP 2; 2ð Þ

2

6
4

3

7
5

in which “MP” denotes “Meijaard, Papadopoulos et al” [11], and “DP” denotes “Double Pen-

dulum”. The MP calculations were performed by means of the Matlab toolbox Jbike6 [32], in

which I entered the constants for a bicycle with the rider’s lower body rigidly attached to the

rear frame and no upper body. This produced the constants MP(i,j) (i, j = 1,2) for M, C and K.

I now model the interactions between the upper body and the rear frame by the linearized

EoM of the double compound pendulum. The nonlinear EoM of the double compound pen-

dulum are obtained from Eq 3 by removing the terms that correspond to the centrifugal accel-

eration α(δ), the stiffness and the damping:

d3 d4 cos �1 � �2ð Þ

d4 cos �1 � �2ð Þ d5

" #
�
::

1

�
::

2

2

4

3

5

þ
0 d4 sin �1 � �2ð Þ�2

d4 sin �1 � �2ð Þ�1 0

" # _�1

_�2

2

4

3

5

þ
� f1 sin �1ð Þ

� f2 sin �2ð Þ

" #

¼

0

T�

2

4

3

5

I evaluate these EoM at ϕ1 = ϕ2 and replace sin(x) by its linear approximation near 0: sin(x)

� x. This results in

d3 d4

d4 d5

" #
�
::

1

�
::

2

" #

þ
� f1 0

0 � f2

" #
�1

�2

" #

¼
0

T�

" #

The constants d3, d4 and d5 contain elements that must be added to the matrix M, and the

constants f1 and f2 contain elements that must be added to the matrix K (for the definitions,

see Eq 4). I will use the notation DP(i, j) (i, j = 1,2) to denote these elements. For M, the follow-

ing elements are added:

• DP(1, 1) = m2 L1
2
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• DP(1, 2) = DP(2, 1) = d4 = m2 L1 l2

• DP(2, 2) = d5 = m2 l22 + I2

And for K, the following elements are added:

• DP(1, 1) = m2 L1 g

• DP(2, 2) = -f2 = -m2 l2 g

Finally, I added stiffness and damping terms that were also added to the SDP. The stiffness

and damping terms were added to, respectively, K and C.

Realistic constants for the SDP and the BDP

I grouped the constants of the two bicycle models in several sets. Within every set, the con-

stants for the SDP are described first, followed by those for the BDP.

Stiffness, damping and mass moment of inertia for the steering model. To assign real-

istic values to the stiffness and damping parameters of the steering model, it is useful to divide

both sides of Eq 2 by Ksteer and to reparametrize the model as follows:

t2 δ
::

þ2zt _δ þ δ ¼
Td
Ksteer

; Eq 5

in which z is the damping ratio and τ is the time constant. Equating corresponding parts in

Eqs 2 and 5, one obtains

Ksteer ¼
Isteer
t2

Eq 6

Csteer ¼ 2zt Eq 7

For a damping ratio z< 1 the steering assembly oscillates in response to torque input.

Because this does not happen in reality, zmust be at least 1. The smaller the damping ratio z,

the faster the response of the steering assembly, which is advantageous for stabilization. I will

consider the most responsive steering assembly, and therefore set z = 1.

I now set the time constant τ to an empirically determined value. For that, I make use of the

fact that a speeded single joint movement governed by a second order system reaches its maxi-

mum speed τ seconds after the beginning of the movement (see Empirical determination of the
time constant of a critically damped second order system). From visual inspection of Fig 3B in

Lewis & Perreault (2009) [33], I estimate τ = 0.33 seconds. From Eq 7, I find that, in the criti-

cally damped case, Csteer equals 2τ.
The mass moment of inertia Isteer has two components, one determined by the bicycle’s

front assembly (Isteer_bic), and one by the rider’s arms (Isteer_arms). Isteer_bic was calculated as the

sum of two component mass moments of inertia: (1) the fork about its main axis, and (2) the

wheel about an axis through the rim. These two values were obtained from the MP benchmark

model [11]: Isteer_bic = 0.006 + 0.1405 = 0.1465.

The mass moment of inertia Isteer_arms results from the fact that the arm muscles must also

move themselves plus the bones to turn the front assembly. I treat the arms as 4 kg point mas-

ses at the end of the handlebars (turn radius 0.3 m.). It follows that Isteer_arms = 2 × 4 × 0.32 =

0.72 kg m2. Thus,

Isteer ¼ Isteer bic þ Isteer arms ¼ 0:1465þ 0:72 ¼ 0:8665 kg m2
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For the BDP, the complete 3 × 3 mass moment of inertia matrix of the front frame must be

specified. I specified this matrix using JBike6, in which I adjusted the values of the MP bench-

mark model. For two of three axes, these values had to be increased by a factor of approxi-

mately 12 because the arms were not a part of the MP benchmark model. I specified the

stiffness and damping of the front frame in the same way as for the SDP, namely by setting the

damping ratio (z = 1) and the time constant (τ = 0.33).

Stiffness, damping and mass moment of inertia for the hips. I follow the same reason-

ing as for the steering model, and I also set the damping ratio z = 1 and the time constant τ =

0.33. The mass moment of inertia for the hip joint depends on the geometry and the mass of

the model for the upper body, which I describe in the next paragraph.

Lengths and masses of the bicycle and upper body models. The SDP models the bicycle

(plus lower body) and the upper body as rods. I consider a 15 kg. bicycle and a 85 kg. rider

with a 45%-55% mass distribution between the lower and the upper body. The bicycle (lower

body) height is 1.1 m., and the upper body height is 0.75 m. In terms of the constants in Eq 4:

m1 ¼ 0:45� 85ð Þ þ 15 ¼ 53 kg

m2 ¼ 0:55� 85 ¼ 47 kg

L1 ¼ 1:1 m

L2 ¼ 0:75 m

Using the formula for the mass moment of inertia of a homogeneous rod, I obtain

I1 ¼
m1L1

2

12
¼ 5:34 kg m2

I2 ¼
m2L2

2

12
¼ 2:2031 kg m2

For the BDP rear frame, I adjusted the values of the MP benchmark model to consider the

lower mass and CoG. The new values were approximately 75 percent lower than the MP

benchmark model.

Bicycle geometry. The bicycle geometry parameters were identical to those of the MP

benchmark model. Specifically, the wheelbase and the CoG on the LoS were, respectively,

W = 1.02 and wr = 0.3 m. The angle of steering axis (only relevant for the BDP) was λ = 72

degrees.

Gravity and speed. I set the gravitational constant g = 9.81 m/sec2, and the bicycle speed

v = 4.3 m/sec, the average bicycle speed in Kopenhagen [34].

Self-stability of the BDP. Without the upper body, the BDP EoM are for a bicycle with

the rider’s lower body rigidly attached to the rear frame, and no components taken from the

double pendulum EoM. The self-stability of this simplified bicycle can be investigated using

the established criterium that the eigenvalues’ real parts must be negative. With the constants

used in this paper, this simplified bicycle is not self-stable. (This holds with or without the stiff-

ness and damping terms for the arms and the hips.) However, by changing some constants

(e.g., the front frame’s mass moment of inertia), it is easy to make this simplified bicycle self-

stable. I did not do this because I wanted to stay as close as possible to both the MP benchmark

model and the SDP.
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Empirical determination of the time constant of a critically damped second

order system

I will now show that the time constant τ of a critically damped second order system can be

determined empirically from an experiment in which participants make speeded movements

of the joint that is modeled by this system. I start from the step response of this critically

damped system:

d tð Þ ¼
1

Ksteer
1 � 1þ

t
t

� �

e� t=t
� �

Using Eq 6, I can replace Ksteer by Isteer/τ2, such that I obtain

d tð Þ ¼
t2

Isteer
1 � 1þ

t
t

� �

e� t=t
� �

Our objective is to find the time at which the angular rate _d tð Þ is the highest. This angular

rate is the following:

_d tð Þ ¼
@d

@t
¼
te� t=t

Isteer
/ te� t=t

The strictly monotone transformation ln _d tð Þ
� �

is a concave function of t, and therefore the

maximum of _d tð Þ can be found by solving

@ln _d tð Þ
� �

@t
¼ 0

The result of this equation is t = τ. Thus, the time constant τ is the time after movement

onset at which the speed is the highest.

What are realistic turn radiuses, lean angles and steering angular rates?

I start from the following requirements: (1) the turn radius may not be less than the minimum

radius below which the tires loose traction, (2) the lean angle may not exceed an upper bound

above which most riders would feel uncomfortable, and (3) the steering angular rates may not

exceed the ones that the fastest human hands can make. Starting with the first requirement,

skidding occurs when the centrifugal force mv2/R exceeds the frictional force mμg, with m being

the mass of the bicycle-rider combination and μ the coefficient of friction. For rolling rubber

tires on asphalt, μ = 0.75 is a good choice [35], and this corresponds to a minimum turn radius

of v2/μg = 4.30562/(0.75 × 9.81) = 2.5196 m. In the following, we will report the curvature,

which is the inverse of the radius. The maximum curvature is 1/2.5196 = 0.3969 m-1.

The curvature C follows from the kinematics of the bicycle model (see The kinematic
model). I use an equation that takes into account the location of the combined CoG along the

longitudinal axis [30] and the fact that curvature depends on the steering axis angle λ [36]:

C �
tan dð Þ cos b dð Þð Þ

W
h l; �1ð Þ

in which β(δ) is the slip angle, which accounts for the location of the combined CoG along the

longitudinal axis, and h(λ, ϕ1) is a correction factor for a non-vertical steering axis (λ 6¼ π⁄2).

In the SDP, λ = π⁄2 and h(λ, ϕ1) = 1; in the BDP, λ 6¼ π⁄2 and h(λ, ϕ1) = cos(π⁄2 - λ)/cos(ϕ1).
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I now determine an upper bound for the combined CoG lean angle above which most rid-

ers would feel uncomfortable. Based on informal observations, I start from a rider that makes

a steady U-turn at 15.5 km/h (= 4.3056 m/s) on a 7 m. wide two-way road, which is a regular

width in Europe. To stay balanced in such a turn, the combined CoG lean angle must produce

a gravitational acceleration that balances the turn-induced centrifugal acceleration. A simple

geometrical argument shows that this lean angle is the following: tan-1((v2⁄R)/g) = tan-1

((4.30562/7)/9.81) = 0.2637 rad. (= 15.1072 degrees). Because the objective of the model is to

keep the bicycle upright, and not to keep it in a steady U-turn, the average combined CoG lean

angle must be substantially less than 0.2637 rad.

Finally, to find an upper limit for the steering angular rate, I start from the fastest hand

movement observed in a reaching task, which is 4 m/s [37]. Combining this linear velocity

with a typical commuter handlebar width of 0.6 m, I find a critical steering angular rate of

13.33 rad/s.

Simulating the stabilization of the mechanical by the computational system

I have written computer code in Matlab for simulating the stabilization of the mechanical by

the computational system and visualizing the results. This code is added to the supplementary

information for this paper. With this code, one can perform all the simulations on which I

have reported in this paper as well as variations inspired by one’s own questions and hypothe-

ses. Running simulations is only possible in discrete time, and I must therefore discretize the

continuous time model. This is the main topic of this section.

Simulating the combined system in discrete time. The discrete time axis is defined by

the increment Δt: 0, Δt, 2Δt, 3Δt . . .. The model in Fig 5 involves a closed loop, and to describe

it, one can start at every point. Here, I start from the sensory input system, which receives the

state x(t) from the mechanical system and feeds the noise-corrupted sensory input y(t) = Cx(t)
+ s(t) into the computational system. This is depicted schematically in Fig 4. The computa-

tional system determines the internal state estimate x̂ t þ Dtð Þ on the basis of y(t), the previous

internal state estimate x̂ t � Dtð Þ, and the previous control action u(t - Δt). No internal state

estimate is calculated for time t. The new control action u(t + Δt) is obtained from x̂ t þ Dtð Þ.

Fig 4. Schematic representation of the simulation of the combined system in discrete time. In red, green, blue and

black, I show the variables that generated in, respectively, the mechanical, the sensory input, the computational, and

the motor output system.

https://doi.org/10.1371/journal.pone.0278961.g004
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Adding the motor noise m(t + Δt) to u(t + Δt) produces z(t + Δt), the input to the mechanical

system. This input z(t + Δt), together with the previous state x(t) produces the new state x(t
+ 2Δt). From this new state and the sensor noise s(t + 2Δt), the new sensory input y(t + 2Δt) is

obtained, which closes the loop. No actual state and sensory input is calculated at time t + Δt.
Solving the discrete time computational and mechanical system. For simulating the

combined system, one must solve the discrete time mechanical and computational system.

For the mechanical system, this involves finding x(t + 2Δt) by numerically integrating _x ¼
O x; zð Þ ¼ O x; uþmð Þ over the interval [t, t + 2Δt] starting from the initial condition x(t) and

with external input u = u(t + Δt) and m = m(t + Δt). For this, I used the Matlab function

ode45, which is based on an explicit Runge-Kutta (4,5) formula [38].

To solve the discrete time computational system, I follow a similar approach, but now take

advantage of the fact that an explicit solution exists for linear systems. Using this explicit solu-

tion, I can write the discrete time version of the linear approximation as follows:

x t þ Dtð Þ ¼ A2Dtx t � Dtð Þ þ B2Dtu t � Dtð Þ þ S
1=2

2Dtn
1ð Þ Eq 8

y tð Þ ¼ C2Dtx t � Dtð Þ þC
1=2

2Dtn
2ð Þ Eq 9

The simulated versions of the actual motor and sensor noise are, respectively, S
1=2

2D n 1ð Þ and

C
1=2

2D
n 2ð Þ, with n(1) and n(2) denoting independent normally distributed random variables with

an identity covariance matrix. The noises S
1=2

2Dtn 1ð Þ and C
1=2

2Dtn
2ð Þ thus have a normal distribution

with respective covariance matrices S2Δt and C2Δt, which are defined as follows:

S2Dt �

Z 2Dt

0

eAtSeATtdt

C2Dt ¼ 2Dtð ÞC

The matrices A2Δt, B2Δt, and C2Δt follow from the well-known solution of a linear state-

space model with defining matrices A; B, and C: A2Δt = eA(2Δt), B2Δt = A-1 (A2Δt–I)B, and C2Δt

= C [39]. Note that the sensory input y (see Fig 4) is evaluated at a different time than the simu-

lated state variable x̂, because the former is obtained from the mechanical system.

In one of the simulation studies (Is the model robust to inaccuracies in the learned noise
covariance matrices S andC?), I used the optimal learned motor and sensor noise covariance

matrices S2Δt and C2Δt. For the continuous time case, these optimal learned noise covariance

matrices are the following functions of the actual noise covariance matrices F and X: S =

BFBT and C = X. For the discrete time case, the corresponding formulas are the following:

S2Dt �

Z 2Dt

0

eAtBFBTeATtdt

C2Dt ¼ 2Dtð ÞX
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For the discrete time computational system in Eqs 8 and 9, I calculate control actions u that

minimize a cost functional J2Δt:

J2Dt ¼ lim
N!1

1

N
E
XN

n¼1

x n2Dt � Dtð Þ
0Qx n2Dt � Dtð Þ þ u n2Dt � Dtð Þ

0Ru n2Dt � Dtð Þ
� �

0

@

1

A

The cost functional J2Δt is minimized by control actions u ¼ � M2Dtx̂, in which -M2Δt is the

discrete time LQR gain (which depends on the matrices A2Δt, B2Δt, Q, and R), and x̂ is the opti-

mal state estimate defined by this discrete time ODE:

x̂ t þ Dtð Þ ¼ A2Dt � B2DtMð Þx̂ t � Dtð Þ þ K2Dt y tð Þ � C2Dtx̂ t � Dtð Þ½ �

The matrix K2Δt is the discrete time Kalman gain, which depends on A2Δt, C2Δt, S2Δt, and

C2Δt.

Discrete time motor and sensor noise. From the properties of a Wiener process, it is

straightforward to obtain the discrete time motor and sensor noise from the continuous time

equations Eqs 1 and 2:

z t þ Dtð Þ ¼ u t þ Dtð Þ þ F
1=2

2Dtn
1ð Þ

y tð Þ ¼ Cx tð Þ þ X1=2

2Dtn
2ð Þ

The noises F
1=2

2Dtn 1ð Þ and X
1=2

2Dtn 2ð Þ have a normal distribution with respective covariance

matrices F2Δt = (2Δt)F and X2Δt = (2Δt)X.

Results

Stabilizing a nonlinear mechanical system by linear stochastic OFC

A model for sensorimotor control. The EoM for most dynamical systems are nonlinear.

This holds for the SDP model bicycle, but also for common movements such as reaching,

throwing, and walking; these movements are all performed by changing joint angles, which

results in EoM involving trigonometric functions. I denote the nonlinear EoM as follows:

_x ¼ O x; uð Þ

The vector x contains the state variables, and _x their first derivatives with respect to time.

For the SDP, x ¼ d; �1; �2;
_d; �1

_
; �2

_
h iT

and u ¼ Td;T�2

h iT
(see Fig 2). In the Methods and

Models section, I derive the SDP EoM from Lagrangian mechanics.

OFC calculates optimal control actions u that minimize a cost functional J(x(�), u(�)), in

which x(�) and u(�) denote the trajectories of, respectively, the state variables and the control

actions. Typically, this cost functional increases with the integrated imprecision and energetic

costs (e.g., the integrated squared length of x(�), resp., u(�); see further). Crucially, this cost

functional depends on the EoM, and this raises the important question how the CNS can cal-

culate optimal control actions in the extremely likely scenario that it does not know O(x, u)

exactly. For this scenario, I assume that the CNS learns an approximation toO(x, u) from

experience with the mechanical system. The CNS then uses this approximation as an internal

model to estimate the state and calculate the optimal control actions.

In Fig 5, I have depicted a model for sensorimotor control that is based on an internal

model that is a linear approximation of the unknown nonlinear dynamics O(x, z). These non-

linear dynamics are depicted in red and will be denoted as the mechanical system. In its
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application to balancing a bicycle, this mechanical system corresponds to the rider’s body plus

his bicycle, and the linearization is around the equilibrium point (unstable fixed point). In

other applications, the mechanical system may also involve objects in the environment that are

sensed from a distance using vision and/or audition, and the linearization may be around a

trajectory. The mechanical system receives input z from the motor output system (in black),

which adds noise m to the optimal control action u. The sensory input system (in green) maps

the state variables x onto sensory variables (as specified by the matrix C), adds noise s and

feeds the resulting sensory input y into the computational system (in blue).

The computational system consists of two components: (1) the internal model, which calcu-

lates an optimal internal state estimate x̂ by integrating a linear differential equation (charac-

terized by the matrices A, B, C and the Kalman gain K) that takes the sensory feedback y as

input, and (2) the feedback control law, which determines the control action u by multiplying

the state estimate x̂ with the LQR gain -M (minus sign added for consistency with the existing

literature). The matrices A, B and C must be learned from experience with the mechanical sys-

tem. Useful reference values for A and B can be obtained from the first order Taylor approxi-

mation of the nonlinear O(x, u) at the unstable fixed point x = 0 and u = 0. That is, O(x, u) can

be linearly approximated by Ax + Bu, with A and B being the Jacobian of F(x, u) at the unsta-

ble fixed point.

Motor and sensor noise. The stabilizing performance of the combined mechanical-

computational system (i.e., how close x stays to its target value) is adversely affected by motor

and sensor noise: motor noise directly feeds into the mechanical system, and sensor noise

degrades the internal state estimate. The model for the motor input z to the mechanical system

is a simple errors-in-variables model: z = u + m. And the model for the sensory input y to the

computational system is the linear model y = Cx + s. All variables are functions of continuous

time. I assume that the noise terms m and s are linear combinations of independent vector-

Fig 5. Sensorimotor control of a mechanical system (in red) by input from a computational system (in blue). The

mechanical system is governed by the nonlinear differential equations _x ¼ O x; zð Þ, and the computational system

produces an optimal control action u. The motor output system (in black) adds noise m to u and feeds this into the

mechanical system. The sensory input system (in green) maps the state variables x to sensory variables, adds noise s
and feeds the resulting sensory input y into the computational system. The computational system calculates an optimal

internal state estimate x̂ by integrating a linear differential equation (characterized by the matrices A, B, C, and the

Kalman gain K) that takes the sensory feedback y as input. The optimal control action u is obtained from x̂ and the

linear quadratic regulator (LQR) gain -M.

https://doi.org/10.1371/journal.pone.0278961.g005
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valued Wiener processes v(1) and v(2):

z ¼ uþ F1=2dv 1ð Þ Eq 10

y ¼ Cxþ X1=2dv 2ð Þ Eq 11

The scaling matrices F1/2 and X1/2 determine the covariance of the motor noise m = F1/2

dv(1) and the sensor noise s = X1/2 dv(2). Specifically, the motor and the sensor noise are nor-

mally distributed with covariance matrices Fdt and Xdt, respectively.

Stochastic OFC deals with noise in an optimal way. Stochastic OFC provides the tools to

deal with motor and sensor noise, and it does so in an optimal way if the noise is Gaussian and

additive [21]. This optimality is central to the proposed model for sensorimotor control, which

I now formulate with the detail that is required to simulate it on a computer:

1. The CNS learns from experience the following matrices: A, B, C, and the covariances of the

motor and the sensor noise. For the purposes of this paper, the matrix C that maps x onto y
is assumed to be known. The learned noise covariance matrices can be given plausible val-

ues, as I will describe in the Results section.

2. The control actions are produced by an internal model that is based on the following linear

approximation of the other three systems:

_x ¼ Axþ Buþ S1=2dw 1ð Þ Eq 12

y ¼ Cx þC1=2dw 2ð Þ Eq 13

in which w(1) and w(2) are independent vector-valued Wiener processes. The terms S1/2

dw(1) and C1/2 dw(1) are simulated versions of the motor and sensor noise. These noise

terms are normally distributed with covariance matrices Sdt and Cdt, respectively. The

matrix S represents the learned amplitude of the movement inaccuracies that are produced

by a noisy motor input (u + noise), and the matrix C represents the learned amplitude of

the sensory discrepancies (y–Cx). Although the actual and the simulated state may differ, I

will use the same state variable x for the mechanical model _x ¼ O x; zð Þ as for the linear

model in Eqs 12 and 13. The representation of this linear model in Eqs 12 and 13 is called a

state-space representation.

3. The CNS calculates the control action u such that a cost functional J is minimized:

J ¼ lim
T!1

1

T
E
ZT

0

x tð Þ0Qx tð Þ þ u tð Þ0Ru tð Þ
� �

dt

0

@

1

A Eq 14

in which ε () denotes expected value, and Q and R are positive definite matrices of the

appropriate dimensions. The component x(t)’ Qx(t) quantifies the precision of the internal

state variable x when the target state equals 0; for the general case of a target state equal to c,
this component is [x(t)–c]’ Q[x(t)–c]. The component u(t)’ Ru(t) quantifies the energetic

cost.

4. Under the linear model in Eqs 12 and 13, the cost functional J is minimized by control

action u ¼ � Mx̂, in which -M is the LQR gain, and x̂ is an optimal state estimate defined
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by this ODE:

x̂_¼ A � BMð Þx̂ þ K y � Cx̂ð Þ

The term A � BMð Þx̂ ¼ Ax̂ þ Bu only depends on the internal model, and the term

K y � Cx̂ð Þ also depends on the sensory feedback y. The matrix K is the Kalman gain, which

depends on A, C, S, and C, the covariance matrices of the learned motor and sensor noise.

The LQR gain -M depends on the matrices A, B, Q, and R.

Motor and sensor noise have both a direct and an indirect effect on the stabilizing perfor-

mance of the combined system: (1) motor and sensor noise directly feed into, respectively, the

mechanical and the computational system, and (2) via the Kalman gain K, the state estimate x̂
depends on the internal covariance matrices S and C, which the CNS must learn from experi-

ence with the actual motor and sensor noise. The importance of this learning process follows

from the fact that the accuracy of S and C has a positive effect on the stabilizing performance

of the computational system. This fact can be proved for a linear mechanical system, and it is

approximately true for a nonlinear mechanical system in a region of the state-space for which

this system is approximately linear. Specifically, for a linear mechanical system, F(x, z) = Ax +

Bz, and using Eq 10, this system can be rewritten as F(x, z) = Ax + Bu + BF1/2 dv(1). Compar-

ing this with the first state-space equation of the computational system (Eq 12), we see that the

two systems are identical if S = BFBT. In addition, comparing Eq 11 and Eq 13, we see that the

sensory system is identical to the state-space equation of the computational system if C = X.

Thus, optimal control of a linear mechanical system involves a Kalman gain that is calculated

using S = BFBT and C = X.

Is the optimal model good enough?. For stochastic OFC to be a good model for bicycle

balance control, the bicycle and the rider must remain balanced over a range of lean and steer-

ing angles that is observed. Importantly, the optimality of stochastic OFC does not automati-

cally ensure that the model is also good enough in that respect [40]. The performance of the

model depends on how well the linear internal model approximates the external nonlinear

dynamical system plus the motor and the sensor noise covariance matrices. The accuracy of

the approximation in turn depends on two factors: (1) how good is the linear approximation

with optimal values for the linear model’s parameters A, B, C, S and C, and (2) how close are

the actual values to these optimal parameter values? The performance of the optimal linear

approximation is investigated in the first of three simulation studies. Specifically, in this simu-

lation study, I will evaluate whether stochastic OFC with optimal parameter values can balance

the model bicycle for steering and lean angles that are observed with real riders on real bicy-

cles, without requiring steering angular rates that no real rider can produce. However, it is

unlikely that the linear model’s parameters are exactly at their optimal values, and the possible

consequences of this are discussed next.

Which parameters are responsible for stabilization failures?. Stabilization may fail (i.e.,

bicycle and rider fall over) because of motor and sensor noise. However, stabilization also

depends on the parameters of the computational system, and in this paper, I will investigate

the role of a few of these parameters. The computational system is fully specified by the follow-

ing seven matrices: A, B, C, S, C, Q and R, and I will investigate the role of the following three:

A, S and C.

It is useful to distinguish between the static and the dynamic parameters of the computa-

tional system: the dynamic parameters are the state variables x, and the static parameters are

the seven matrices on which these state variables depend. From a theoretical perspective, it is a

matter of choice whether a parameter is considered static or dynamic. However, from an
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applied perspective (here, bicycle balance control), it is important to know the time scale over

which the parameters are likely to change. This is related to the robustness of the computa-

tional system: if the system is not robust to inaccuracies in some dynamic parameter, then the

organism needs a mechanism to correct these inaccuracies. If this mechanism is slow (more

than a day), it is usually called “learning” (offline updating), and if it is fast, it is usually called

“sensory feedback” (online updating). For the model considered here, the CNS must learn the

internal noise covariance matrices S and C from experience with the mechanical system and

the motor and sensor noise. The required learning rate is set by the robustness of the computa-

tional system: the more robust the computational system to inaccuracies in S and C, the

slower the learning rate may be.

The matrix A depends on the bicycle speed v, which I assume to be constant when calculat-

ing the Kalman and the LQR gain. However, in reality, A is a dynamic parameter because the

bicycle speed v changes over time: A = A(v) = A(v(t)). The time scale of the changes in bicycle

speed is in the order seconds (e.g., accelerating from 0 to 1.5 m/sec. takes about 1 sec.). Thus,

the CNS probably needs online updates of the bicycle speed. Crucially, the robustness of the

computational system to inaccuracies in the speed estimates becomes more important as these

updates are less reliable. This is relevant here, because there is good psychophysical evidence

against reliable speed estimates based on optical flow [9]. Thus, a plausible computational sys-

tem must be robust to inaccurate speed estimates.

In sum, the CNS must learn and/or estimate some parameters of the computational system.

Because this process takes time, the system’s performance must be robust to inaccuracies in

the system’s parameters. I investigated this robustness in two simulation studies in which I

manipulated the accuracy of (1) the learned noise covariance matrices S and C, and (2) the

system (state) matrix A. These two parameter sets correspond to two different aspects of the

environment that the CNS must learn: (1) the reliability of the motor output and the sensory

input, and (2) the physical laws that govern the movements of our body and bicycle. They also

play different roles in the computational model: the learned noise covariance matrices only

affect the Kalman gain (which updates the internal state estimate), whereas the learned system

matrix also affects the LQR gain (which maps the state estimate on the control action).

How plausible is stochastic OFC as a model for sensorimotor control?

To evaluate the plausibility of stochastic OFC as a model for sensorimotor control, in three

simulation studies, I address the following questions: (1) Is the optimal model good enough to

balance a bicycle under realistic conditions, and (2) Is the model robust against inaccuracies in

the model parameters? I begin by describing what I mean by “realistic conditions”.

What are realistic turn radiuses, lean angles, and steering angular rates?. For our

model to be plausible, it must balance the model bicycle for lean angles that approach the val-

ues observed with real riders on real bicycles, without requiring turn curvatures (inverse turn

radiuses) and steering angular rates that cannot be produced. To determine critical values for

these parameters, I put forward the following requirements: (1) the turn curvatures may not

exceed the maximum curvature above which the tires loose traction (i.e., skid), (2) the lean

angle may not exceed an upper bound above which most riders would feel uncomfortable, and

(3) the steering angular rates may not exceed the ones that the fastest human hands can

produce.

In the Materials and Methods, I give a quantitative rationale for the maximum curvature,

the maximum combined CoG lean angle, and maximum angular rate: 0.3969 m-1, 0.2637 rad.

and 13.33 rad/s, respectively. In all simulations, the trials without skidding (i.e., curvature

everywhere less than 0.3969 m-1) had steering angular rates that were more than an order of
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magnitude smaller than the critical steering angular rate 13.33 rad/s. More detailed results will

therefore only be shown for the curvatures and the combined CoG lean angles.

What are plausible parameter values for the OFC cost functional?. I calculated the LQR

gain for a cost functional that implements the objective that the combined CoG must be kept

over the LoS. Because the LQR cost functional is a quadratic form, an objective with respect to

the combined CoG lean angle must be expressed as a linear function of the state variables.

Because the combined CoG lean angle is a nonlinear function of the state variables ϕ1 and ϕ2, I

approximated it by a linear Taylor series approximation in which I inserted the lengths and

masses used in the simulations. The following linear approximation resulted: 0.821 × ϕ1

+ 0.179 × ϕ2.

I used a block-diagonal precision matrix Q (see Eq 14) with the following submatrix for the

angles [δ, ϕ1, ϕ2 ]:

diag wd;
0:8212 0:821� 0:179

0:179� 0:821 0:1792 þ w�2

" # !

The weights wδ and w�2
quantify the importance of keeping δ and ϕ2 close to 0 relative to

the importance of keeping the combined CoG close to 0. Because the steering angle is not

involved in the balancing objective, I chose a very small value for wδ: wδ = 0.001. I chose the

value 1 for w�2
, which assigns an equal importance to the balance objective with respect to the

combined CoG, and the one with respect to ϕ2 (see Cycling involves a double balance problem).

Drastically increasing w�2
(to w�2

¼ 100) improved the stabilization of both ϕ2 and the com-

bined CoG lean angle (keeping them closer to 0), as quantified by the stabilization metrics of

the simulation study (see further). Because the focus of the present paper is on the robustness

of control based on an internal model, this effect will not be investigated any further. Finally, I

used the same submatrix for the angular rates _d; _�1;
_�2

h i
as for the corresponding angles [δ,

ϕ1, ϕ2 ], which implements the objective that it is equally important to keep the angles station-

ary as it is to keep them close to 0.

The LQR gain also depends on the matrix R, which quantifies the relative importance of the

energetic cost (see Eq 14). I ran my simulations with R = diag([1, 1]). Increasing the diagonal

elements of R reduces the stabilization performance.

Is the optimal model good enough to balance a bicycle under realistic conditions?. To

evaluate the plausibility of the model, I simulated state variables for increasing noise ampli-

tudes, which produced increasing lean and steering angles. I evaluated whether, over the

increasing noise amplitudes, the average combined CoG lean angle remains well below angles

at which most riders start feeling uncomfortable (0.2637 rad.) without skidding (i.e., curva-

tures exceeding 0.3969 m-1).

Noise enters the mechanical system via the motor output z and the sensory input y, and its

amplitude is determined by the motor and the sensor noise covariance matrices F and X. The

dimensions of F correspond to the two control actions, steering and upper body lean torque

(u ¼ Td;T�2

h iT
), and the dimensions of C correspond to the six sensory inputs. I indepen-

dently varied the amplitudes of three different noise types: steering noise, upper body noise,

and sensor noise. I did this by specifying F and C as diagonal matrices defined by three scalar

constants, cd; c�2
and cy : F ¼ diag cd; c�2

h i� �
, and C = diag([cy, cy, cy, cy, cy, cy ]). There were

only small differences between the three noise types with respect to how much they affected

the lean and the steering angles. These differences did not justify a discussion of the more
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complicated pattern of results as compared to the results for homogeneous noise amplitudes,

cd ¼ c�2
¼ cy ¼ c.

I evaluated the plausibility of the model at its optimal parameter values. Specifically, the

matrices A and B were set equal to the Jacobian of the EoM at the unstable fixed point, and the

learned motor and sensor noise covariance matrices S and C were given values that corre-

spond to the actual motor and sensor noise covariance matrices F and X (see Which learned
parameters are responsible for stabilization failures?).

I linearly increased the values of the noise amplitude c from 0.001 to 0.05 and simulated the

model under the resulting motor and sensor noise. For every noise amplitude, I simulated 100

trials of 60 seconds at Δt = 0.01. As expected, with increasing noise amplitude, also the number

of trials with skidding increased (see Fig 6A). The rest of the results is based on the successful

(no skidding) trials, for which I quantified the model’s performance by the root-mean-square

(RMS) combined CoG lean angle and the maximum curvature. These numbers were subse-

quently averaged over the trials. As expected, both the RMS combined CoG lean angle and the

maximum curvature increased with the noise amplitude (see Fig 6C). Crucially, even for the

highest noise level, the RMS combined CoG lean angle was well below its upper bound (0.2637

rad.).

I next investigated whether the results for the SDP generalize to a linearized model with

self-stabilizing forces, the BDP. The BDP is a combination of an existing benchmark model for

studying the passive dynamics of a bicycle [11] and the double pendulum.

The simulations for the BDP were performed in the same way as for the SDP, and the

results are shown in Fig 6B and 6D. Crucially, to obtain approximately the same percentage of

skid trails in the BDP as in the SDP simulations, the noise amplitude had to be increased by a

factor of approximately 14 (compare the x-axes of Fig 6A and 6B). This shows that the BDP is

much less susceptible to noise than the SDP. This is most likely due to the positive trail of the

BDP, which is responsible for caster forces in the front frame. Caster forces reduce the impact

of the noise on the handlebars because they align the front wheel with the rear frame [36].

Except for the reduced susceptibility to noise, the results for the BDP are like those for the

SDP: even for the highest noise level, the RMS combined CoG lean angle is well below the

Fig 6. Simulation results for the model at its optimal parameter values. (A, B) Percentage of trials with skidding,

separately for the SDP (in A) and BDP (in B) simulations. (C, D) RMS combined CoG lean angle and maximum

curvature, averaged over the successful trials in the SDP (in C) and BDP (in D) simulations.

https://doi.org/10.1371/journal.pone.0278961.g006
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upper bound for a comfortable lean angle (0.2637 rad.), and even lower than for the SDP.

Thus, stochastic OFC with optimal parameter values can balance a bicycle under realistic con-

ditions and this does not depend on the bicycle model.

Is the model robust to inaccuracies in the learned noise covariance matrices?. I investi-

gated the robustness to inaccuracies in S and C by systematically varying the difference

between these parameters and their corresponding optimal values S = BFBT, C = X. I ran the

study with actual motor and sensor noise covariance matrices F ¼ diag cd; c�2

h i� �
and X =

diag([cy, cy, cy, cy, cy, cy]). For the SDP simulations, I set cd ¼ c�2
¼ cy ¼ 0:035. I manipulated

the accuracy of S and C by means of a noise fraction f with logarithmically spaced values

between 0.1 and 10 (two orders of magnitude). I investigated two types of inaccuracy: motor

noise inaccuracy (S = fBFBT) and sensor noise inaccuracy (C = fX).

The results for the SDP are shown in Fig 7, separately for the manipulations of the learned

motor noise S (panels A and C) and those of the learned sensor noise C (panels B and D). For

both noise types, the model performed best when the learned and the actual motor noise were

equal. This effect on performance is only visible in the percentage of skid trials; the RMS com-

bined CoG lean angle remained well below its upper bound (0.2637 rad.). Interestingly, there

was an asymmetry between the motor and the sensor noise in the model’s performance as a

function of the learned noise fraction: suboptimal learned motor noise reduced performance

much less when it was too small whereas suboptimal learned sensor noise reduced perfor-

mance much less when it was too large. Thus, model-based balance control for the SDP has a

specific type of robustness to inaccuracies in the learned noise covariance matrices: the stabili-

zation is robust to learned motor noise covariances that are too small and learned sensor noise

covariances that are too large.

I next investigated whether the results for the SDP generalize to the BDP. For these simula-

tions, I set cd ¼ c�2
¼ cy ¼ 0:4833. The results are shown in Fig 8. For the BDP, the model’s

performance was unaffected by the difference between the learned and the actual noise.

Fig 7. Simulation results for the SDP model with learned noise covariance matrices at 11 logarithmically spaced

fractions of the actual noise covariance matrices. (A, B) Percentage of trials in which skidding occurred, separately

for trials in which the learned motor noise S (in A) and the learned sensor noiseC (in B) was manipulated. (C, D)

RMS combined CoG lean angle and maximum curvature, averaged over the successful trials in which the learned

motor noise (in C) and the learned sensor noise (in D) was manipulated.

https://doi.org/10.1371/journal.pone.0278961.g007
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In sum, both for the SDP and the BDP, the stabilization is robust to inaccuracies over two

orders of magnitude for the learned motor and sensor noise covariances. For the SDP, the sta-

bilization is only robust to learned motor noise covariances that are too small and learned sen-

sor noise covariances that are too large. For the BDP, this robustness is uniform.

Is the model robust to inaccuracies in the system matrix due to speed misestimation?.

To investigate the robustness to inaccuracies in the system matrix A I used the fact that the

optimal system matrix (the Jacobian of O(x, u) with respect to x and evaluated at the unstable

fixed point) depends on the bicycle speed v via the centrifugal acceleration (Eqs 1 and 3). I sim-

ulated a SDP with an actual speed of v = 4.3 m/sec., and calculated 13 different inaccurate sys-

tem matrices A by evaluating the Jacobian of O(x, u) at linearly spaced values of v between 90

and 110 percent of the actual speed. For the SDP simulations, I set cd ¼ c�2
¼ cy ¼ 0:015, for

which no skidding occurs when the optimal system matrix is used (see Fig 6).

The results in Fig 9 (panels A and C) show that SDP stabilization strongly depends on the

accuracy of the speed estimate: successful trials were only found for speed fractions between 0.917

(51% completed) and 1 (100% completed). The robustness is asymmetrical around the true

speed: there is a small range of underestimated speeds (fractions 0.9333 to 1) that allow for stabili-

zation, but for overestimated speeds this range is much smaller (less than from 1 to 1.0167).

For the BDP simulations, I set cd ¼ c�2
¼ cy ¼ 0:1944, for which no skidding occurs when

the optimal system matrix is used. The pattern of results for the BDP is like the one for the

SDP (see Fig 9, panels B and D) but the range of speed fractions that allows for BDP stabiliza-

tion is much wider than for the SDP: from 0.725 to 1.1625. The risk for stabilization failures is

again at the high end of the speed estimates.

In sum, compared to the robustness to inaccuracies in the learned noise covariance matrices

(over two orders of magnitude), the stabilization is much less robust to inaccuracies in the system

matrix that result from misestimation of the bicycle speed. This holds for both bicycle models.

Discussion

I proposed and evaluated a model for sensorimotor control. The central concept in this model

is a computational system, implemented in the CNS, that not only controls but also learns a

Fig 8. Simulation results for the BDP model with learned noise covariance matrices at 11 logarithmically spaced

fractions of the actual noise covariance matrices. See the caption of Fig 7.

https://doi.org/10.1371/journal.pone.0278961.g008
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mechanical system that exists outside the CNS. At the interface between these two systems,

there is a motor output system that transfers a control signal to the mechanical system, and a

sensory system that maps the state of the mechanical system into the computational system.

The computational system can simulate the combined mechanical, motor output, and sensory

input system. It does so by means of a learned approximation of (1) the physical laws that gov-

ern the mechanical system, (2) the mapping performed by the sensory system, and (3) the reli-

ability of the motor output and the sensory input. In my implementation of the computational

system, I assumed that (1) the optimal learned approximation of the physical laws is linear,

with the defining matrices (A and B) being the Jacobian of the EoM evaluated at the unstable

fixed point, and (2) the optimal learned approximations of the internal noise covariance matri-

ces are the noise covariance matrices of the optimal linear approximation of the combined

system.

The control of the mechanical system by the computational system is optimal in the sense

of stochastic OFC. It follows that the stabilization performance of the model only depends on

three factors: (1) the amplitude of the motor output and the sensory input noise, (2) the opti-

mality criterion (i.e., the expected cost-to-go), and (3) the accuracy of the learned approxima-

tion. Of these three, the accuracy of the learned approximation is the most interesting from a

cognitive point of view, and the amplitude of the motor output and the sensory input noise is

the most interesting from a physiological point of view.

I have applied this model to the balancing of a bicycle. This is not common in sensorimotor

control, where the relevant data are often collected in experimental paradigms that ask for

more isolated movements (e.g., reaching, pointing, lifting) that occur naturally as a part of

more complex movements involving the whole body. Balancing a bicycle is more like walking

but with the important advantage that the movements are strongly constrained by the geome-

try of the bicycle and the rider’s position on it. It therefore does not come as a surprise that bal-

ancing a bicycle has become a topic of interest for non-academics with an interest in

sensorimotor control; that community has contributed valuable observations by experiment-

ing with the handling properties of a bicycle (e.g., by reversing the steering response).

Fig 9. Simulation results as a function of 11 linearly spaced fractions of the actual speed for which the system

matrix A was calculated. Across all simulations, the actual speed was kept constant at v = 4.3 m/sec. (A, B) Percentage

of trials with skidding, separately for the SDP (in A) and BDP (in B) simulations. (C, D) RMS combined CoG lean

angle and maximum curvature, averaged over the successful trials in the SDP (in C) and BDP (in D) simulations.

Values are omitted for speed fractions at which no successful trials were obtained.

https://doi.org/10.1371/journal.pone.0278961.g009
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Compared to the isolated movements in typical laboratory tasks, bicycle balance control has

the additional advantage of societal relevance for the large group of senior citizens that want to

maintain their mobility.

I conducted three simulation studies. In the first of these studies, I demonstrate that the

model can balance a bicycle under realistic conditions. In the second study, I demonstrate that

the model’s stabilization performance is robust to inaccuracies in the learned noise covariance

matrices. For the BDP, this robustness is uniform across the noise levels, but for the SDP, stabi-

lization performance is only robust to learned motor noise covariances that are too small and

learned sensor noise covariances that are too large. The third simulation study shows that,

compared to the robustness to inaccuracies in the learned noise covariance matrices, the stabi-

lization is much less robust to inaccuracies in the system matrix that result from misestimation

of the bicycle speed.

All three simulation studies showed that the BDP is much less susceptible to noise than the

SDP. This is probably due to the positive trail of the BDP, which generates caster forces in the

front frame. These forces reduce the impact of the noise on the handlebars by aligning the dis-

turbed front wheel with the non-disturbed rear frame [36].

As holds for every model, my model is only an approximation of reality. It is important to

be aware of a few aspects for which I made a choice for the sake of computational feasibility or

simplicity. Not all choices are inevitable, but more work is needed to extend the model, allow-

ing it to perform all computations that are performed by the CNS. The first useful extension

immediately follows from the third simulation study: if the model must apply to a wide range

of speeds, a mechanism must be added for accurate speed estimation and selection of the

appropriate system matrix. For motor control in general, this idea also has been proposed by

Scott [41], but focusing only on the feedback (LQR) gain matrix (which depends on the system

matrix). The question now is “What is the speed-related information based on which the

appropriate system matrix is selected?”. Because of its large Weber fraction [9], it is doubtful

that optic flow is the only source of information for speed estimation. This is supported by the

fact that many experienced cyclists can ride on stationary bicycle rollers. Moreover, they can

do so while shifting gears, and this is inconsistent with a simple readout of proprioceptive

information (pedaling cadence) as a substitute for the missing optic flow. I conclude that none

of the known sources of sensory information is a plausible candidate for selecting the appro-

priate system matrix.

The second aspect to be aware of, is that the computational system is based on a linear

approximation of the unknown mechanical system. Although it is difficult to argue against the

idea that the internal model must be based on some sort of approximation, there is no reason

that it should be linear and optimal for a single point (i.e., the unstable fixed point). For exam-

ple, if it were the optimal linear approximation for the unstable fixed point, and the bicycle

rider had learned the linear coefficients based on experience with lean angles below 5 degrees,

then this linear approximation would also allow him to simulate the linear ODE in Eq 12 for

much larger lean angles than he is familiar with. This would allow him to balance his bicycle

outside the range he is familiar with. Whether this is possible, is still an empirical question.

The third aspect to be aware of pertains to the biological delays between the state estimate x̂
and (1) the mechanical system input z (the motor delay), and (2) the sensory feedback y (the

sensory delay). The motor delay is caused by the fact that the control action must pass via

motor axons and muscles before it affects the mechanical system. And the sensory delay is

caused by the fact that the sensory feedback must pass via a series of sensory neurons before it

arrives in the computational system. In my model, I made the unrealistic assumption that both

delays are zero. With respect to the motor delay, for a model that only estimates the current
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state x̂ tð Þ, the following must hold:

z t þ Tmotð Þ ¼ � Mx̂ tð Þ þm t þ Tmotð Þ;

in which Tmot is the motor delay. Even for a small motor noise m and a state estimate x̂ that

approximates the mechanical system states x very well, the torque z(t + Tmot) will not stabilize

the mechanical system if x(t + Tmot) differs too much from x(t). This is a well-known problem

in sensorimotor control, and it has been proposed that the prediction of future states may

solve it [42–47]. This implies that the estimate x̂ tð Þ is replaced by a prediction ~x t;Tmotð Þ, which

extrapolates the estimate at time t (i.e., x̂ tð Þ) to time t + Tmot.
With respect to the sensory delay, for a model that only estimates the current state x̂ tð Þ, the

following must hold:

x̂_ tð Þ ¼ A � BMð Þx̂ tð Þ þ K y t � Tsensð Þ � Cx̂ tð Þ½ �;

in which Tsens is the sensory delay. Like the problem that is caused by a motor delay, if

x(t–Tsens) (the state reflected by y(t–Tsens)) differs too much from x(t), the state estimate x̂ tð Þ
will be incorrectly updated. This problem can be solved by only updating the past state esti-

mate x̂ t � Tsensð Þ. Combining this solution with the one for the motor delay, this results in a

model in which the state estimate x̂ lags Tmot + Tsens behind the true state x, and the control

action is calculated using the prediction ~x t;Tmot þ Tsensð Þ. More work is required to evaluate

whether the SDP and BDP can be balanced with a realistic motor and sensory delay, and

whether prediction is necessary to achieve this.

The fourth aspect of the model to be aware of is that the control action is specified in torque

values, whereas the output of the CNS are neuronal firing rates that are converted to joint tor-

ques by the muscles. This firing-rate-to-torque conversion is not a part of the model, and this

most likely has consequences for the model’s validity. For instance, in the computational

model, the LQR gain performs a linear mapping from the state estimate to the control action,

and this ignores the fact that the muscles may not be able to produce the required torques.

This is especially important in the context of ageing and physical training, which affect the

available torque ranges. Most likely, motor skill learning involves two parallel processes, one at

the muscular level that determines the available torque ranges, and one at the level of the CNS

that learns the mapping from the state estimate to the required torques. For the model to be

valid, the CNS-level process must be informed by the available torque ranges.

It is possible to extend the model such that it incorporates the firing-rate-to-torque conver-

sion, and this requires knowledge of the muscular physiology. Specifically, if the optimal con-

trol action u is a vector of firing rates, then one needs a new matrix B that must be

decomposable as follows:

B ¼ B _x u ¼ B _x τBτ u;

in which Bτ u specifies the mapping from the firing rate vector u on the joint torques τ, and

B _x τ (the old matrix B) specifies the mapping from the joint torques on the state derivatives _x.

The matrix Bτ u must be specified based on knowledge of muscular physiology, and the

matrix B _x τ can be calculated as the Jacobian of O(x, τ) with respect to τ, evaluated at τ = 0.

The fifth aspect to be aware of is that the control actions are only two-dimensional (steering

and hip torque), whereas the number of balance-relevant muscles and joints is much larger.

This simplification can be motivated by the fact that the relevant control input is strongly con-

strained by the geometry of the bicycle and the rider’s position on it. This simplification is spe-

cific to balancing a bicycle, and this points to the challenges one may encounter when

extending the model to other forms of balance control (e.g., cycling while standing on the
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pedals, walking, running, skating, skiing). In principle, the extension is straightforward, as it

only requires the EoM for this other form of balancing. However, the challenging part may be

the derivation of the EoM, which starts by identifying the balance-relevant joints and selecting

the ones that can be actuated. Once the EoM are derived, the linearization and the calculations

for the computational system are identical to those for balancing the SDP.

The sixth aspect to be aware of is that the current sensory model is underspecified: it

assumes that the sensory input is identical to the state variables x (as implemented by the

assumption that the matrix C is the identity matrix) plus some noise. From sensory neurophys-

iology, it is known that information about the state variables (steering, lower body, and upper

body angles and angular rates) must be obtained from the somatosensory and/or the vestibular

system, but the details of that knowledge are not yet incorporated in the model.

The seventh aspect to be aware of pertains to the assumption that the motor and the sensor

noise are additive, although there is good evidence that motor noise is multiplicative [48, 49].

The advantage of additive over multiplicative noise, is that it is much easier to derive the opti-

mal control actions. For multiplicative noise, optimal control actions were derived by Todorov

and colleagues [3, 16], but these are restricted to movements with a finite horizon (e.g., point-

ing, reaching, throwing, hitting). Keeping balance is an infinite horizon problem (i.e., the cost-

to-go functional is an integral from zero to infinity), and this requires mathematical results for

which a convenient computational implementation is not yet available [50, 51].

Concluding, I have proposed and evaluated a model for sensorimotor control that is based

on the idea that a computational system in the CNS learns and controls an external mechanical

system. This control is optimal in the sense of stochastic OFC. The model can balance a bicycle

and its rider under realistic conditions and is robust to inaccuracies in the learned noise

covariance matrices. It is not robust to inaccuracies in the learned system matrix caused by a

misestimation of the speed. The model is a very useful starting point for investigations into

human balance control, and there are several ways in which it can be extended to provide a

more realistic account.

Supporting information

S1 Data. All results on which this paper reports can be reproduced using a set of Matlab

live scripts and functions. This set is documented in the live script BicBalOFC.mlx.

(ZIP)
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