Second-harmonic generation from thick thermal oxides on Si(111): the influence of multiple reflections

C. W. van Hasselt, M. A. C. Devillers, and Th. Rasing

Research Institute for Materials, University of Nijmegen, Toernooiveld, NL 6525 ED Nijmegen, The Netherlands

O. A. Aktsipetrov

Physics Department, Moscow State University, Moscow, 119899, Russia

Received May 6, 1994; revised manuscript received August 29, 1994

Recently a number of second-harmonic-generation (SHG) experiments on (thick) oxide films on Si were performed as studies of the possible presence of strain, crystalline SiO₂, a static electric field, and roughness at the Si—SiO₂ interface. Large enhancements of the SHG anisotropy have been observed for thick oxide films. We show here that the SHG for thick thermal oxide films on Si(111) as a function of oxide thickness and angle of incidence is dominated by linear optics, owing to multiple reflections in the oxide film.

1. INTRODUCTION

Optical second-harmonic generation (SHG) and sum-frequency generation have become much used, versatile, and sensitive surface and interface probes.1,2 The techniques derive their surface sensitivity from the symmetry breaking at an interface and are especially sensitive to surface symmetry and electronic structure. They may therefore be extremely useful for studying the technologically important Si—SiO₂ interfaces. Recently a number of such studies were performed, indicating the sensitivity of SHG to surface symmetry3-5 and steps on vicinal surfaces.6-8 The effects of strain,6,10 interface charges and electric fields,11 preparation and roughness,12 the possible presence of a crystalline oxide interface layer,13,14 and the oxide thickness10,15 have been discussed. Given the importance of the Si—SiO₂ interface, these various observations and interpretations call for a more systematic approach to the applicability of SHG as a diagnostic interface probe. We have performed SHG measurements on thermal oxide films on Si(111), with film thicknesses ranging from 2 to 300 nm. We find that the changes in the s-polarized SHG signal as a function of oxide thickness and angle of incidence can be completely described by multiple reflections in the SiO₂ layer. The p-polarized results do suggest that there may be other SHG sources apart from the multiple-reflection effects.

2. THEORY

For a (111) surface of a cubic crystal, excited by a single s-polarized pump field at frequency ω, the s-polarized second-harmonic (SH) field Eₛₛ can be written as

\[E_{s,s}(2\omega) = b(x_{\xi\xi} - a\xi)\sin(3\psi), \]

where \(\xi \) is parallel to the (112) direction, \(x_{\xi\xi} \) is the anisotropic surface contribution to \(X_{\xi\xi}^{(2)} \), \(\xi \) is the bulk anisotropic contribution, \(\psi \) is the angle between \(\xi \) and the plane of incidence, and \(a \) and \(b \) are complex numbers containing the Fresnel factors for reflection. As can be seen from Eq. (1), bulk and surface contributions appear in the same way and therefore cannot be distinguished in a single measurement. Although in principle the Fresnel factors for surface and bulk are different, it has been shown that this difference is too small for the factors to be separated by scanning of the angle of incidence17,18 owing to the high index of refraction of Si. For a stepped surface an estimation of the relative surface and bulk contributions can be made because of symmetry breaking by the steps.6-8 For a flat Si(111) surface \(E_{s,s} \) can be effectively characterized by one response parameter \(\chi \), and the reflected SH intensity \(I_{s,s} \) can be written as

\[I_{s,s}(\omega) \sim L_{2\omega} \chi |L_{\omega}|^2 I(\omega) \sin(3\psi). \]

Here \(I(\omega) \) is the pump intensity and \(L_\omega \) and \(L_{2\omega} \) are the linear Fresnel factors at ω and 2ω, respectively. The wave vectors for the fundamental and the SH field are matched by the nonlinear boundary condition19:

\[k_\perp(2\omega) = 2k_\perp(\omega). \]

For Si(111)—SiO₂ this model is consistent with SHG contributions from the silicon bulk, the Si—SiO₂ interface, and a possible SiOₓ or crystalline SiO₂ transition layer. We exclude contributions from the SiO₂ bulk, as is expected for a centrosymmetric medium with low nonlinear response, and contributions from the SiO₂—air interface.

For an oxide film on a silicon substrate no extra contributions to SHG are expected, in contrast to some recent observations that report a distinct effect of the oxide thickness on SHG.10,15 It can easily be shown, as is done in this paper, that these observations are mostly due to interference effects in the oxide layer that have to be taken into account before any other possible nonlinear sources are discussed.

Having a refractive index between that of air and silicon and negligible absorption for wavelengths from the UV to the IR, an oxide film on silicon can act as a resonator that can enhance the coupling of the fields into and through the film.
out of the silicon. With such films described with a perfect three-layer model \(\text{air-SiO}_2-\text{Si} \), it is straightforward to write the Fresnel factors \(L_x \) and \(L_y \). For an incoming field in air at frequency \(\omega \) and a certain oxide thickness the field at the \(\text{Si-SiO}_2 \) interface just inside the silicon is calculated and matched to the field at \(2\omega \) by use of Eq. (3). For this SHG field at the interface the transmission to the air is then calculated. Thus for a given \(\chi \) of the \(\text{Si-SiO}_2 \) interface and Si bulk the dependence of \(L_x \) on the angle of incidence and oxide thickness is completely described. Of course such a model can be extended to include more interfaces that do have an SHG response.\(^{23,24} \)

3. EXPERIMENT

Our samples were p-type \((2-5 \, \Omega \, \text{cm})\) Si\((111) \) \((-0.5\,\text{\degree})\) wafers on which a 310-nm thermal oxide was grown at 1000\(^\circ\) in a dry oxygen ambient environment. The wafers were annealed at a slightly higher temperature in a \(\text{N}_2 \) atmosphere to produce a smooth \(\text{Si-SiO}_2 \) interface. One wafer of the same batch with a native oxide of 2 nm was kept as a reference sample. Single-wavelength ellipsometry with a red \(\text{He-Ne} \) laser

To avoid measuring at the transition regions between different thicknesses. On one of these samples the linear reflection was measured with a green \(\text{He-Ne} \) laser at 544 nm for the same angle and polarizations.

4. RESULTS AND DISCUSSION

Figure 1 shows the amplitude of \(I_{ss} \) as a function of angle of incidence for oxide thicknesses of 310 (circles) and 260 nm (triangles) and for the reference sample with a native oxide (squares). All data are plotted on the same scale. The reference sample shows the characteristic monotonic decay from a maximum at 0\(^\circ\) to zero at 90\(^\circ\).\(^{6,16,17} \) Of course, multiple reflections play a minor role for this thin oxide. With, for Si, \(n(\omega) = 4.151 + i0.052 \) and \(n(2\omega) = 1.854 + i4.438 \),\(^{23} \) the measurement is well described by our multiple-reflection model (solid curves).

The measurements on the thick oxides show a large increase in SHG. Although the overall angle dependence is similar to that for the native oxide, now maxima appear at 25\(^\circ\) (310 nm) and 55\(^\circ\) (260 nm).

For both thicknesses the azimuthal dependence contained only an anisotropic term, so no contribution from the oxide is included, which would be isotropic. Taking for \(\text{SiO}_2 \) \(n(\omega) = 1.461 \) and \(n(2\omega) = 1.500 \),\(^{24} \) and using the same scaling parameter for both curves, we see that the measurements are well described by the multiple-reflection model both in amplitude and angle dependence. The dotted curve is the prediction from this model for a 2-nm oxide, given the amplitudes for 310 and 260 nm. It shows that the \(\chi \) parameter of the thermal oxide is a factor of 1.2 larger than that of the native oxide. This difference indicates that these are two different interfaces and shows that SHG could be used to study the microscopic differences
between thermal and native silicon oxides. This is beyond the scope of the present paper. The appearance of a maximum in the angular dependence can be understood in terms of the optical path length in the oxide film. For every oxide thickness there is an angle of incidence such that the multiple reflected fields interfere constructively at the Si–SiO₂ interface, leading to a higher field in the silicon and a higher SH response. For the generated SH field the argument is analogous.

This thickness dependence is more directly demonstrated in Fig. 2, where the amplitude of I_{ss} (circles) and linear reflection (squares) are plotted as a function of oxide thickness for a 4° angle of incidence. The open symbols represent measurements on a part of the sample that was etched clean and then oxidized again. The solid curves are models for both.

The changes in I_{ss} can thus be completely understood in terms of multiple reflections in the oxide film. The analysis is simplified by the fact that for this polarization the SHG can effectively be characterized by one parameter. The same applies to the s-polarized SHG for a p-polarized pump field, which also contains only anisotropic contributions. For the p-polarized SHG both isotropic and anisotropic contributions arise, and the number of contributing tensor elements increases. The SHG can then no longer be characterized by a single parameter χ. However, from Snell’s law it follows that the propagation direction of light in a nonabsorbing film is independent of film thickness. The Fresnel formulas show that for such a film and s-polarized light the amplitude of the reflected and the transmitted light depends on the film thickness, but the polarization is not changed. In our case the oxide film is nonabsorbing for both the fundamental and the SH frequency. This means that the orientation of E_0 and $E_{2\omega}$ with respect to the sample coordinate system is independent of oxide thickness, and the relative contributions to the SHG from the different tensor components will remain the same. So, if only multiple reflections play a role, no other SHG source, then for I_{pp} the anisotropy scales with oxide thickness.

I_{pp} has been measured as a function of the angle of incidence upon the samples with 310 and 260-nm oxide thicknesses and on the reference sample. The results can be described by

$$E_{p,p}(2\omega) = A + B \exp(i\phi)\cos(3\psi)$$

where A is the isotropic and B the anisotropic contribution, both containing several bulk and surface tensor elements that have different angle-of-incidence dependences, and Φ is the phase difference between A and B. In Figure 3 the ratio A/B is plotted for all three measurements. Note first that for all samples the ratio A/B is indeed not constant. For the reference sample (squares) the ratio $A/B = 1$ at an angle of incidence of 45°, in agreement with a number of experiments on Si(111) in air. For 310 (circles) and 260 nm (triangles) the ratio A/B is the same as for the reference sample below 45°, above which they clearly deviate. These results suggest that there is an extra SHG source. This source could be trapped charges at the interface that give rise to a symmetry-breaking dc electric field.

In conclusion, we have shown that the effect of a thick oxide layer on the SHG from thermally oxidized Si(111) is dominated by linear optics, owing to multiple reflections in the oxide film. These multiple reflections can enhance the SHG significantly when compared with that for a native oxide sample and are not related to any SHG source in the oxide itself, as was suggested previously. For the s-polarized SHG this leads to an overall scaling of the anisotropy, which contains only anisotropic contributions. For the p-polarized SHG, however, the form of the anisotropy is also changed, suggesting an extra SHG source. For native oxides of 2 nm one can of course
REFERENCES

A. Aktsipetrov thanks the Research Institute for Matematisch Onderzoek. We thank S. Bakker (University of Groningen) for their hospitality and for financial support. Part of this work was supported by the Stichting voor Fundamenteel Onderzoek der Materie, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

ACKNOWLEDGMENTS

We thank S. Bakker (University of Groningen) for preparation of the thick thermal oxide samples. O. A. Aktsipetrov thanks the Research Institute for Materials for their hospitality and for financial support. Part of this work was supported by the Stichting voor Fundamenteel Onderzoek der Materie, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

REFERENCES

Fig. 3. Quotient A/B as a function of angle of incidence for oxide thicknesses of 310 circles, 260 (triangles), and 2 nm (squares). A is the isotropic and B the anisotropic contribution to I_p,p. The solid curves are guides to the eye.

neglect the effects of multiple reflections. However, for these native oxides the SHG appears to depend on the sample preparation. These measurements show that one should be careful in analyzing the SHG from a buried interface and take into account the possibility of multiple reflections in the overlayer.