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Abstract

A multiband (MB) echo-planar imaging (EPI) sequence is compared to a multiband

multiecho (MBME) EPI protocol to investigate differences in sensitivity for task func-

tional magnetic resonance imaging (fMRI) at 3 T. Multiecho sampling improves sensi-

tivity in areas where single-echo-EPI suffers from dropouts. However, It requires in-

plane acceleration to reduce the echo train length, limiting the slice acceleration fac-

tor and the temporal and spatial resolution Data were acquired for both protocols in

two sessions 24 h apart using an adapted color-word interference Stroop task.

Besides protocol comparison statistically, we performed test–retest reliability across

sessions for different protocols and denoising methods. We evaluated the sensitivity

of two different echo-combination strategies for MBME-EPI. We examined the per-

formance of three different data denoising approaches: “Standard,” “AROMA,” and

“FIX” for MB and MBME, and assessed whether a specific method is preferable. We

consider using an appropriate autoregressive model order within the general linear

model framework to correct TR differences between the protocols. The comparison

between protocols and denoising methods showed at group level significantly higher

mean z-scores and the number of active voxels for MBME in the motor, subcortical

and medial frontal cortices. When comparing different echo combinations, our results

suggest that a contrast-to-noise ratio weighted echo combination improves sensitiv-

ity in MBME compared to simple echo-summation. This study indicates that MBME

can be a preferred protocol in task fMRI at spatial resolution (≥2 mm), primarily in

medial prefrontal and subcortical areas.
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1 | INTRODUCTION

Gradient-echo echo-planar imaging (GE-EPI; Mansfield, 1977) is the

most commonly used sequence in functional magnetic resonance

imaging (fMRI) (Bandettini et al., 1992; Kwong et al., 1992; Ogawa

et al., 1990) due to its high sensitivity to blood oxygenation level

dependent (BOLD) contrast and fast acquisition speed. Typically, the

acquisition time is several seconds for whole-brain coverage. Using

parallel imaging (PI; Griswold et al. 2002a; Pruessmann et al., 1999;

Sodickson & Manning, 1997) echo train length (ETL) can be reduced
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considerably, which allows for a higher spatial resolution to be practi-

cally achievable and reduces distortion artifacts. However, in-plane

acceleration does not translate to a corresponding TR reduction by

the acceleration factor in fMRI, where a fixed TE is necessary for opti-

mum BOLD contrast (at TE � T2*) (Menon et al., 1993). On the con-

trary, simultaneous multislice (SMS) or multiband (MB) (Larkman

et al., 2001; Nunes et al., 2006) techniques allow for a significant

increase in temporal resolution by exciting and acquiring multiple

slices simultaneously. Thereby reducing acquisition time by a factor N

without decreasing echo time and without a substantial signal-to-

noise (SNR) penalty. MB can however increase SAR and RF peak

power (which may require lower bandwidth RF pulses) and gives a

reduced steady-state signal due to shorter TR. The development of

robust reconstruction techniques (Moeller et al., 2010) and the inven-

tion of blipped CAIPIRINHA (Setsompop et al., 2012) brought the

benefits of CAIPIRINHA (Breuer et al., 2006) to EPI. All these factors

contributed to the widespread implementation and use of SMS tech-

niques, including in the human connectome project (HCP; Feinberg

et al., 2010; U�gurbil et al., 2013).

MB-EPI has become the method of choice for acquiring BOLD

fMRI data (Feinberg et al., 2010; U�gurbil et al., 2013), effectively

replacing standard single-band 2D-EPI. Despite being commonly used,

the benefits of a higher temporal resolution are not readily apparent

due to the slow BOLD hemodynamic response. Nevertheless, the

higher sampling rate in MB makes it possible to adequately sample

the respiratory and, to some degree, cardiac frequencies, thus increas-

ing temporal SNR (tSNR) (Griffanti et al., 2014) by allowing the effi-

cient removal of physiological noise from the data. A faster sampling

rate with shorter TR increases the number of volumes acquired per

unit time, thereby improving the statistical outcome in task fMRI com-

pared to single-band (Demetriou et al., 2018; Todd et al., 2017, Todd

et al., 2016; Chen et al., 2015). However, to rigorously assess the sen-

sitivity gain at higher MB factors, the evaluation needs to consider

that the data sets have different sampling rates, numbers of volumes,

and temporal autocorrelation. When comparing the various software

packages available (Olszowy et al., ) recommended using SPM (FAST)

or AFNI (Analysis of Functional NeuroImages) for short-TR data, to

obtain an unbiased estimate of statistical values.

The attractiveness of ME acquisitions over single echo lies in

compensation for variations in T2*(Speck and Hennig, 1998, Hagberg

et al., 2002). In ME-EPI, images are acquired with different echo times

after a single RF excitation. Acquiring signals at multiple TEs makes it

possible to increase the BOLD contrast-to-noise ratio (CNR) across

the brain by combining images from different echo times (Posse

et al., 1999). In comparison to standard single-echo EPI, ME-EPI com-

bined with PI showed an increase in functional sensitivity at both 3 T

(Poser et al., 2006) and 7 T (Poser & Norris, 2009) with considerable

gains seen in the regions suffering from susceptibility induced inho-

mogeneities. The drawback of combining ME with MB is that ME usu-

ally requires parallel imaging to shorten the ETL, limiting the maximum

MB acceleration possible for an multiband multiecho (MBME) proto-

col, because in-plane (GRAPPA/SENSE) (de Zwart et al., 2002) and

through-plane (SMS) parallel imaging techniques have to share the

same total under-sampling power. Nonetheless, the benefits of

MBME relative to ME-EPI have previously been demonstrated for

resting and task fMRI with Stroop task by (Boyacio�glu et al., 2015) in

resting fMRI (Olafsson et al., 2015). A recent comparison of MBME

with MB, in task fMRI with visual checkerboard task, showed high

activation volume and high sensitivity for MBME than MB (Cohen

et al., 2021).

With recent advances in MR sequences, new data-driven

approaches have been developed for denoising the data (Griffanti

et al., 2014; Pruim et al., 2015; Salimi-Khorshidi et al., 2014). A widely

used data-driven method is FMRIB's ICA-based X-noiseifier (ICA-FIX)

(Griffanti et al., 2014) for removing motion and physiological artifacts.

ICA-FIX was explicitly designed to denoise the MB accelerated

resting-state fMRI data in the HCP, and (Boyacio�glu et al., 2015) were

early users of ICA-FIX for denoising task-fMRI data. An alternative

ICA-based method that requires no training is the ICA-based auto-

matic removal of motion artifacts (ICA-AROMA; Pruim et al., 2015).

Previous work has shown that ICA-AROMA and ICA-FIX improve

resting-state network reproducibility and reduce loss in temporal

degrees of freedom compared to spike regression and scrubbing

(Pruim et al., 2014), as well as enhancing tSNR (Griffeth et al., 2013).

In the present study, we examine whether MBME offers an

advantage over MB when acquired and analyzed according to current

standard practices in fMRI. The data were obtained using a color-

word matching interference Stroop task, known to induce widespread

activity throughout the brain, including regions of low static field

homogeneity (Boyacio�glu et al., 2015; Norris et al., 2002; Poser &

Norris, 2009). The main objective of this study was (i) to examine the

sensitivity difference between MBME and MB within the activated

regions. (ii) To evaluate the test–retest reliability of both protocols.

(iii) To determine how different echo combination methods can

improve the sensitivity of MBME and, (iv) to compare three different

denoising strategies: STANDARD (removal of motion and use of phys-

iological noise regressors), FSL's FIX, and AROMA across protocols to

determine the preferred denoising method.

2 | METHODS

2.1 | Data acquisition

In this study, 14 healthy volunteers (3M/11F, 21.6 ± 2.0 years old)

with normal to corrected vision participated. All participants provided

written informed consent according to the local ethics committee

(Committee on Research Involving Human Subjects, region Arnhem-

Nijmegen, The Netherlands). Each participant was scanned twice for

data acquisition for 30 min in two sessions, 24 h apart. Functional

data sets were acquired twice in counterbalanced order within each

session with MB and MBME protocols to avoid possible confounding

habituation effects during analysis. The functional data set consisted

of an 8-min color-word matching Stroop interference task (Zysset

et al., 2001). During the scanning sessions, participants lay supine in

the MRI scanner.

2 FAZAL ET AL.
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2.2 | Scanning protocols

Preliminary experiments from Gomez et al. (2015) determined the

choice of protocols. MBME requires a substantial reduction of the

ETL, achieved by increasing the readout bandwidth and utilizing PI. In

contrast, MB protocols benefit from lower bandwidths, which reduce

noise. Due to such trade-offs, we optimized both protocols separately

to have fast TR with full brain coverage at a spatial resolution of

2.5 mm isotropic without reducing efficiency. The flip angle for each

protocol was the Ernst angle based on the TR values and approximate

gray matter T1 of 1200 ms. All data were acquired on a 3 T Siemens

MAGNETOM Prisma MRI scanner (Siemens Healthineers) with a

32-channel head coil, using an MBME GE-EPI sequence provided as a

WIP from Siemens Healthcare.

Both MB and MBME acquisition protocols had the following

parameters in common: in-plane resolution 2.5 mm isotropic and

48 slices without a gap for a coverage of 120 mm, FOV

210 � 210 mm2, a blipped-CAIPI shift of 1/3 FOV (Setsompop

et al., 2012), and fat saturation performed before each RF excitation.

The parameters specific to each protocol are reported in Table 1.

The total acceleration factor was the same for both protocols.

Anatomical scans were acquired for image registration using a sagittal

1 mm isotropic MP-RAGE with a TR of 2300 ms, a TI of 900 ms, a TE

of 3 ms, a flip angle of 9�, a turbo factor of 16, and an in-plane accel-

eration factor of 2 with a total acquisition time of 5 min and 12 s. All

imaging sequences were automatically aligned using an auto-align

localizer sequence.

For MBME, a Partial Fourier of 7/8 was utilized reconstructed

using standard Siemens reconstruction. This performs zero filling,

thereby slightly increasing the SNR. However, as we are in the physio-

logical regime (Triantafyllou et al., 2005), the SNR gain does not

increase the tSNR in the fMRI time series. Images were reconstructed

online using Slice-GRAPPA (Setsompop et al., 2012) with LeakBlock

(Cauley et al., 2014). For in-plane acceleration, only used in the

MBME protocol, ACS reference lines GRAPPA calibration were

acquired using FLEET (Polimeni et al., 2016). Single slice reference k-

space for slice-GRAPPA calibration was obtained at the shortest TE to

avoid the introduction of additional variance.

2.3 | Activation study

An adapted version of the color-word matching Stroop interference

task has been utilized as previously described in detail (Zysset

et al., 2001). This experimental design was employed previously

(Boyacio�glu et al., 2015; Poser et al., 2006; Poser & Norris, 2009) to

compare protocols and provided reproducible group activation maps

with relatively small sample sizes across different studies, indicating it

as a good choice for comparing protocols with different sensitivity.

This task also induces widespread activation across the brain,

making it a suitable choice for comparing different protocols in terms

of sensitivity across different brain regions (Boyacio�glu et al., 2015;

Norris et al., 2002; Poser & Norris, 2009). The Stroop task elicits activ-

ity in visual, motor, and frontal areas, such as the cingulate cortex and

medial prefrontal cortex (Zysset et al., 2001), in the parietal lobe, pari-

etal sulcus, and dorsal visual stream, and focal activity in subcortical

areas (Saban et al., 2018). The Stroop task used here is illustrated in

Figure 1. During the baseline condition, a black cross was shown on

the screen. During the activation condition, two-color words were dis-

played over each other. Participants were asked to press a button only

in the congruent condition, that is, when the bottom word corre-

sponded to the upper word's color. Trials, where this correspondence

was not correct were called incongruent trials. The activation condi-

tion consisted of twenty 1.15-s intermixed congruent and incongruent

trials, totaling 23-s per block. Responses were considered correct if

provided in the congruent trials and incorrect if given for incongruent

trials. There was a 20-s resting baseline at the beginning of the task.

All subsequent baseline blocks lasted for 10 s. The total duration of

the task was 8 min for each protocol, 80-s resting-state scans for

MBME to calculate tSNR in parallel-acquired inhomogeneity-

desensitized (PAID) weighting followed by a 6 min T1 weighted image

(�30 min scanning). Stimuli were presented, and button presses were

recorded using presentation (Neurobehavioral Systems Inc.). Before

performing the task, participants were instructed on a desktop com-

puter next to the scanning console to guarantee that they understood

the procedure.

TABLE 1 EPI protocol parameters

MB factor GRAPPA factor TEs (ms) TR (ms) rBW (Hz/px) FA Number of volumes PF

MB only 6 1 38 584 1985 56 2011 1

MBME 3 2 15,36,54 1260 2205 69 926 7/8

Abbreviations: EPI, echo-planar imaging; FA, flip angle; GRAPPA factor, in-plane acceleration factor; MB factor, slice acceleration factor; MBME, multiband

multiecho; PF, partial Fourier; rBW, readout bandwidth; TEs, echo times; TR, repetition time.

F IGURE 1 An adapted version of the color-word matching Stroop
task. The two conditions used for the task are congruent (C) and
incongruent (I). Participants had to decide in each condition: “Does
the color of the upper row word correspond with the meaning of the
word written below in black?” the correct responses would be from
the congruent trials, from the first and the last trial. The responses are
considered incorrect if provided at incongruent trials.

FAZAL ET AL. 3
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2.4 | Data preprocessing

Before data preprocessing, DICOMs were converted to NIfTI's and

organized according to the Brain Imaging Data Structure

(Gorgolewski et al., 2016) using dcm2niix (Li et al., 2016). Data from

both the MB and MBME protocols were preprocessed using fMRI-

prep v1.0.8 (Esteban et al., 2018), based on Nipype (Gorgolewski

et al., 2011).

2.5 | Functional processing

For each BOLD fMRI time series (both MB and MBME), the following

preprocessing was performed using fMRIPrep v1.0.8 (Esteban

et al., 2018). First, a reference volume and its skull-stripped version

were generated. A deformation field to correct for susceptibility dis-

tortions was estimated based on fMRIPrep's field map-less approach.

The deformation field is estimated by co-registering BOLD reference

data to the same-subject intesting inverted T1w-reference maps

(Huntenburg, Wang et al., 2017). Data registration is performed with

antsRegistration (ANTs 2.2.0). The process is regularized by constrain-

ing deformation to be nonzero only along the phase-encoding direc-

tion and modulated with an average field map template (Treiber

et al., 2016). An unwarped BOLD reference was calculated for a more

accurate co-registration with an anatomical reference based on the

estimated susceptibility distortion. Head-motion parameters for the

BOLD reference (transformation matrices and six corresponding rota-

tion and translation parameters) were estimated using MCFLIRT (FSL

5.0.11; Jenkinson et al., 2002). The BOLD time-series were resampled

onto their original, native space by applying a single, composite trans-

form to correct head-motion and susceptibility distortions. These

resampled BOLD time-series will be referred to as preprocessed

BOLD. The BOLD reference was then co-registered to the T1w refer-

ence using FLIRT (FSL 5.0.1, Jenkinson & Smith, 2001) with the

boundary-based registration (Greve & Fischl, 2009) cost-function. Co-

registration was configured with nine degrees of freedom to account

for distortions remaining in the BOLD reference. The BOLD time-

series were resampled to MNI152NLin2009cAsym standard space,

generating a preprocessed BOLD run in MNI152NLin2009cAsym

space. All resampling was performed with a single interpolation step

by composing all the pertinent transformations (i.e., head-motion

transform matrices, susceptibility distortion correction when available,

and co-registration to anatomical and template spaces). Gridded (volu-

metric) resampling was performed using antsApplyTransforms (ANTs),

configured with Lanczos interpolation to minimize the smoothing

effects of other kernels. Finally, data sets were smoothed with a

5 mm kernel and high pass filtered with a cut-off frequency of

1/100 s.

MBME data sets were combined with two different echo combi-

nation methods: All these methods were based on image-by-image

estimation.

1. Using averaging for combining the echoes.

2. Combining according to their CNR; a combination herein referred

to as PAID weighting, described in Equation (1) (Poser et al., 2006).

Wi ¼ SNRiTEiP
SNRiTEi

: ð1Þ

2.6 | Data denoising

Three different data denoising strategies were used for both MB and

MBME, which we describe as “Standard,” “FIX” (Griffeth et al., 2013),

and “AROMA” (Pruim et al., 2015) denoising. In the next subsections,

we briefly detail each of these denoising approaches.

2.7 | Standard denoising

In “standard denoising,” six motion parameters (three translation,

three rotation), cerebrospinal fluid (CSF), and white matter signals

were regressed out of the preprocessed smoothed data as estimated

with aCompCor in fMRIprep v1.0.8 (Esteban et al., 2018). Spatial

smoothing was performed with a 5 � 5 � 5 mm3 full width at half

maximum using SUSAN (Smith & Brady, 1997), before performing the

general linear model (GLM) in SPM (Friston et al., 1994). The smooth-

ing order was kept consistent for making this pipeline comparable to

the FIX and AROMA (see the following two subsections). In MBME,

the motion regressors were calculated from the first echo. The param-

eters from the motion correction are retained and applied across all

echoes. Finally, echoes were combined using a PAID weighting see

Equation (1).

2.8 | FIX denoising

Using the same scanning protocols and procedures described earlier

in Section 2.1, we acquired task data sets from 10 additional healthy

subjects and used them to train the FIX classifier (Griffanti

et al., 2014; Salimi-Khorshidi et al., 2014) The FIX training procedure

consisted of applying spatial ICA with a dimensionality of 70 on each

of the 10 training data sets and manually labeling components as

either signal or noise following recommendations from the literature

(Griffanti et al., 2017). This classifier was subsequently used to

denoise the primary data considered in this paper. To that end, each

experimental fMRI data set was decomposed into 70 independent

components and classified as signal or noise using the pretrained FIX

classifier. Components identified as noise were regressed out of the

original data (Griffanti et al., 2014).

We followed standard practices of training the FIX classifier on

MBME data (Dipasquale et al., 2017): multiple echoes were first com-

bined with different weighting schemes and later decomposed into IC

components. We trained the FIX classifier, in MBME data, by combing

multiple echoes using simple averaging. However, before merging the

echoes, the motion parameters were estimated from the first echo

4 FAZAL ET AL.
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because of high SNR and applied to the remaining echoes. Hence, the

scaling factor for 4D intensity normalization was similarly computed

from the first echo and applied to the remaining echoes. We used a

similar preprocessing pipeline for the test data, except the echoes

were combined using the above-mentioned combination Equation (1).

2.9 | AROMA denoising

AROMA is also an ICA-based method but does not require a new clas-

sifier training for each new data set (Pruim et al., 2015). The pre-

trained AROMA classifier uses four features from fMRI data sets:

high-frequency content, correlation with realignment parameters,

edge fraction, and CSF fraction. Again, each experimental fMRI data

set was decomposed into independent components (ICA) and classi-

fied as signal or noise using the AROMA classifier. Components iden-

tified as noise were consequently regressed out of the original data.

The AROMA denoising was performed after fmriprep preprocessing,

the noise components were regressed using FSL “REGFILT,” and then

the data were filtered and smoothed.

2.10 | Intraclass correlation coefficients (ICC)

To detect test–retest reliability of activation maps across sessions for

different protocols. We calculated intraclass correlation coefficients

(ICC) (3.1) as described in (Shrout & Fleiss, 1979). This statistic mea-

sured the test–retest reliability of fMRI data (Rombouts et al., 1997,

Caceres et al., 2009). A high value (>0.5) indicated that a particular

acquisition and analysis approach was highly reproducible across ses-

sions. The ICC values were calculated within the task-activated

regions by masking the contrast maps across subjects. The mask was

created utilizing the multi-subject dictionary learning (MIST) ROI atlas

based on resting-state functional MRI data from 20 subjects with eyes

closed (Varoquaux et al., 2011) as shown in Figure S1. The atlas was

resampled to 2.5 mm resolution, identical to our data set, using the

Nilearn python module (https://nilearn.github.io). The test–retest reli-

ability can determine whether there is a higher variation across differ-

ent protocols and denoising methods than between subjects. Higher

ICC values indicated a better acquisition and analysis strategy. We

also examined the z-score distribution across subjects between ses-

sions at first-level analysis for evaluating the differences in z-scores

across protocols (Table 2).

2.11 | MB and MBME analysis

We conducted a first-level analysis for each participant with the pre-

processed images. For the first-level analysis, the regressors for the

corresponding stimulus were modeled as a boxcar function convolved

with the canonical hemodynamic response function. The design

matrix contained two regressors modeling the congruent and incon-

gruent conditions against the baseline convolved with a hemodynamic

response function and a constant term. We selected each voxel

according to SPM's GLM guidelines and parameters (Friston, 2007;

Friston et al., 2002). Once the first-level analysis was completed, we

created two contrast images for each explanatory variable (EV), one

for congruent conditions [1 0] and one for the incongruent condition

[0 1] for each participant for an individual session. Next, we per-

formed the second-level analysis with classical inference implemented

in SPM12. To examine the difference in neural activity for the congru-

ent and incongruent conditions between different protocols and

denoising methods. We performed a one-sample -test with contrast

images created from the first-level analysis. All 14 contrast images

from each session were entered into a second-level one-sample t-test

model creating subject-specific activation maps. Then, we used a clas-

sical inference module implemented in SPM12. At the end of the clas-

sical inference, we examined which voxels survived thresholds

provided by SPM12 by default. The following thresholding criteria

were utilized: (1) a cluster-forming threshold p < .001 and a cluster-

wise threshold p < .05 [familywise error (FWE) corrected] and (2) a

voxel-wise threshold p < .05 (FWE corrected).

The t-maps for each session at first-level analysis and group-level

were converted to z-maps using FSL (Woolrich et al., 2009). The con-

gruent contrast typically activated visual areas, motor areas from the

button press, and some orbitofrontal cortex. The incongruent contrast

is essential for identifying deactivation in the frontal medial and

default mode network (areas close to the precuneus) (Norris

et al., 2002). Furthermore, as the same subjects were scanned twice,

we also conducted test–retest reliability on the contrast images cre-

ated at the first level analysis for each subject for both sessions (see

detail below in the Section 4.1).

For comparing protocols across different denoising methods,

subject-specific contrast maps across sessions were used to detect

statistically significant differences between different protocols using a

paired t-test (p < .05, I corrected) in SPM12. The t-maps across differ-

ent protocols and denoising methods were converted to z-maps using

FSL (Woolrich et al., 2009) thresholded at (Z > 3.1). The purpose of

converting t-maps to z-score was to standardize them to compare

values of two different distributions.

To account for temporal autocorrelation in the data caused by TR

differences between protocols, we opted for “FAST” option in SPM-

12 (Corbin et al., 2018; Friston, 1995). SPM FAST was utilized by

TABLE 2 ICC values

Intraclass correlation coefficients (ICC)

STANDARD AROMA FIX

MB 0.54 0.46 0.53

MBME 0.54 0.51 0.55

Note: The table shows ICC values for MB and MBME with different

denoising methods. We notice similar ICC values between MB and MBME

across different denoising methods; values >0.5 indicate high

reproducibility.

Abbreviations: MB factor, slice acceleration factor; MBME, multiband

multiecho.
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correcting for nonsphericity, which is particularly relevant at short

TRs, and comparing sequences with different TR. However, before

performing the sequence comparison, residuals from the GLM were

examined to explore the differences seen between SPM FAST and AR

(1) used in FSL in S1. We looked at the power spectrum from single-

subjects and averages across all the subjects and sessions within the

residuals. If prewhitening were performed accurately, the power spec-

trum would be flat. Based on the results shown in Figure 2, substantial

noise is left after prewhitening with AR (1) (Bollmann et al., 2018).

Hence, we opted to use SPM FAST for analyzing the data.

2.12 | MB versus MBME comparison

The results from the MB and MBME protocols were examined in

three separate different ways:

1. The z-scores at the first level analysis across all subjects for each

session were assessed to observe the z-score differences between

different protocols across sessions.

2. The z-maps from the group-level analysis conducting a one-sample

t-test were compared across different denoising methods and

protocols to detect any differences in activation: representative

examples are labeled with circle as shown in Figure 4.

3. The selected two protocols were quantitatively evaluated using

paired t-tests and displaying the statistically significant areas in

terms of z-scores.

3 | RESULTS

First, we report our findings obtained on z-scores (>3.1) distribution

for all subjects and sessions at first-level analysis, followed by ICC

values for both protocols with and without denoising. Finally, we

show results from group-level analysis of one-sample and paired t-

tests (Figure 3).

Figure 4 shows one-sample t-test group activation maps for MB

and MBME PAID protocols and the two denoising approaches.

Although, the activation pattern is similar across protocols in visual,

motor, and medial frontal areas, we notice that MBME shows more

activation in the inferior medial frontal regions and focal activation in

a subcortical region, which seems to be absent in MB. By visual

inspection virtually no difference can be seen at the group level for

the Standard, AROMA, and FIX denoising strategies in both protocols.

AR(1) SPM(FAST)

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8

Single−Subject MB

Po
w

er

(a)

0

1

2

3

4

5

0.0 0.1 0.2 0.3 0.4

Single−Subject MBME(b)

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8
Frequency (Hz)

Po
w

er

(c) Group−Average MB

0.0

0.5

1.0

1.5

2.0

0.0 0.1 0.2 0.3 0.4
Frequency (Hz)

(d) Group−Average MBME

F IGURE 2 Power spectra of the GLM residuals averaged across brain voxels for standard denoising, AR (1) from FSL shown in green, and
SPM (FAST) shown in red. (a) MB for a single-subject, (b) MBME for single-subject, (c) MB average across subjects and sessions, (d) MBME
average across subjects and sessions. The precise design frequency is shown with a dotted black line across all plots. The cut-off frequency of

1/100 s is shown with a solid black line. The dotted lines at 0.02 Hz are due to the actual design period being 23 s (23 + 23 s). The frequencies
on the x-axis go up to the Nyquist frequency, which is 0.5/repetition time. If, after prewhitening, the residuals were white (as it is assumed), the
power spectra would be flat. SPM (FAST) led to the best whitening performance (flatter spectra). For FSL, substantial noise was left after
prewhitening, particularly at low frequencies
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We found that the PAID combination shows greater statistical signifi-

cance across multiple brain regions for MBME (results not shown)

than echo summation; therefore, results for MBME are only shown

for PAID combination. We found a 50% higher mean z-scores and

82% increase in the number of activated voxels in subcortical regions

with MBME Standard PAID compared to MB Standard, 90% higher

F IGURE 4 Group activation for MB (left) and MBME PAID (right) using different preprocessing pipelines (top—Standard, middle—AROMA,
and bottom—FIX). MBME shows a somewhat higher number of activated voxels in inferior frontal regions than MB, as pointed out by the orange
circles compared to cyan circles in MB/ within each protocol, it is apparent that there is no obvious benefit of cleaning. Color range 3.1–8.

4
6

8

MB MB
STANDARD

MB
AROMA FIX

MBME
STANDARD

MBME

PAID
AROMA

MBME

PAID
FIX
PAID

M
ea

n
 Z

−s
co

re

F IGURE 3 Mean z-scores
(>3.1) for all subjects across
sessions for different protocols
and denoising methods. Color
dots represent sessions (yellow
and blue stand for Sessions 1 and
2). The distributions on the right
show the mean z-scores of
methods. Each distribution is

based on data from both
sessions). The boxplots provide a
summary view of the median,
10th, and 90th percentiles of the
mean z-score
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mean z-scores and 40% more activated voxels within inferior medial

prefrontal regions for MBME Standard PAID. We noticed 25% more

activated voxels within the precuneus region with similar mean z-

scores for MB Standard than MBME Standard PAID (Table 3).

Figure 5 shows results from the sequence comparison using

paired t-test (FDR, p < .05) between MB-STANDARD and MBME-

STANDARD-PAID (with standard denoising) for each of the two con-

trasts considered (congruent, incongruent). In the medial prefrontal

cortex and cortical areas, that is, regions related to the “Default Mode

Network,” MBME performs better than MB, in terms of significantly

higher z-scores. There is also a small visible cluster of activation seen

in the subcortical areas for MBME only. MB performs better within

the visual and anterior cingulate cortex The trend observed is inde-

pendent of the denoising method, that is, AROMA and STANDARD

(results not shown).

4 | DISCUSSION

In the current study, we compared MB and MBME in terms of their

sensitivity for task fMRI. The data sets from both protocols were

reconstructed and preprocessed with identical pipelines. The data

from 14 healthy subjects were acquired in two sessions, using an

adapted color-word matching Stroop task (Boyacio�glu et al., 2014),

which induces widespread activation throughout the brain. The per-

formance was assessed by (i) evaluating z-scores across sessions to

observe differences between protocols and denoising methods. (ii) By

examining z-scores within the activated regions at the group level

analysis and (iii) by looking into the difference between the parameter

estimates using paired t-tests across different protocols. We used a

minimal denoising strategy (“Standard”) and two widely used ICA-

based denoising strategies, ICA-AROMA and ICA-FIX.

The results indicated high test–retest reliability within each pro-

tocol, as seen by the z-score distribution across sessions and ICC

values (see Table 2). At the group-level one-sample t-test, statistics

were computed to examine how the spatial distribution and extent of

the detected activation compared between the two sequences.

Within frontal and subcortical areas, MBME showed a greater extent

of activation. MBME Standard PAID came out better than MBME

with FIX and AROMA, MB generally showed comparable performance

between different denoising methods. A paired t-test was performed

between MBME and MB to compare both protocols at the group

TABLE 3 The maximum and
minimum range for mean z-scores
(Z > 3.1) and the number of activated
voxels from the group-level one-sample
t-test averaged across five activated
regions selected from MIST parcels for
MBME and MB

STANDARD [min, max] AROMA [min, max] FIX [min, max]

Mean Z-scores

MB [3.5, 12.3] [3.5, 12.4] [3.5, 12.3]

MBME [6.7, 12.4] [6.7, 12.1] [6.8, 11.8]

Number of activated voxels

MB [237, 5706] [222, 5550] [254, 5881]

MBME [400, 6289] [366, 6183] [173, 5549]

Abbreviations: MB factor, slice acceleration factor; MBME, multiband multiecho.

F IGURE 5 Group activation for MB (left) and MBME PAID (right) using different preprocessing pipelines (top—Standard, middle—AROMA,
and bottom—FIX). MBME shows a somewhat higher number of activated voxels in inferior frontal regions than MB, as pointed out by the orange
circles compared to cyan circles in MB/within each protocol, it is apparent that there is no obvious benefit of cleaning. Color range 3.1–8.
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level, which confirmed that MBME performed better within subcorti-

cal, prefrontal and motor areas compared to MB. However, MB per-

formed better within visual occipital areas compared to MBME (see

Figure 5).

Our results indicate that MBME acquisition has a higher sensi-

tivity in the areas affected by dropout and inhomogeneity. As dem-

onstrated previously, multiecho fMRI is somewhat more sensitive

than standard EPI (Poser et al., 2006). We also noticed no significant

sensitivity gain for ICA-FIX and ICA-AROMA than the Standard

denoising pipeline for MBME (see Figure 4).One possible explana-

tion is that denoising approaches tend to decrease reliability by

removing the common noise sources that are highly reliable and

increasing the validity of results (Noble et al., 2019). The present

contribution shows that acquiring data at sub-second TR gives no

significant improvement in statistical z-scores as z-scores values

between MB and MBME were comparable at first-level analysis (see

Figure 3).

4.1 | Intraclass correlation coefficients

We observed both protocols to be moderately reproducible across

sessions. The ICC for MB-AROMA is the lowest. ICA-AROMA

removes motion-related artifacts that can vary across sessions, and

MB-EPI may exhibit increased motion sensitivity due to short

TR. As seen in Figure 3, we observed a slight variation in z-scores

across sessions, suggesting low intrasubject variability within the

protocol.

4.2 | Denoising approaches

The fundamental reason behind the widespread adoption of “data-
driven” approaches over physiological monitoring data is, if available

or collected, the latter are not expected to relate to all common forms

of artifact (e.g., scanner artifacts). The HCP used FIX (Griffanti

et al., 2014) to denoise resting-state fMRI data acquired with MB and

found improved z-scores across resting-state networks, which led to

the broader application of ICA-FIX in fMRI. However, in task-fMRI,

we found no significant gains of the FIX classifier for both protocols.

A possible explanation is applying a proper AR model order, which

removes autocorrelated structure from the data, most of which is

related to physiological noise and motion. The physiological noise

removal reduces the required AR model order, but the remaining serial

correlations need an advanced model. Furthermore, ICA-FIX can

reduce sensitivity (data not shown) due to the loss of a higher number

of degrees of freedom compared to other denoising methods. It

focuses on removing motion and physiological noise. There is also a

considerable overhead in using FIX because of the requirement for

acquiring and training data for at least 10 subjects (https://fsl.fmrib.

ox.ac.uk/fsl/fslwiki/FIX). In contrast, ICA-AROMA required no addi-

tional training and retained the signal of interest, demonstrating

greater generalizability.

4.3 | PAID (CNR) weighting in MBME

The results from two different echo combination schemes showed

PAID weighting performed better than simple summation. This finding

is consistent with that of (Poser et al., 2006), where PAID weighing

increased CNR. The PAID weighting showed a 10% higher tSNR for

MBME as compared to simple summation. Furthermore, it improved

the group analysis by increasing the sensitivity and detection of small

activation clusters within the subcortical areas, and therefore, should

be preferred to simple averaging. This result contrasts with the null

results previously reported with a double-echo protocol (Kettinger

et al., 2016).

4.4 | Temporal autocorrelation

With readily available acquisition protocols and online reconstruction

for MB sequences, there is a tendency toward using MB fMRI as the

default acquisition protocol. One aspect often neglected is the appro-

priate correction of temporal autocorrelation. A higher sampling rate

leads to a higher temporal autocorrelation in the data, in which the

effective degrees of freedom is smaller than the number of samples

acquired. If left uncorrected, this can lead to inflated z-scores (Todd

et al., 2017), increased false positives (Olszowy et al., 2019), and an

overestimation of power (Mumford, 2012). In FSL, task fMRI data is

usually prewhitened using an AR (1)-model, which is considered suffi-

cient for short TR's. However, for TRs, less than a second, a higher

rate of false positives has previously been observed (Olszowy

et al., 2019). A limited number of studies (Bollmann et al., 2018;

Olszowy et al., 2019; Todd et al., 2016) investigated using an appro-

priate AR model for task fMRI currently implemented in SPM as the

“FAST” option for short TR data. In the current study, we corrected

the temporal autocorrelation by incorporating the actual degrees of

freedom in the t-scores for MB and MBME using SPM “FAST” and

found the difference between short TR z-scores seems to be minimal

between protocols.

4.5 | Protocol choices

The analysis techniques and the brain regions of interest in task fMRI

can influence the choice of data acquisition protocol. There is a con-

siderable gain from a higher MB factor for methods, such as multivari-

ate pattern analysis. The higher number of data points from MB

produces robust (i.e., less noisy) estimates, leading to a more reliable

classifier performance than the ROI- or GLM-based approach

(Demetriou et al., 2018). However, for GLM-based approaches,

MBME has previously been shown to have higher sensitivity in

regions with dropouts and distortions (Boyacio�glu et al., 2015; Kirilina

et al., 2016; Poser et al., 2006). This study is consistent with previous

research (Kirilina et al., 2016), which compared standard and ME-EPI's

sensitivity using emotional and reward-based learning tasks. ME-EPI

performed better in regions where the single-echo protocol suffered
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dropouts, namely, in an ROI placed at the orbitofrontal cortex. A simi-

lar conclusion was reached by Puckett et al. (2018), where MBME

performed better than a single-echo within iron-rich areas in the sub-

cortical regions. A recent comparison of MBME with MB using a

visual checkerboard showed high activation volume and high sensitiv-

ity for MBME (Cohen et al., 2021). We can infer that MBME performs

better than MB in the areas affected by dropout and susceptibility

induced inhomogeneity. One potential limitation for MBME-EPI is the

longer ETL: this limits both the voxel size and achievable TR as well as

necessitating in-plane parallel imaging and partial Fourier acquisition.

In this study, both sequences were optimized to acquire signals as

efficiently as possible, and reconstruction artifacts did not compro-

mise the signal quality.

5 | CONCLUSION

In summary, with this comparison study, we found that MBME and

MB give comparable performance in most brain regions. In the regions

with dropouts and susceptibility induced inhomogeneity MBME per-

formed somewhat better at the group level. The results showed that

the difference between sequences is more significant than the differ-

ence between different denoising (FIX, AROMA) strategies at the

group level, highlighting the importance of considering an optimized

sequence before data collection. For MBME: the choice of an optimal

echo combination can influence the sensitivity at the group-level

analysis.
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Kettinger, Á., Hill, C., Vidnyánszky, Z., Windischberger, C., & Nagy, Z.

(2016). Investigating the group-level impact of advanced dual-echo

fMRI combinations. Frontiers in Neuroscience, 10, 571. https://doi.org/

10.3389/fnins.2016.00571

Kirilina, E., Lutti, A., Poser, B. A., Blankenburg, F., & Weiskopf, N. (2016).

The quest for the best: The impact of different EPI sequences on the

sensitivity of random effect fMRI group analyses. NeuroImage, 126,

49–59. https://doi.org/10.1016/J.NEUROIMAGE.2015.10.071

Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E.,

Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E.,

Cohen, M. S., & Turner, R. (1992). Dynamic magnetic resonance imag-

ing of human brain activity during primary sensory stimulation. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 89(12), 5675–5679. https://doi.org/10.1073/pnas.89.12.

5675

Larkman, D. J., Hajnal, J. V., Herlihy, A. H., Coutts, G. A., Young, I. R., &

Ehnholm, G. (2001). Use of multicoil arrays for separation of signal

from multiple slices simultaneously excited. Journal of Magnetic Reso-

nance Imaging, 13(2), 313–317. https://doi.org/10.1002/1522-2586
(200102)13:2<313::AID-JMRI1045>3.0.CO;2-W

Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first

step for neuroimaging data analysis: DICOM to NIfTI conversion. Jour-

nal of Neuroscience Methods, 264, 47–56. https://doi.org/10.1016/j.
jneumeth.2016.03.001

Mansfield, P. (1977). Multi-planar image formation using NMR spin ech-

oes. Journal of Physics C: Solid State Physics, 10, L55.

Menon, R. S., Ogawa, S., Tank, D. W., & U�gurbil, K. (1993). Tesla gradient

recalled echo characteristics of photic stimulation-induced signal

changes in the human primary visual cortex. Magnetic Resonance in

Medicine, 30(3), 380–386. https://doi.org/10.1002/mrm.1910300317

Moeller, S., Yacoub, E., Olman, C. A., Auerbach, E., Strupp, J., Harel, N., &

U�gurbil, K. (2010). Multi-band multislice GE-EPI at 7 tesla, with

16-fold acceleration using partial parallel imaging with application to

high spatial and temporal whole-brain FMRI. Magnetic Resonance in

Medicine, 63(5), 1144–1153. https://doi.org/10.1002/mrm.22361

Mumford, J. A. (2012). A power calculation guide for fMRI studies. Social

Cognitive and Affective Neuroscience, 7(6), 738–742. https://doi.org/
10.1093/scan/nss059

Noble, S., Scheinost, D., & Todd Constable, R. (2019). A decade of test-

retest reliability of functional connectivity: a systematic review and

meta-analysis HHS public access. NeuroImage, 203, 116157. https://

doi.org/10.1016/j.neuroimage.2019.116157

Norris, D. G., Zysset, S., Mildner, T., & Wiggins, C. J. (2002). An investiga-

tion of the value of spin-echo-based fMRI using a Stroop color-word

matching task and EPI at 3 T. NeuroImage, 15(3), 719–726. https://doi.
org/10.1006/NIMG.2001.1005

Nunes, R. G., Hajnal, J. V., Golay, X., & Larkman, D. J. (2006). Simultaneous

slice excitation and reconstruction for single shot EPI. Proceedings of

the International Society for Magnetic Resonance in Medicine, 14(2), 293.

Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic res-

onance imaging with contrast dependent on blood oxygenation. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 87(24), 9868–9872. https://doi.org/10.1073/pnas.87.24.

9868

Olafsson, V., Kundu, P., Wong, E. C., Bandettini, P. A., & Liu, T. T. (2015).

Enhanced identification of BOLD-like components with multi-echo

simultaneous multislice (MESMS) fMRI and multi-echo ICA. Neuro-

Image, 112, 43–51. https://doi.org/10.1016/j.neuroimage.2015.

02.052

FAZAL ET AL. 11

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26081 by R
adboud U

niversity N
ijm

egen, W
iley O

nline L
ibrary on [14/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1371/journal.pone.0015710
https://doi.org/10.1006/nimg.1995.1007
https://doi.org/10.1006/nimg.2002.1091
https://doi.org/10.1006/nimg.2002.1091
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1038/sdata.2016.44
https://doi.org/10.1016/J.NEUROIMAGE.2009.06.060
https://doi.org/10.1016/j.neuroimage.2016.12.036
https://doi.org/10.1016/j.neuroimage.2016.12.036
https://doi.org/10.1016/J.NEUROIMAGE.2014.03.034
https://doi.org/10.1016/J.NEUROIMAGE.2014.03.034
https://doi.org/10.1371/journal.pone.0068122
https://doi.org/10.1371/journal.pone.0068122
https://doi.org/10.1002/mrm.10171
https://doi.org/10.1002/mrm.10283
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item%7B%5C_%7D2327525
https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item%7B%5C_%7D2327525
https://doi.org/10.1006/NIMG.2002.1132
https://doi.org/10.1006/NIMG.2002.1132
https://doi.org/10.1016/s1361-8415(01)00036-6
https://doi.org/10.3389/fnins.2016.00571
https://doi.org/10.3389/fnins.2016.00571
https://doi.org/10.1016/J.NEUROIMAGE.2015.10.071
https://doi.org/10.1073/pnas.89.12.5675
https://doi.org/10.1073/pnas.89.12.5675
https://doi.org/10.1002/1522-2586(200102)13:2%3C313::AID-JMRI1045%3E3.0.CO;2-W
https://doi.org/10.1002/1522-2586(200102)13:2%3C313::AID-JMRI1045%3E3.0.CO;2-W
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1002/mrm.1910300317
https://doi.org/10.1002/mrm.22361
https://doi.org/10.1093/scan/nss059
https://doi.org/10.1093/scan/nss059
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1006/NIMG.2001.1005
https://doi.org/10.1006/NIMG.2001.1005
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1073/pnas.87.24.9868
https://doi.org/10.1016/j.neuroimage.2015.02.052
https://doi.org/10.1016/j.neuroimage.2015.02.052


Olszowy, W., Aston, J., Rua, C., & Williams, G. B. (2019). Accurate autocor-

relation modeling substantially improves fMRI reliability. Nature Commu-

nications, 10(1), 1220. https://doi.org/10.1038/s41467-019-09230-w

Polimeni, J. R., Bhat, H., Witzel, T., Benner, T., Feiweier, T., Inati, S. J.,

Renvall, V., Heberlein, K., & Wald, L. L. (2016). Reducing sensitivity

losses due to respiration and motion in accelerated echo planar imag-

ing by reordering the autocalibration data acquisition. Magnetic Reso-

nance in Medicine, 75, 665–679. https://doi.org/10.1002/mrm.25628

Poser, B. A., & Norris, D. G. (2009). Investigating the benefits of multi-echo

EPI for fMRI at 7 T. NeuroImage, 45, 1162–1172. https://doi.org/10.
1016/j.neuroimage.2009.01.007

Poser, B. A., Versluis, M. J., Hoogduin, J. M., & Norris, D. G. (2006). BOLD

contrast sensitivity enhancement and artifact reduction with multie-

cho EPI: Parallel-acquired inhomogeneity-desensitized fMRI. Magnetic

Resonance in Medicine, 55(6), 1227–1235. https://doi.org/10.1002/

mrm.20900

Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, C., Grosse-

Ruyken, M. L., Elghahwagi, B., Richards, T., Dager, S. R., &

Kiselev, V. G. (1999). Enhancement of BOLD-contrast sensitivity by

single-shot multi-echo functional MR imaging. Magnetic Resonance in

Medicine, 42(1), 87–97. https://doi.org/10.1002/(sici)1522-2594

(199907)42:1<87::aid-mrm13>3.0.co;2-o

Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999).

SENSE: Sensitivity encoding for fast MRI. Magnetic Resonance in Medi-

cine, 42(5), 952–962.
Pruim, R. H. R., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2014).

Evaluation of ICA-AROMA and alternative strategies for motion arti-

fact removal in resting-state fMRI. NeuroImage, 112, 278–287.
https://doi.org/10.1016/j.neuroimage.2015.02.063

Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., &

Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for

removing motion artifacts from fMRI data. NeuroImage, 112, 267–277.
https://doi.org/10.1016/J.NEUROIMAGE.2015.02.064

Puckett, A. M., Bollmann, S., Poser, B. A., Palmer, J., Barth, M., &

Cunnington, R. (2018). Using multi-echo simultaneous multislice (SMS)

EPI to improve functional MRI of the subcortical nuclei of the basal

ganglia at ultra-high field (7T). NeuroImage, 172, 886–895. https://doi.
org/10.1016/J.NEUROIMAGE.2017.12.005

Rombouts, S., Barkhof, F., Hoogenraad, F. G., Sprenger, M., Valk, J., &

Scheltens, P. (1997). Test-retest analysis with functional MR of the

activated area in the human visual cortex. American Society of Neurora-

diology, 18, 1317–1322.
Saban, W., Gabay, S., & Kalanthroff, E. (2018). More than just channeling:

The role of subcortical mechanisms in executive functions—Evidence

from the Stroop task. Acta Psychologica, 189, 36–42. https://doi.org/
10.1016/J.ACTPSY.2017.03.001

Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F.,

Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional

MRI data: Combining independent component analysis and hierarchi-

cal fusion of classifiers. NeuroImage, 90, 449–468. https://doi.org/10.
1016/j.neuroimage.2013.11.046

Setsompop, K., Gagoski, B. A., Polimeni, J. R., Witzel, T., Wedeen, V. J., &

Wald, L. L. (2012). Blipped-controlled aliasing in parallel imaging for

simultaneous multislice echo planar imaging with reduced g-factor

penalty. Magnetic Resonance in Medicine, 67(5), 1210–1224. https://
doi.org/10.1002/mrm.23097

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing

rater reliability. Psychological Bulletin, 86(2), 420–428. https://doi.

org/10.1037/0033-2909.86.2.420

Smith, S. M., & Brady, J. M. (1997). SUSAN—A new approach to low level

image processing. International Journal of Computer Vision, 23(1), 45–
78. https://doi.org/10.1023/A:1007963824710

Sodickson, D. K., & Manning, W. J. (1997). Simultaneous acquisition of

spatial harmonics (SMASH): Fast imaging with radiofrequency coil

arrays. Magnetic Resonance in Medicine, 38(4), 591–603. https://doi.
org/10.1002/mrm.1910380414

Speck, O., & Hennig, J. (1998). Functional imaging by I0- and T2*-

parameter mapping using multi-image EPI. Magnetic Resonance in Med-

icine, 40(2), 243–248. https://doi.org/10.1002/mrm.1910400210

Todd, N., Josephs, O., Zeidman, P., Flandin, G., Moeller, S., & Weiskopf, N.

(2017). Functional sensitivity of 2D simultaneous multi-slice echo-

planar imaging: Effects of acceleration on g-factor and physiological

noise. Frontiers in Neuroscience, 11, 158. https://doi.org/10.3389/

fnins.2017.00158

Todd, N., Moeller, S., Auerbach, E. J., Yacoub, E., Flandin, G., &

Weiskopf, N. (2016). Evaluation of 2D multi-band EPI imaging for

high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitiv-

ity and slice leakage artifacts. NeuroImage, 124, 32–42. https://doi.
org/10.1016/j.neuroimage.2015.08.056

Treiber, J. M., White, N. S., Steed, T. C., Bartsch, H., Holland, D., Farid, N.,

McDonald, C. R., Carter, B. S., Dale, A. M., & Chen, C. C. (2016). Char-

acterization and correction of geometric distortions in 814 diffusion

weighted images. PLoS One, 11(3), e0152472. https://doi.org/10.

1371/journal.pone.0152472

Triantafyllou, C., Hoge, R. D., Krueger, G., Wiggins, C. J., Potthast, A., Wig-

gins, G. C., & Wald, L. L. (2005). Comparison of physiological noise at

1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters.

NeuroImage, 26(1), 243–250. https://doi.org/10.1016/j.neuroimage.

2005.01.007

U�gurbil, K., Xu, J., Auerbach, E. J., Moeller, S., Vu, A. T., Duarte-

Carvajalino, J. M., Lenglet, C., Wu, X., Schmitter, S., Van de

Moortele, P. F., Strupp, J., Sapiro, G., De Martino, F., Wang, D.,

Harel, N., Garwood, M., Chen, L., Feinberg, D. A., Smith, S. M., … WU-

Minn HCP Consortium. (2013). Pushing spatial and temporal resolu-

tion for functional and diffusion MRI in the human connectome pro-

ject. NeuroImage, 80, 80–104. https://doi.org/10.1016/j.neuroimage.

2013.05.012

Varoquaux, G., Gramfort, A., Pedregosa, F., Michel, V., & Thirion, B. (2011).

Multi-subject Dictionary Learning to Segment an Atlas of Brain Spon-

taneous Activity. Information Processing in Medical Imaging, 562–573.
https://doi.org/10.1007/978-3-642-22092-0_46

Wang, S., Peterson, D. J., Gatenby, J. C., Li, W., Grabowski, T. J., &

Madhyastha, T. M. (2017). Evaluation of field map and nonlinear regis-

tration methods for correction of susceptibility artifacts in diffusion

MRI. Frontiers in Neuroinformatics, 11, 17. https://doi.org/10.3389/

fninf.2017.00017

Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S.,

Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009).

Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1),

S173–S186. https://doi.org/10.1016/j.neuroimage.2008.10.055

Zysset, S., Mü, K., Lohmann, G., & von Cramon, D. Y. (2001). Color-word

matching Stroop task: Separating interference and response conflict.

NeuroImage, 13(1), 29–36. https://doi.org/10.1006/nimg.2000.0665

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Fazal, Z., Gomez, D. E. P., Llera, A.,

Marques, J. P. R. F., Beck, T., Poser, B. A., & Norris, D. G.

(2022). A comparison of multiband and multiband multiecho

gradient-echo EPI for task fMRI at 3 T. Human Brain Mapping,

1–12. https://doi.org/10.1002/hbm.26081

12 FAZAL ET AL.

 10970193, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26081 by R
adboud U

niversity N
ijm

egen, W
iley O

nline L
ibrary on [14/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1038/s41467-019-09230-w
https://doi.org/10.1002/mrm.25628
https://doi.org/10.1016/j.neuroimage.2009.01.007
https://doi.org/10.1016/j.neuroimage.2009.01.007
https://doi.org/10.1002/mrm.20900
https://doi.org/10.1002/mrm.20900
https://doi.org/10.1002/(sici)1522-2594(199907)42:1%3C87::aid-mrm13%3E3.0.co;2-o
https://doi.org/10.1002/(sici)1522-2594(199907)42:1%3C87::aid-mrm13%3E3.0.co;2-o
https://doi.org/10.1016/j.neuroimage.2015.02.063
https://doi.org/10.1016/J.NEUROIMAGE.2015.02.064
https://doi.org/10.1016/J.NEUROIMAGE.2017.12.005
https://doi.org/10.1016/J.NEUROIMAGE.2017.12.005
https://doi.org/10.1016/J.ACTPSY.2017.03.001
https://doi.org/10.1016/J.ACTPSY.2017.03.001
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1016/j.neuroimage.2013.11.046
https://doi.org/10.1002/mrm.23097
https://doi.org/10.1002/mrm.23097
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1037/0033-2909.86.2.420
https://doi.org/10.1023/A:1007963824710
https://doi.org/10.1002/mrm.1910380414
https://doi.org/10.1002/mrm.1910380414
https://doi.org/10.1002/mrm.1910400210
https://doi.org/10.3389/fnins.2017.00158
https://doi.org/10.3389/fnins.2017.00158
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1016/j.neuroimage.2015.08.056
https://doi.org/10.1371/journal.pone.0152472
https://doi.org/10.1371/journal.pone.0152472
https://doi.org/10.1016/j.neuroimage.2005.01.007
https://doi.org/10.1016/j.neuroimage.2005.01.007
https://doi.org/10.1016/j.neuroimage.2013.05.012
https://doi.org/10.1016/j.neuroimage.2013.05.012
https://doi.org/10.1007/978-3-642-22092-0_46
https://doi.org/10.3389/fninf.2017.00017
https://doi.org/10.3389/fninf.2017.00017
https://doi.org/10.1016/j.neuroimage.2008.10.055
https://doi.org/10.1006/nimg.2000.0665
https://doi.org/10.1002/hbm.26081

	A comparison of multiband and multiband multiecho gradient-echo EPI for task fMRI at 3T
	1  INTRODUCTION
	2  METHODS
	2.1  Data acquisition
	2.2  Scanning protocols
	2.3  Activation study
	2.4  Data preprocessing
	2.5  Functional processing
	2.6  Data denoising
	2.7  Standard denoising
	2.8  FIX denoising
	2.9  AROMA denoising
	2.10  Intraclass correlation coefficients (ICC)
	2.11  MB and MBME analysis
	2.12  MB versus MBME comparison

	3  RESULTS
	4  DISCUSSION
	4.1  Intraclass correlation coefficients
	4.2  Denoising approaches
	4.3  PAID (CNR) weighting in MBME
	4.4  Temporal autocorrelation
	4.5  Protocol choices

	5  CONCLUSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	REFERENCES


