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A B S T R A C T   

The innate immune system can display heterologous memory-like responses termed trained immunity after 
stimulation by certain vaccinations or infections. In this randomized, placebo-controlled trial, we investigated 
the modulation of Bacille Calmette-Guérin (BCG)-induced trained immunity by BCG revaccination or high-dose 
BCG administration, in comparison to a standard dose. We show that monocytes from all groups of BCG- 
vaccinated individuals exerted increased TNFα production after ex-vivo stimulation with various unrelated 
pathogens. Similarly, we observed increased amounts of T-cell-derived IFNγ after M. tuberculosis exposure, 
regardless of the BCG intervention. NK cell cytokine production, especially after heterologous stimulation with 
the fungal pathogen Candida albicans, was predominantly boosted after high dose BCG administration. Cytokine 
production capacity before vaccination was inversely correlated with trained immunity. While the induction of a 
trained immunity profile is largely dose- or frequency independent, baseline cytokine production capacity is 
associated with the magnitude of the innate immune memory response after BCG vaccination.   

1. Introduction 

Traditionally, immunological memory has been a trait exclusively 
attributed to the acquired immune system. However, in the last decade, 
extensive research has revealed that our innate immune system is also 
equipped with adaptive characteristics and can respond to secondary 
infection with a more effective antimicrobial response. This phenome-
non is termed trained immunity or innate immune memory, and has been 
mainly associated with the administration of live attenuated vaccines 
[1]. 

Bacille Calmette-Guérin (BCG), the tuberculosis vaccine, has 
garnered a lot of interest for its ability to induce trained immunity. BCG 
can mount a broad immune response not only against its target disease, 
but also against a wide variety of non-related infectious agents. This 
process is accompanied by epigenetic and metabolic rewiring of innate 
immune cells, the hallmarks of trained immunity [2–5]. Earlier 

observational studies already supported the notion that BCG reduced 
overall childhood mortality independently of its specific effect on 
tuberculosis (TB) [6–8]. These findings were substantiated by several 
randomized trials showing that BCG administration at birth resulted in 
decreased overall neonatal mortality, which was mainly explained by a 
lower incidence of sepsis and respiratory infections [9,10]. In adults, 
BCG decreased peak yellow fever vaccine viraemia and improved 
resistance to malaria infection [11,12]. The vaccine has been thoroughly 
researched during the COVID-19 pandemic as a potential “bridging” 
vaccine against SARS-CoV-2 [13]. Additionally, BCG increases antibody 
responses of concomitantly or subsequently administered vaccines such 
as the hepatitis B, H. influenza type B, pneumococcus, tetanus toxoid, 
and influenza vaccines [14–16]. Altogether, BCG can be considered as a 
training agent for the immune system by inducing long-term imprinting 
of innate immune cells, creating a state of readiness so that potential 
novel infections can be handled more effectively. 
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There are arguments to believe that these beneficial, non-specific 
effects of BCG and other live attenuated vaccines may be enhanced 
through revaccination. Reanalysis of a trial conducted in Algiers be-
tween 1935 and 1947 indicated that BCG revaccination may have 
conferred strong additional non-specific effects reducing overall child-
hood mortality [17]. The same outcome was observed in a small clinical 
trial in Guinea-Bissau [18]. BCG revaccination also resulted in a minor 
effect on the prevention of tuberculosis (TB) among school-aged chil-
dren [19]. Although revaccination is not recommended by the World 
Health Organization (WHO), there are many countries where this is 
routine [20]. Whether trained immunity responses might be boosted by 
revaccination or by increasing the dose of BCG is currently unknown. 

Here we assessed the effect of different BCG vaccination regimens 
such as the standard dose of BCG (SD), a high dose of BCG (HD), and a 
BCG revaccination (RV) on the induction of trained immunity in healthy 
adult volunteers. We measured pro-inflammatory cytokine responses in 
peripheral blood mononuclear cells (PBMC) and natural killer (NK) cells 
upon various microbial stimuli, to determine whether BCG boosting was 
superior to standard BCG administration. In addition, we analyzed the 
possible association between the amounts of live BCG (M. bovis myco-
bacteria) in the vials and cytokine production capacity. 

2. Materials and methods 

2.1. Study design 

This randomized placebo-controlled trial, depicted in Fig. 1, was 
designed to compare different BCG vaccination methods for identifying 
their efficacy to establish trained immunity. Accordingly, participants 
were 1:3:3:3 allocated to receive either a placebo vaccination (P, 0.1 ml 
of vaccine diluent), a single standard dose of BCG (SD, 0.1 ml, 0.75 mg/ 
ml, M. bovis, BCG Denmark, AJ Vaccines), a high dose of BCG (HD, 0.1 
ml 1.5 mg/ml M. bovis, BCG Denmark, AJ vaccines), or a revaccination 
with a single standard dose of BCG (RV), occurring three months after 
the first standard vaccination. The placebo group was intentionally kept 
small as the most important comparator is the SD group and to minimize 
the burden of the trial. To ensure that the groups ran parallel as to 
minimize seasonal effects, an extra placebo vaccination was introduced 
before the actual BCG vaccination in the SD and HD groups. Vaccination 

was performed intradermally in the left upper arm and, in case of 
revaccination, first in the right upper arm and then in the contralateral 
arm. Despite being generally safe and well-tolerated even in high dos-
ages and after revaccination, the vaccine can cause localized skin re-
actions, which are usually mild and self-limiting [21,22]. Seven days 
and fourteen days after receiving their last BCG vaccination, the injec-
tion site of the participants was examined. Blood was drawn at baseline, 
after the first vaccination at three months and after the last vaccination 
at six months. The trial protocol registered under NL58219.091.16 in the 
Dutch trial registry, was approved in 2019 by the Arnhem-Nijmegen 
Ethics Committee. All experiments were conducted in accordance with 
the Declaration of Helsinki and no adverse events were recorded. 

2.2. Subjects 

Fifty-one healthy, non-smoking, adult volunteers were recruited 
between October 2019 and February 2020. Subjects with a history of 
BCG vaccination, a receipt of a vaccination three months prior to the 
start of the study, or plans to receive any other vaccination during the 
study period were not eligible. Acute illness within two weeks prior to 
the study initiation or the use of drugs, including non-steroidal anti-in-
flammatory drugs (NSAIDs) less than four weeks before the start of the 
trial, but with the exception of oral contraceptives, also resulted in 
exclusion. Female subjects were screened for pregnancy with a urinary 
test and excluded if positive. All participants gave written informed 
consent. 

2.3. Ex-vivo trained immunity model 

Venous blood was drawn from study subjects and peripheral blood 
mononuclear cells (PBMC) were isolated using Ficoll-Paque (VWR) 
density gradient isolation. PBMCs were resuspended in RPMI 1640 
Dutch modified culture medium (Invitrogen) supplemented with 50 mg/ 
ml gentamicin, 2 mM glutamax and 1 mM pyruvate (Gibco). NK cells 
were purified from the freshly isolated mononuclear fraction using 
MACS microbeads (negative selection), according to the manufacturer’s 
protocol (Miltenyi Biotec). NK cells were counted, and purity was 
checked with Sysmex (Sysmex Corporation, Japan) and was >90%. NK 
cell suspensions were supplemented with IL15 (10 ng/ml). Subse-
quently, 5*105 PBMCs or 1*105 NK cells in 100 μl volume were added to 
96-wells round bottom plates (Corning). Cells were incubated with 
RPMI (supplemented as previously mentioned, and with 20% human 
pooled serum), lipopolysaccharide derived from E. coli 10 ng/ml (LPS 
O55:B5, Sigma-Aldrich), heat-killed E. coli 1*106/ml (ATCC35218), 
S. aureus 1*106/ml (ATCC25923), M. tuberculosis 5 μg/ml (M. tb, strain 
H37Rv), C. albicans 1*106/ml (strain UC 820) and phytohemagglutinin 
(PHA, Sigma-Aldrich) 10 μg/ml. Cells were incubated at 37 ◦C with 5% 
CO2 for 24 h, 48 h (NK cells), and 7 days, after which supernatants were 
collected and stored at − 80 ◦C. 

2.4. Cytokine measurements and analysis 

Cytokine concentrations were determined in 24 h (TNFα, IL6, IL1β), 
and 7-day supernatants (IFNγ) after stimulation of PBMCs, and after 48 h 
(TNFα, IFNγ, IL6, IL1β) after stimulation of NK cells, using commercial 
ELISA kits (R&D systems, Bio-Techne, USA) according to the in-
structions of the manufacturer. Differences between cytokine produc-
tion before and after vaccination were analyzed using the Wilcoxon 
signed-rank test. Differences between the four intervention groups 
were analyzed with Kruskal-Wallis tests. When two intervention groups 
were compared, the Mann-Whitney U test was utilized. All calculations 
were performed in GraphPad Prism 8. A p-value lower than 0.05 was 
considered statistically significant. 

Fig. 1. Clinical study design comparing the effect of various BCG vaccination 
regimes on trained immunity. 
Fifty-one healthy adults were randomized to either one of the four intervention 
groups: placebo vaccination (P), single dose BCG (SD), high dose BCG (HD) or 
BCG revaccination (RV). Blood was drawn at baseline, 90d and 180d. Injection 
sites were inspected twice after the second vaccination, indicated by the 
magnifying glass. 
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2.5. CFU counts and cytokine correlations 

To count the number of CFUs of viable mycobacteria per ml of vac-
cine, a 0.1 ml sample of each lot of regular and high dose vaccine was 
transferred to a 96-wells plate and was 10-fold serial diluted up to 10− 6. 
From each dilution, three 10 μl samples were plated on Middlebrook 
7H11 plates (BD Bioscience, Erembodegem, Belgium). Plates were 
incubated for up to 21 days at 37 ◦C before counting the number of 
colonies. The mean of the three samples was then calculated and 
expressed as CFU/ml. Correlations between cytokines and CFUs were 
calculated with Spearman’s correlation test using GraphPad Prism 8. 

3. Results 

3.1. The effect of BCG regimen on monocyte- derived cytokine production 
capacity in PBMCs 

To investigate the effect of a high dose BCG and a revaccination on 
the induction of pro-inflammatory cytokines in reference to a regular 
BCG vaccination, we performed several stimulation assays using specific 
and heterologous microbial agents in 51 healthy volunteers. Baseline 
characteristics were not significantly different between groups 
(Table 1). All BCG vaccinated participants developed a blister. BCG 
vaccination, whether SD, HD or RV, led to significantly higher 
monocyte-derived TNFα production upon stimulation with LPS, 
S. aureus and E. coli (Fig. 2). However, there was no significant difference 
in the magnitude of the increase between either of the three BCG 
vaccination groups. Stimulation with C. albicans and M. tb did not alter 
TNFα production in vaccinated individuals compared to the baseline 
secretion before vaccination (supplementary fig. 1). Similarly, there 
were no differences in IL6 or IL1β production between the SD, HD, and 
RV groups after 6 months, although overall IL6 production followed a 
decreasing trend and overall IL1β production was moderately increased 
(supplementary fig. 2 and 3). Of note, similar cytokine production ten-
dencies after BCG vaccination were observed in separate analyses for 
male and female participants, but these did not reach statistical signif-
icance due to group size (supplementary fig. 4). This indicates that a 
standard dose of BCG, as well as a high dose and BCG revaccination, 
induces increased pro-inflammatory cytokine production from PBMCs 
upon bacterial stimuli; surprisingly however, the magnitude of this in-
crease is comparable, irrespective of dosage and number of doses. 

3.2. The effect of BCG regimen on T-cell -derived cytokine production 
capacity in PBMCs 

T-cell-derived IFNγ, produced by PBMCs upon stimulation with 
M. tb, was higher in the revaccination group compared to placebo 
vaccination, but not compared to a single dose of BCG. Although BCG 
vaccination reduced IFNγ production stimulated by C. albicans in all 
BCG groups, no significant differences between groups were observed in 
the overall reduction at 6 months (Fig. 3). This indicates that 

heterologous T-cell responses as well as specific immune responses are 
not stronger following revaccination or high dose BCG in reference to a 
standard BCG vaccination. 

3.3. The effect of BCG regimen on cytokine production capacity in NK 
cells 

Next, in isolated NK cells, we determined the effect of a single dose 
BCG, a high dose BCG and revaccination on the modulation of the two 
major NK cell cytokines IFNγ and TNFα. Following C. albicans stimula-
tion, both cytokines were significantly elevated in the HD group, as was 
the case for TNFα production upon LPS exposure. Surprisingly, revac-
cination caused significantly lower IFNγ responses upon LPS and M. tb 
stimulation (Fig. 4). This indicates that the boosting methods have 
different effects on NK cells than on T-cells. However, at 6 months, no 
differences in cytokine production were observed between SD, HD, and 
RV. IL1β and IL6 production in general was low and showed a slight 
decrease upon M. tb stimulation, but there were no significant differ-
ences between the groups after 6 months (supplementary fig. 5). 

3.4. Lack of correlation between BCG CFUs and cytokine production 
capacity 

We also investigated whether the amount of viable BCG adminis-
tered to the study subjects was associated with modified cytokine pro-
duction in PBMCs and NK cells. To this end, we counted the number of 
CFUs from the remaining material in the vials and correlated these 
numbers with the cytokine production from PBMCs and NK cells upon 
stimulation. We did not find any correlation between BCG CFUs and 
monocyte-derived TNFα production upon stimulation with LPS, 
S. aureus or E. coli (Fig. 5A). We also did not see any association between 
the amount of live BCG and T-cell or NK cell-derived IFNγ production 
following exposure to specific and non-specific stimuli (Fig. 5B, C). 

3.5. Negative correlation between baseline cytokine production and 
cytokine production capacity 

Lastly, we analyzed whether baseline cytokine production in the 
individuals was correlated with cytokine production capacity at 6 
months after BCG vaccination. Stimulation assays showed that partici-
pants who had low cytokine release at baseline were more likely to have 
greater TNFα fold changes (PBMCs), as well as greater IFNγ fold changes 
(T-cells and NK cells) after BCG vaccination (Fig. 6). Thus, indicating a 
significant inverse correlation between cytokine release at day 0 and 
cytokine fold change at 6 months. 

4. Discussion 

The discovery of trained immunity has propelled immunological 
research into a new direction, shedding a different light on existing 
vaccines in the pursuit of novel therapeutic strategies [23]. The 100- 
year-old vaccine, BCG, has been widely studied for this purpose and 
the mechanisms underlying BCG- induced trained immunity have been 
partially unraveled. In the present study, we have analyzed several 
vaccination regimens in order to enhance the trained immunity 
response. Cytokine induction in PBMCs and NK cells after a high dose 
BCG and a BCG revaccination were compared to a standard BCG dose 
and a placebo vaccination. Collectively, our data indicate that, although 
there is a considerable variation in live mycobacteria in BCG vials, a 
regular BCG vaccination dose contains a sufficient amount of stimulus to 
achieve the maximum effect on cytokine production capacity in mono-
cytes, T-cells and NK cells after exposure to various stimuli. Revacci-
nation also did not prove to be superior in eliciting pro-inflammatory 
cytokines compared to the other BCG interventions. In other words, BCG 
boosting, applied as a single vaccination with a higher dose or two doses 
of standard dose BCG, does not correlate with and does not favor an 

Table 1 
Baseline characteristics of BCG-vaccinated individuals and controls.  

Characteristic* Placebo Single 
dose 

High 
dose 

Revaccination P- 
value†

n = 5 n = 13 n = 16 n = 17 

Sex, female 4 (80) 6 (46.2) 8 (50) 13 (76.5) 0.245 
Sex, male 1 (20) 7 (53.8) 8 (50) 4 (23.5)  
Age, years 22.8 ±

3.1 
25.3 ±
8.2 

22.8 ±
3.4 

24.5 ± 7.6 0.733 

BMI, kg/m2 21.9 ±
3.9 

23.1 ±
2.4 

24.5 ±
3.2 

22.9 ± 2.5 0.251  

* Mean ± SD for continuous variables and n (%) for categorical variables. 
† ANOVA for continuous variables and Fisher’s exact test for categorical 

variables. 
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enhanced trained immunity profile in the majority of cases. On the other 
hand, the inverse correlation between baseline release and fold change 
production suggests that the strength of trained immunity is in part 
dependent on the subject’s baseline cytokine induction. 

Our finding that cytokine production capacity before vaccination is a 
predictor for BCG effectiveness in recipients is in line with recent 
research on determinants of population variation of trained immune 
reactions upon BCG administration. Genotype made the largest contri-
bution to the breadth of changes in immune function after vaccination, a 
large part of which was however under genetically-encoded epigenetic 

control. Subjects who had little chromatin accessibility for genes 
involved in trained immunity at the start of the study, which in turn was 
reflected by low cytokine induction before vaccination, were more likely 
to mount a strong immune response after BCG (Moorlag et al., 2022, 
submitted). This confirms our finding that not all individuals are equally 
‘trainable’ with BCG and that people with a low innate immune profile 
are best targets for trained immunity. Moreover, it seems that BCG 
works to create homeostasis, promoting immune function in individuals 
with diminished cytokine production capacity, but not causing hyper-
inflammation when immune responses are already activated before 

Fig. 2. Monocyte-derived cytokine responses before vaccination and at 6 months. 
TNFα production was quantified in PBMCs after 24 h stimulation with LPS, S. aureus and E. coli. Black lines represent medians. Wilcoxon signed-rank test was 
performed to compare cytokine release before and after vaccination. Differences between the four intervention groups were analyzed with Kruskal-Wallis tests; n = 5 
(P), n = 13 (SD), n = 16 (HD), n = 17 (RV); *p < 0.05, **p < 0.01. 

Fig. 3. T-cell-derived cytokine responses before vaccination and at 6 months. 
IFNγ production was measured in PBMCs after 7d stimulation with PHA, C. albicans and M. tb. Black lines represent medians. Wilcoxon signed-rank test was per-
formed to compare cytokine release before and after vaccination. Differences between the four intervention groups were analyzed with Kruskal-Wallis tests; n = 5 (P), 
n = 13 (SD), n = 16 (HD), n = 17 (RV); *p < 0.05, **p < 0.01, ***p < 0.001. 

Fig. 4. NK cell-derived cytokine responses before vaccination and at 6 months. 
NK cells were isolated from the PBMC fraction and stimulated with LPS, C. albicans and M. tb for 48 h. Black lines represent medians. (A) TNFα, (B) IFNγ. Wilcoxon 
signed-rank test was performed to compare cytokine release before and after vaccination. Differences between the four intervention groups were analyzed with 
Kruskal-Wallis tests; n = 5 (P), n = 13 (SD), n = 16 (HD), n = 17 (RV); *p < 0.05, **p < 0.01. 
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Fig. 5. Correlations between cytokine production capacity and BCG viability. 
Viability in left-over material from BCG vials was measured by colony forming units (CFU). Colonies were counted after 21d and expressed as mean CFUs per ml. 
Spearman correlations were performed between BCG CFUs and cytokine production after stimulation with various pathogens in SD and HD individuals at 6 months, 
n = 29. (A) monocyte-derived TNFα production upon 24 h incubation with LPS, S. aureus and M. tb (B) T-cell-derived IFNγ after 7d incubation with PHA, C. albicans 
and M. tb. (C) NK cell- derived IFNγ after 48 h incubation with LPS, C. albicans and M. tb. 

Fig. 6. Correlations between baseline cytokine production and cytokine production capacity at 6 months. 
The association between baseline cytokine production and cytokine production capacity at 6 months in SD, HD and RV vaccinated individuals was assessed using 
Spearman correlations, n = 46. (A) Baseline monocyte-derived TNFα production upon 24 h incubation with LPS, S. aureus and M. tb (B) Baseline T-cell-derived IFNγ 
after 7d incubation with PHA, C. albicans and M. tb. (C) Baseline NK cell- derived IFNγ after 48 h incubation with LPS, C. albicans and M. tb. 
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vaccination. 
A few aspects are important to underline. In the group vaccinated 

with a high dose of BCG, NK cells exhibited an increased cytokine pro-
duction capacity after stimulation with C. albicans. Surprisingly, in 
response to stimulation with mycobacteria, T-cell-derived IFNγ and 
monocyte-derived cytokines were less strong compared with the stan-
dard BCG vaccination. This might suggest that in the case of fungal in-
fections, a higher dose of BCG could be beneficial specifically to drive a 
NK cell response at the cost of downregulating T-cell and monocyte 
responses. This conclusion should be however interpreted with caution, 
and independent validation in future studies is warranted. If validated 
however, this finding could have considerable importance. Studies in 
experimental mouse models showed that NK cells are directly engaged 
in the antifungal immune response. The depletion of NK cells in these 
models prompted susceptibility to aspergillosis, candidiasis, and 
C. neoformans infection, leading to a rise in mortality [24–26]. BCG 
improvement of anti-fungal host defense may thus prove to have clinical 
potential. 

Some studies have reported that revaccination with BCG could har-
bor more protection against TB than a single dose [17–19]. We could not 
provide an immunological explanation for these observations based on 
T-cell derived IFNγ production upon ex-vivo challenge with M. tb. 
Although a BCG revaccination caused a somewhat greater increase in 
cytokine production than a single BCG vaccination, this difference was 
not statistically significant. We cannot exclude that this was due to the 
relatively small number of test subjects in our study, and additional 
studies are warranted. This is in contrast to other, albeit few, studies 
using immunologic markers as a biomarker of the effects of BCG 
revaccination. In particular, revaccination boosted BCG-specific Th1 
responses in CD4, CD8, and γδT-cells and improved IFNγ release from 
NK cells [27]. However, it is currently debated whether a Th1 response 
with elevated IFNγ activity following exposure to mycobacterial anti-
gens is an accurate correlate of protection [28]. Furthermore, expanded 
cell frequencies and a Th1 dominant cytokine expression profile in CD4, 
CD8 and γδT-cells in children are not associated with BCG-induced 
protective immunity against TB, although in adults T-cell proliferation 
seems to have some predictive value [29–31]. In the absence of a solid 
immune correlate of protection it cannot be inferred that a revaccination 
with BCG is completely redundant in the prevention of active TB disease 
or M. tb infection. To overcome this, Nemes et al. used sustained sero-
conversion in adolescents, resembled by positive QuantiFERON-TB Gold 
(QFT) tests that remained positive for 6 months, as a surrogate for M. tb 
infection. They found a sustained QFT conversion of 6.7% due to BCG 
revaccination, as opposed to 11.6% in primary vaccinated individuals 
[32]. Interestingly, this study also conveyed evidence for non-specific 
protection of BCG revaccination. The authors reported significantly 
fewer upper respiratory tract infections among the revaccination group 
as compared to the single dose group (2.1% and 7.9% respectively) [32]. 
This partial protection against respiratory tract infections could indicate 
the possible role of trained immunity. 

Only one study on BCG revaccination and non-specific beneficial 
effects was conducted in adults, however with a sub-optimal design. 
Glynn et al. assessed all-cause mortality in a double-blind, randomized, 
placebo-controlled trial over the course of 30 years in Malawi. They 
found no difference between BCG revaccination or placebo, arguing 
against beneficial non-specific effects [33]. It must be stressed however 
that the advantages of trained immunity are best appreciated in a time 
period of one to two years from vaccination. Additionally, trained im-
munity protects against communicable diseases, which indeed accounts 
for reduced mortality in children, but in adults simply results in fewer 
infections and thereby a decline in morbidity, rather than mortality 
[34]. 

Our study also has limitations that should be considered. The inter-
vention groups in our trial are relatively small, which makes it difficult 
to extrapolate our findings to the general public. The placebo group was 
smaller than the other groups, as it only aimed to ensure that the 

differences observed were due to BCG vaccination alone, and not to 
seasonal effects on cytokine production. Subsequently, the most infor-
mative comparator to examine the superiority of BCG booster regimens 
to induce trained immunity is represented by the single dose BCG group. 
The distribution of sex among some intervention groups, although not 
significantly different, is somewhat uneven. Similar tendencies in 
cytokine production capacity were obtained in sex-stratified compari-
sons, not reaching statistical significance because of the group size. 
Nonetheless, it cannot be excluded that potential sex- dependent effects 
remained undetected because of limitations in group size. It has been 
reported that protective as well as deleterious non-specific effects of 
vaccines can behave in sex-dependent ways and should be further 
explored [35,36]. Also, the population that would benefit most from 
trained immunity is presumably composed of people with a frail im-
mune system, such as the immunocompromised and the elderly. Since 
recent trials have shown that BCG in elderly is generally safe, it would be 
interesting to see whether the purported effects are similar among 
people of older age [37]. Finally, it is essential to point out that, 
although we did not find immunological basis to support double vacci-
nation regimes, this study was not conducted in a TB endemic area and 
therefore, these results should be interpreted cautiously before inde-
pendent validation. 

In conclusion, we provide immunological data suggesting that BCG 
revaccination or high dose BCG administration do not contribute to an 
enhanced trained immunity program beyond that induced by a standard 
BCG dose. Our results suggest that, in most cases, a single dose BCG is 
sufficient for achieving an effective trained immunity response. There 
are some arguments that if BCG is used to improve host defense against 
infections that are more contingent upon NK cell activity, it may be 
beneficial to increase the amount of BCG administered. Furthermore, the 
strength of the trained immunity response upon BCG vaccination seems 
to be influenced by baseline cytokine induction. More research is war-
ranted to explore modulation of trained immunity by BCG vaccination, 
and the potential benefit of other schemes of vaccination. 
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