Synthesis and biological evaluation of potential substrates for the isolation of the strigol receptor

Jan Willems J. F. Thurin, Rolf Keltjens, Gerard H. L. Nefkens and Binne Zwanenburg*

NSR-Centre for Molecular Structure, Design and Synthesis, Department of Organic Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, The Netherlands

A series of analogues derived from (+)-strigol, which is a germination stimulant for seeds of the parasitic weeds Striga and Orobanche, has been prepared. For the isolation and characterization of the strigol receptor, labelled analogues are required in which a photoactive function may be incorporated. The synthetic strategy allows for the synthesis of a range of A-ring substituted analogues of GR24 (which is a strigol analogue), including fluorescent dansyl GR24. Bioassays reveal that the stimulatory activity of these analogues in the seed germination of Striga hermonthica is retained.

Introduction

Parasitic weeds belonging to the genera Striga and Orobanche severely reduce yields of economically important crops in tropical and semitropical areas of the eastern hemisphere. The parasitic process begins with the seed germination of the weeds, induced by a stimulant which is present in the root exudate of the host plant. Following the isolation and identification of the naturally occurring germination stimulant (+)-strigol, several structure–bioactivity studies have been conducted, which revealed that the bioactiphore resides in the CD-fragment and the vinyl ether moiety.

In particular, GR24 (Fig. 1) turned out to be a highly potent synthetic strigol analogue. Based on the structural requirements for retaining stimulatory activity a tentative molecular mechanism for germination has been proposed which is depicted in Scheme 1.

A according to this mechanism a nucleophilic site in the receptor cavity reacts with the Michael acceptor unit, followed by elimination of the D-ring. The C- and D-rings as well as the connecting vinyl ether unit play an important role in inducing the germination. It is thus suggested that the chemical reaction at the receptor site is of crucial importance at the very beginning of the signal-transduction chain. However, nothing is known about the protein structure nor of its localization within the seeds. Detailed knowledge of the receptor protein would enable the design of a perfectly fitting substrate. Current strategies in the purification of plant proteins involve several types of affinity chromatography and photoaffinity labelling. In photoaffinity labelling the substrate of the protein is converted into a photoaffinity ligand by covalently attaching a photoactive moiety, such as an azido group, to the natural ligand.

After exposure to a cell extract, a very short-living, highly reactive intermediate is generated upon irradiation, which will be covalently bonded onto the protein in the vicinity of the putative ligand-binding site. A radioactive or fluorescent tag can be introduced in the photoreactive ligand in order to allow detection during isolation and enable the characterization of the protein. It has been demonstrated that this technique is a useful tool in plant hormone research, exemplified by the photoaffinity labelling of auxin binding proteins and gibberellin binding proteins. In the case of the strigol receptor, incorporation of a photoactive moiety may not strictly be necessary. If the molecular mechanism (Scheme 1) is correct, treatment of the seeds with a radioactive or fluorescent strigol analogue may directly lead to covalent attachment to the receptor protein without the need to generate a highly reactive species by irradiation. When the bioactiphore of the ligand is known, incorporation of the tag and eventually a photolabile moiety should be such that the bioactivity is retained. Structure–activity relationship studies, which have previously been performed will, therefore, provide a firm basis for the design of suitable compounds for the isolation of the strigol receptor.

Here synthetic approaches are described for the preparation of biologically active, labelled strigol analogues, suitable for, at least in principle, the identification of the strigol receptor. The synthetic concept is a general approach to a wide range of substrates containing a tag and eventually an additional photolabile moiety. In addition, the activity of the stimulation of seed germination of Striga hermonthica (Del.) Benth. and Orobanche crenata Forsk. of some of the thus obtained strigol analogues is evaluated.

Results and discussion

Strategy

In designing potential labelled germination stimulants, GR24 (Fig. 1) was used as the lead molecule. The bioactivity of GR24 is very high and its preparation is well documented. Since the CD-part as well as the connecting vinyl ether unit are...
essential for full biological activity. It was suggested that the tag and/or photoreactive group can best be incorporated into the A-ring of the stimulant molecule. Amino tricyclic lactone and amino GR24 were selected as appropriate compounds to serve this purpose as a wide range of transformations are feasible with these synths, such as acylation, sulfonylation or alkylation, whereby coupling with an external tag can be achieved. The strategy for the synthesis of labelled GR24 analogues is outlined in Scheme 2. The label may be introduced either before (route I) or after (route II) coupling with the D-ring.

Synthesis

In our strategy the main issue is the introduction of an amino function into the A-ring of tricyclic lactone in a regiocontrolled manner (Scheme 3). This was achieved via nitration of under relatively mild conditions (Scheme 3), to give two regioisomeric lactones and in a ratio of 9:1 in excellent yield, which could readily be separated. The structure of was deduced unambiguously from a 2D-NOESY experiment. The preferred formation of can be explained by the fact that C-7 is the least electron-deficient carbon atom in the aromatic ring. The nitration under similar conditions took place also starting from GR24 to give 7-nitro GR24 and its 5-nitro isomer in a ratio of 9:1 (Scheme 4).

However, several attempts to obtain amino GR24 by reduction of the nitro function in were unsuccessful. In contrast, reduction of the nitro group in was accomplished employing aqueous Cu(OAc)₂ and NaBH₄ in methanol in yields in the range 34-95%. A more reliable procedure (Scheme 3) involves the use of Sn–HCl under reflux, which gave the 7-amino tricyclic lactone in a reproducible yield of 99% (77% after recrystallization). The preparation of amino GR24 from amino tricyclic lactone involves a four-step procedure as is depicted in Scheme 5.

The amino group in was first protected as a Schiff base by reaction with benzaldehyde, then followed by formylation, coupling with bromo butenolide, similar to that described for GR24, and finally deprotection. Crude 7-benzalimino GR24 was isolated in an overall yield of 78%, based on . Deprotection was not as straightforward as expected. Several conventional methods, such as 5% oxalic acid, failed to give the desired result and only starting imine was recovered. However, during purification of 7-benzalimino GR24 by flash chromatography, the deprotection took place on the silica gel column and amino GR24 was isolated in an overall yield of 27%. The diastereoisomers could not be separated, neither by flash chromatography nor by recrystallization, in contrast to GR24.

The key intermediate amino GR24 was then utilized for further derivatization (Scheme 6), especially for the purpose of receptor identification. Diazotation and substitution in the presence of NaN₃ gave , which is thermally rather unstable in high yield. A applying the appropriate sulfonyl chloride, mesyl GR24 and dansyl GR24 were synthesized in high yields. The alternative procedure for the preparation of the labelled GR24 analogues and involving modification of the amino function of into the azido, mesylamino and dansylamino group, respectively, fol-
Biological activity

The stimulatory activity of nitro GR24 5a, amino GR24 2a and dansyl GR24 10 was determined using seeds of Striga hermonthica and Orobanche crenata. The germination percentages are collected in Tables 1 and 2, together with those obtained for GR24 under the same conditions in the same bioassay. This reference to GR24 enables a comparison between results obtained in different test series, which is important, because the response of seeds of parasitic weeds, in particular of Striga hermonthica, varies considerably from test to test. For bioassays of nitro GR24 5a and dansyl GR24 10, the fast-moving diastereoisomers were used, whereas amino GR24 2a was tested as a mixture of diastereoisomers. It was shown for GR24 that the activity of the most active (fast-moving) diastereoisomer is not seriously influenced by the presence of the less active diastereoisomer.11

The data in Tables 1 and 2 reveal that compounds 2a, 5a and 10 behave quite differently towards seeds of Striga hermonthica and Orobanche crenata. In the case of Striga hermonthica, the biological activity of the substituted GR24 derivatives is relatively little affected as compared to GR24. The activity of amino GR24 2a is about one order of magnitude lower than GR24, whereas nitro GR24 5a and dansyl GR24 10 possess comparable concentration-dependent activities. Interestingly, the intrinsic activity of dansyl GR24 10 is considerably higher than that of GR24, which becomes apparent at the higher concentrations. In contrast, dansyl GR24 10 is completely inactive in the stimulation of Orobanche crenata seeds. Evidently, substituents in the A-part of GR24 have a negative effect on the bioactivity in the case of this parasitic species. The difference in response exerted by A-ring analogues 2a, 5a and 10 on seeds of Striga hermonthica and Orobanche crenata is rather unexpected, since previous studies revealed that structural modifications in the BC-part,6 enol ether moieties25 and D-ring26 generally give similar results for both parasitic species. Nevertheless, the prospects of incorporating a tag in the A-ring of GR24 with the aim of identifying the receptor protein is very promising for Striga hermonthica. The remarkable activity of the bulky dansyl derivative 10 suggests a large degree of structural freedom in the A-part with retention of full biological activity.

Conclusion

In this synthetic study the preparation of amino GR24 2a is described. This compound is a versatile synthon for the preparation of a range of A-ring analogues of GR24. The synthesis of the fluorescent GR24 analogue 10 has been accomplished. Application of the thus developed synthetic strategy provides a feasible approach to the incorporation of radioactive tags and

Table 1 Germination percentages for seeds of Striga hermonthica after exposure to solutions of 2a, 5a and 10 at different concentrations**

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>1 mg l⁻¹</th>
<th>0.01 mg l⁻¹</th>
<th>0.001 mg l⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>70.0 ± 1.9b</td>
<td>57.8 ± 3.0b</td>
<td>19.4 ± 1.3b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(40.3 ± 2.4b)</td>
<td>(50.1 ± 2.8b)</td>
<td>(21.4 ± 1.7b)</td>
</tr>
<tr>
<td>2</td>
<td>5a</td>
<td>54.1 ± 4.3b</td>
<td>59.3 ± 4.6b</td>
<td>44.1 ± 2.2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(51.1 ± 2.4a)</td>
<td>(60.1 ± 3.0a)</td>
<td>(32.4 ± 2.0a)</td>
</tr>
<tr>
<td>3</td>
<td>2a</td>
<td>46.9 ± 3.8b</td>
<td>17.5 ± 2.2b</td>
<td>7.1 ± 1.9b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(50.5 ± 1.2b)</td>
<td>(54.8 ± 1.4b)</td>
<td>(29.0 ± 5.5b)</td>
</tr>
<tr>
<td>4</td>
<td>Control</td>
<td>9.8 ± 0.5a</td>
<td>11.2 ± 1.3a</td>
<td>9.8 ± 0.8a</td>
</tr>
</tbody>
</table>

*Germination percentages given are the mean of two replicate tests. In each test the percent was determined 12 times by counting the number of germination seeds. The values in parentheses are the mean germination percentages for seeds tested under the same conditions and at the same time, with GR24 as stimulant. A queue control containing 0.1, 0.001 and 0.0001% (v/v) acetone.

Table 2 Germination percentage for seeds of Orobanche crenata after exposure of 2a, 5a and 10 at different concentrations**

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compound</th>
<th>1 mg l⁻¹</th>
<th>0.1 mg l⁻¹</th>
<th>0.01 mg l⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>1.5 ± 0.6b</td>
<td>0.0 ± 0.0b</td>
<td>0.2 ± 0.2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(60.7 ± 2.8b)</td>
<td>(27.3 ± 3.6b)</td>
<td>(12.2 ± 0.9b)</td>
</tr>
<tr>
<td>2</td>
<td>5a</td>
<td>56.7 ± 3.5b</td>
<td>9.3 ± 1.6b</td>
<td>1.2 ± 0.3b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(60.0 ± 3.1a)</td>
<td>(27.3 ± 3.6a)</td>
<td>(16.6 ± 0.4a)</td>
</tr>
<tr>
<td>3</td>
<td>2a</td>
<td>33.6 ± 3.5b</td>
<td>2.7 ± 1.0b</td>
<td>0.0 ± 0.0b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(58.1 ± 3.8b)</td>
<td>(24.7 ± 2.4a)</td>
<td>(0.1 ± 0.1a)</td>
</tr>
<tr>
<td>4</td>
<td>Control</td>
<td>0.0 ± 0.0a</td>
<td>0.0 ± 0.0a</td>
<td>0.0 ± 0.0a</td>
</tr>
</tbody>
</table>

*Germination percentages given are the mean of two replicate tests. In each test the percentage was determined 12 times by counting the number of germination seeds. The values in parentheses are the mean germination percentages for seeds tested under the same conditions and at the same time, with GR24 as stimulant. A queue control containing 0.1, 0.001 and 0.0001% (v/v) acetone.
photoreactive units in the GR24 molecule. The germination stimulatory activity of GR24 analogues 2a, 5a and 10 is relatively little affected for seeds of Striga hermonthica, whereas it is considerably reduced for seeds of Orobanche crenata. Therefore Striga hermonthica is an attractive target to perform protein fishing experiments.

Experimental

Synthesis

Nomenclature. We have used the AUTONOM 1.0 program, provided by the Belstein Institute and Springer Verlag, Weinheim, BRD.

General remarks. 100 M H 2 Z H N M R. Spectra and 400 MHz H N M R spectra were recorded on a Bruker AC 100 spectrometer and a Bruker AM-400 spectrometer, respectively (M eq Si as internal standard). All coupling constants are given as 4 in H, unless indicated otherwise. IR Spectra were recorded on Perkin-Elmer 298 IR spectrophotometer. For mass spectra a double focussing VG 7070E mass spectrometer was used. GC–MS Experiments were run on a Varian Saturn 2 GC–MS ion-trap system. Separation was carried out on a fused-silica capillary column (DB–5, 30 m × 0.25 mm). Helium was used as carrier gas, and electron impact (EI) was used as ionization method. GLC analyses were conducted on a Varian 3700 GC equipped with a FID and nitrogen (2 ml min⁻¹) as the carrier gas. Melting points were measured with a Reichert Thermopan microscope and are uncorrected. Elemental analyses were performed at the Department of Micro-analysis of this laboratory. Fluorescence measurements were performed using a Perkin-Elmer luminescence spectrometer LS50B. Solutions were dried using the following methods: dichloromethane was distilled from P₂O₅ diethyl ether distilled from NaH; hexane was distilled from NaH; DMF (35 ml) was added [bis(trifluoroacetoxy)iodo]benzene (272 mg, 0.40 mmol) and iodine (146 mg, 0.575 mmol) in tetrachloromethane (15 ml) was added [bis(trifluoroacetoxy)iodo]benzene (272 mg, 0.40 mmol) and iodine (146 mg, 0.575 mmol) in tetrachloromethane (15 ml) was added. The mixture was allowed to warm to room temperature and then stirred for 1 h. After cooling of the reaction mixture, it was evaporated to afford crude 1a as a brownish solid (2.56 g, 99%). Recrystallization of this from ethyl acetate provided analytically pure 1a (1.99 g, 77%) as pale yellow crystals, mp 128–130 °C (from ethyl acetate) (Found: C, 69.47; H, 5.30; N, 6.28; Calcd for C₃₆H₂₁NO₅: C, 69.70; H, 5.39; N, 6.25). 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a and 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a and 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a and 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a.

7-Nitro-3,3a,4,8b-tetrahydrodieno[1,2-b]furan-2-one 1a

A mixture containing the 7-nitro tricyclic lactone 4a (3.00 g, 13.7 mmol) and tin (powdered, 17.7 g, 0.149 mol) in ethyl acetate (63 ml) and 10 x H Cl (39 ml) was heated at reflux for 1 h. After cooling of the reaction mixture, it was evaporated to remove the ethanol and then adjusted to pH 8 by the addition of saturated aqueous NaHCO₃. Insoluble tin salts were removed by filtration over Hyflo. The mixture was extracted with ethyl acetate (3x) and the combined extracts were dried (MgSO₄) and evaporated in vacuo to afford crude 1a as a brownish solid (2.56 g, 99%). Recrystallization of this from ethyl acetate provided analytically pure 1a (1.99 g, 77%) as pale yellow crystals, mp 128–130 °C (from ethyl acetate) (Found: C, 69.47; H, 5.30; N, 6.28; Calcd for C₃₆H₂₁NO₅: C, 69.70; H, 5.39; N, 6.25). 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a and 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a.

7-Iodo-3,3a,4,8b-tetrahydrodieno[1,2-b]furan-2-one 1b

To a solution of the 7-nitro tricyclic lactone 4a (3.00 g, 13.7 mmol) and tin (powdered, 17.7 g, 0.149 mol) in ethyl acetate (63 ml) and 10 x H Cl (39 ml) was heated at reflux for 1 h. After cooling of the reaction mixture, it was evaporated to remove the ethanol and then adjusted to pH 8 by the addition of saturated aqueous NaHCO₃. Insoluble tin salts were removed by filtration over Hyflo. The mixture was extracted with ethyl acetate (3x) and the combined extracts were dried (MgSO₄) and evaporated in vacuo to afford crude 1a as a brownish solid (2.56 g, 99%). Recrystallization of this from ethyl acetate provided analytically pure 1a (1.99 g, 77%) as pale yellow crystals, mp 128–130 °C (from ethyl acetate) (Found: C, 69.47; H, 5.30; N, 6.28; Calcd for C₃₆H₂₁NO₅: C, 69.70; H, 5.39; N, 6.25). 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a and 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a.

7-Iodo-3,3a,4,8b-tetrahydrodieno[1,2-b]furan-2-one 1b

To a solution of the 7-nitro tricyclic lactone 4a (3.00 g, 13.7 mmol) and tin (powdered, 17.7 g, 0.149 mol) in ethyl acetate (63 ml) and 10 x H Cl (39 ml) was heated at reflux for 1 h. After cooling of the reaction mixture, it was evaporated to remove the ethanol and then adjusted to pH 8 by the addition of saturated aqueous NaHCO₃. Insoluble tin salts were removed by filtration over Hyflo. The mixture was extracted with ethyl acetate (3x) and the combined extracts were dried (MgSO₄) and evaporated in vacuo to afford crude 1a as a brownish solid (2.56 g, 99%). Recrystallization of this from ethyl acetate provided analytically pure 1a (1.99 g, 77%) as pale yellow crystals, mp 128–130 °C (from ethyl acetate) (Found: C, 69.47; H, 5.30; N, 6.28; Calcd for C₃₆H₂₁NO₅: C, 69.70; H, 5.39; N, 6.25). 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a and 7-Nitro-3-(4-methyl-5-oxo-2,5-dihydrofuran-2-yloxymethylene)-5a.
was obtained in 92% yield. The mixture was dissolved in ethyl acetate and saturated aqueous NaHCO$_3$ after which it was stirred for 18 h at room temperature. After this the M$_2$SO$_4$ was added to the mixture which was then filtered over Hyflo and then concentrated by removal of the solvent to give the imine 6 (645 mg, 100%) as a pale yellow solid, which was used immediately in the coupling reaction; δ_H (100 MHz; CDCl$_3$) 2.70–3.56 (4 H, m, 3-H, 4-H and 3a-H), 5.77 (1 H, d, $J_{4, 3-H}$ 16.3, 4-H), 6.70 (1 H, m, OCHO), 6.92 (1 H, d, $J_{3-H, 2}$ 8.0, 8b-H) and 7.39 (1 H, d, $J_{4, 3-H}$ 7.8, 8b-H), 7.24–7.27 (3 H, m, Ph), 7.43–7.53 (3 H, m, Ph), 7.64–7.94 (2 H, m, Ph) and 8.44 (1 H, s, N=CH$_2$).

To a solution of the freshly prepared imine 6 (645 mg, 2.33 mmol) and methyl formate (0.5 ml, 7.75 mmol) in THF (25 ml) was added potassium tert-butoxide (287 mg, 2.56 mmol) in small portions at 0°C under nitrogen. The mixture was warmed to room temperature at which it was stirred for 18 h after which it was concentrated by removal of the solvent in vacuo. The residue was dissolved in DMSO (20 ml) and the solution was cooled to −60°C when it was treated with the bromo butenolide 7 (494 mg, 2.70 mmol) in DFM (3 ml), added gradually under nitrogen. The mixture was brought to room temperature and stirred for 18 h after which it was concentrated by removal of the solvent in vacuo. The residue was dissolved in dichloromethane and saturated aqueous NaHCO$_3$. The aqueous phase was separated and extracted with dichloromethane (2x) and the combined organic layers were washed with saturated aqueous Na$_2$SO$_4$, dried (MgSO$_4$) and concentrated to a small volume at 0°C. The crude product was purified by flash chromatography (SiO$_2$, hexane-ethyl acetate, 1:1) to afford two inseparable diastereoisomers.

7-Amino-3-[(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy-methylene]-3,3a,4,8b-tetrahydroindeno[1,2-b]furan-2-one 11

A solution of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. A further portion of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. A further portion of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. The residue was dissolved in DMSO (20 ml) and the solution was cooled to −60°C when it was treated with the bromo butenolide 7 (494 mg, 2.70 mmol) in DFM (3 ml), added gradually under nitrogen. The mixture was brought to room temperature and stirred for 18 h after which it was concentrated by removal of the solvent in vacuo. The residue was dissolved in dichloromethane and saturated aqueous NaHCO$_3$. The aqueous phase was separated and extracted with dichloromethane (2x) and the combined organic layers were washed with saturated aqueous Na$_2$SO$_4$, dried (MgSO$_4$) and concentrated to a small volume at 0°C. The crude product was purified by flash chromatography (SiO$_2$, hexane-ethyl acetate, 1:1) to afford two inseparable diastereoisomers.

7-Amino-3-[(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy-methylene]-3,3a,4,8b-tetrahydroindeno[1,2-b]furan-2-one 11

7-Iodo-3-[(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy-methylene]-3,3a,4,8b-tetrahydroindeno[1,2-b]furan-2-one 12a

Potassium tert-butoxide (167 mg, 1.64 mmol) was added in small quantities to a solution of the 7-iodo tricyclic lactone 12a (447 mg, 1.49 mmol) and ethyl formate (1.20 ml, 14.9 mmol) in THF (25 ml) with stirring at 0°C under nitrogen. The mixture was warmed to room temperature at which it was stirred for 18 h after which it was added to the mixture which was then evaporated in vacuo to remove the solvent. The mixture was dissolved in ethyl acetate and saturated aqueous NH$_4$Cl. The aqueous phase was separated and extracted with ethyl acetate (2x). The combined organic layers were dried (MgSO$_4$) and concentrated in vacuo to give the crude formyl tricyclic lactone as a pale yellow solid. Starting from GR24 (100 mg, 0.336 mmol), 5a was obtained in 92% yield. NMR spectroscopic data were in complete agreement with those reported above.

7-Amino-3-[(4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy-methylene]-3,3a,4,8b-tetrahydroindeno[1,2-b]furan-2-one 11

A solution of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. A further portion of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. A further portion of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. A further portion of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature. A further portion of the amino tricyclic lactone 1a (440 mg, 2.33 mmol) and benzaldehyde (247 mg, 2.33 mmol) in ethyl acetate (20 ml), in the presence of molecular sieves 4A, was stirred for 12 h at room temperature.
Preparation of test solutions. A compound (10 mg) to be tested was weighed out very accurately, dissolved in acetone p.a. (10 ml) and diluted with demineralized water to 100 ml. Aliquots of this stock solution were further diluted with water to obtain test solutions containing 1, 0.1, 0.01 and 0.001 mg l−1 test compound and 0.1, 0.01, 0.001 and 0.0001% (v/v) of acetone, respectively.

Bioassays. For sterilization, seeds of Striga hermonthica and Orobanche crenata were exposed to an aqueous sodium hypochlorite (2% active chlorine) for 5 min with agitation. The seeds were then thoroughly rinsed with water and dried overnight.

For conditioning the sterilized seeds were spread on glass fibre filter paper disks (8 mm diameter; approximately 30–70 seeds per disk) in Petri dishes, moistened with water and stored in the dark for 14 days at 20 °C for Orobanche seeds and at 30 °C for Striga seeds. The conditioning water was then removed and replaced by 100 μl of test solution per disk. After incubation for 24 h (Striga) and 5 days (Orobanche) in the dark at the indicated temperatures, the germination percentage was determined under a microscope. Seeds were considered to be germinated if the radical protruded through the seed coat.

In each test series aqueous solutions with 0.1, 0.01, 0.001 and 0.0001% (v/v) of acetone were used as negative control. Test solutions of the stimulant GR24 (concentrations of 1, 0.1, 0.01 and 0.001 mg l−1) were used for positive controls. All tests were performed in duplicates, and in each test the germination percentages were determined on 12 disks. For full details of the bioassay, see ref. 27.

Acknowledgements

We thank Dr A. G. T. Babiker and Dr F. M. F. Zaitoun for supplying Striga and Orobanche seeds. We thank H. Amedajia, P. van Galen and A. Swolfs for conducting elemental analysis, mass and 400 MHz 1H NMR measurements, respectively. These investigations were supported by the Netherlands Foundation of Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Research (NWO).

References

14 For a recent review of chemical reagents in photofaffinity labelling, see S. A. Fleming, Tetrahedron, 1995, 51, 12 479.

Biological activity

Seeds. Seeds of Striga hermonthica and Orobanche crenata were harvested in Sudan in 1987 and in Egypt in 1991, respectively and were stored in the dark at room temperature until used in germination tests.

Preparation of test solutions. A compound (10 mg) to be tested was weighed out very accurately, dissolved in acetone p.a. (10 ml) and diluted with demineralized water to 100 ml. Aliquots of this stock solution were further diluted with water to obtain test solutions containing 1, 0.1, 0.01 and 0.001 mg l−1 test compound and 0.1, 0.01, 0.001 and 0.0001% (v/v) of acetone, respectively.

Bioassays. For sterilization, seeds of Striga hermonthica and Orobanche crenata were exposed to an aqueous sodium hypochlorite (2% active chlorine) for 5 min with agitation. The seeds were then thoroughly rinsed with water and dried overnight.

For conditioning the sterilized seeds were spread on glass fibre filter paper disks (8 mm diameter; approximately 30–70 seeds per disk) in Petri dishes, moistened with water and stored in the dark for 14 days at 20 °C for Orobanche seeds and at 30 °C for Striga seeds. The conditioning water was then removed and replaced by 100 μl of test solution per disk. After incubation for 24 h (Striga) and 5 days (Orobanche) in the dark at the indicated temperatures, the germination percentage was determined under a microscope. Seeds were considered to be germinated if the radical protruded through the seed coat.

In each test series aqueous solutions with 0.1, 0.01, 0.001 and 0.0001% (v/v) of acetone were used as negative control. Test solutions of the stimulant GR24 (concentrations of 1, 0.1, 0.01 and 0.001 mg l−1) were used for positive controls. All tests were performed in duplicates, and in each test the germination percentages were determined on 12 disks. For full details of the bioassay, see ref. 27.

Acknowledgements

We thank Dr A. G. T. Babiker and Dr F. M. F. Zaitoun for supplying Striga and Orobanche seeds. We thank H. Amedajia, P. van Galen and A. Swolfs for conducting elemental analysis, mass and 400 MHz 1H NMR measurements, respectively. These investigations were supported by the Netherlands Foundation of Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Research (NWO).

References

14 For a recent review of chemical reagents in photofaffinity labelling, see S. A. Fleming, Tetrahedron, 1995, 51, 12 479.

Paper 6/04685A
Received 4th July 1996
Accepted 16th October 1996