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Abstract 

Neural networks have been used in multiple applications, but as a kind of black box for dealing with problems where 
there is no a priori information about the data. This means that the model is constructed based solely upon information ob- 
tained from the data themselves. This seems to be a good property but makes it difficult to validate the models obtained. The 
classification properties of neural classifiers are usually described by the percentage of correctly classified objects in a test 
set. Since these straight methods are only based on discrimination, no information can be obtained in a statistical way. In this 
paper, on a simulated data set, two different types of neural networks, MLF (multi layer feedforward) and RBF (radial base 
function), are applied to solve a classification problem. The modelling ability, stability and reproducibility of this kind of 
networks are studied based on various different networks independently trained on the same data set with a predetermined 
value for the sensibility and specificity. Robustness to different kinds of error is also studied by means of Monte Carlo simu- 
lations adding noise at different levels and from different theoretical distributions. Further to this, an analysis based on prin- 
cipal components is carried out to study the apparently different networks obtained. The simulation studies reveal that both 
types of networks perform well enough to reproduce the input space. For RBF networks, due to the local approach, the study 
showed some properties related to sensibility and specificity which are relevant in practical problems. 
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1. Introduction networks when they are trained, as far as possible, in 

Previous work on the predictive ability of radial 
base function (RBF) and multi layered feedforward 
(MLF) neural networks on function approximation 
problems has been carried out [l] showing the simi- 
larities and differences between these two kinds of 

the same way and with the same data sets. In the pa- 
per mentioned in [l] it is shown that MLF is faster 
than RBF for fitting problems and, in general, RBF 
is more robust than MLF for input noise, which 
means RBF better supports the normal random noise 
in the input space. 

* Corresponding author. 
In this paper we focus attention on the differences 

between MLF and RBF neural networks for classifi- 
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cation tasks. Both types of networks are trained with 
the backpropagation algorithm on the same data set. 

In the paper we will maintain a distinction be- 
tween discriminating and class-modelling techniques 
[2]. Both fall inside the field of classification but have 
a clearly different meaning. 

The classification rules defined by the discrimi- 
nating techniques correspond to boundaries that par- 
tition the input space into a predefined number of re- 
gions, as many as there are classes in the training set. 
In this way, every object is assigned necessarily to a 
class. Neural networks can be an example of discrim- 
inating techniques. 

In class-modelling techniques, the classification 
rule corresponds to closed boundaries, the input space 
is divided into as many closed regions (“class 
boxes”) as classes there are, not necessarily dis- 
jointed and not necessarily covering the whole input 
space. This means that, in this case, not every object 
is assigned to a class, so the classes defined are more 
specific allowing one to detect objects that are differ- 
ent from the rest (“outhers”); on the other hand, as 
the classes are not necessarily disjointed, there can be 
confusion regions, the overlapping regions, where the 
method is necessarily ambiguous. UNEQ [3] is a typ- 
ical example of a class modelling technique. 

From the statistical point of view, a model can be 
considered as a hypothesis test [4] for each class in 
the problem: the null hypothesis, Ha, is that a spe- 
cific object belongs to a class and the alternative hy- 
pothesis, H,, is that this object does not belong to this 
class. In this case, one can select a value for the 
probability of rejecting H, if it is true, cr, and looks 
for a strategy to define the critical distance such that 
the probability of accepting H, if it is false, /3, be 
minimum. In other words, LY is the significance level 
of the test, i.e. the probability of false positive (prob- 
ability of error type I), whereas /3 is the probability 
of false negative (probability of error type II). In this 
way the set of objects whose distance to the model is 
greater than the critical distance, defines the 
(mathematical) complement of the class box. Thus, 
the probability p is a measure of the quality of the 
model. 

But it is not always possible to compute exactly the 
values for CY and p, so their estimations have to be 
used. In this sense, an estimation of the 1 - (Y value 
is the sensibility of the model, that is, percentage of 

objects belonging to a class that are correctly classi- 
fied into this class, while 1 - p can be estimated as 
the specificity of the model, percentage of objects not 
belonging to a class that are correctly classified as 
being outside the class. 

Both the specificity and the sensibility are related. 
The sensibility can be increased using a higher value 
for the critical distance (thus “increasing” the class 
boundaries); more objects are within the class and the 
sensibility will increase. But when the boundary of a 
certain class is higher, the specificity of the model 
will decrease. 

For classification problems neural networks are 
used, in general, in well-defined problems, for exam- 
ple, to evaluate if an object is acceptable or not in a 
multivariate quality control process. In this case, one 
is dealing with a discriminant problem and the train- 
ing of the network is carried out by evaluating the 
performance of the network as discrimination 
method, i.e. by means of the percentage of correct 
classifications. But, when the network is used to pre- 
dict whether a new object is acceptable or not, it 
should be taken into account that variations in the 
production process can provide characteristics to the 
new object different from those which the objects 
have in the training set. In this case, the problem is a 
modelling problem: the question now is to detect that 
the object is different. So, a problem which is posed 
and solved as a discriminating problem becomes a 
modelling problem. It is interesting to know the abil- 
ity of the networks to react to this situation. 

It is in this context that the results shown in this 
paper should be evaluated. The networks are trained 
to solve a discriminant problem, and then attempts to 
make a model with the outputs of the networks are 
done based on different criteria to establish the class 
boundaries [2]. Thus, much attention is paid to the 
additional information one can obtain with a mod- 
elling technique: the sensibility and specificity com- 
puted based on various criteria to define a model with 
the outputs obtained with both type of networks. 

2. Theory 

Both MLF and RBF neural networks are known 
from the literature [5-71 as well as several applica- 
tions [g-lo]. Here we will only write the basic for- 
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mulae in order to describe the networks used and to 
uniform the notation. 

For both kind of networks, there are theoretical 
results (see for instance [ll] for RBF and [12] for 
MLF) which show that only one hidden layer is 
enough to make the networks universal approxima- 
tors. 

Based on the mentioned theoretical results and, as 
far as possible, the networks were configured simi- 
larly: both types are three layer fully connected neu- 
ral networks, this means, only one hidden layer was 
used with a variable number of hidden units and a 
linear output layer. 

In both cases the networks receive information 
from the “real world” and pass it to the hidden layer 
by means of a distributional layer, the input layer of 
the network. In the hidden layer, the information is 
processed and the resulting signal is sent to the out- 
put layer that acts as a linear regression between the 
outputs of the hidden layer and the target output, the 
response we try to obtain. 

The main difference between MLF and RBF net- 
works is the way their hidden layer processes the in- 
formation it receives: 

. An MLF network uses logistic functions in its 
hidden unit. The most usual, and that used in this pa- 
per, is the sigmoidal function defined as: 

1 
*(4 = 

1 +exp[-(x+cr)] (1) 

where g is the bias term used to shift the sigmoid 
function along the abscissa axis. 

Each unit in an MLF-hidden layer computes an 
hyperplane in the input space. These kinds of trans- 
fer functions act as soft-limiter functions using the 
computed hyperplanes as discriminant hyperplanes to 
separate the classes in the training set. 

. An RBF network works as a kind of kernel esti- 
mation method. It approximates an unknown func- 
tion by the weighted sum of different kernel func- 
tions, the radial basis functions, which are used in the 
hidden layer of an RBF network. The most common 
kernel function is the Gaussian function defined as: 

where (T is a specific parameter of the radial func- 
tion (the width) that represents the “portion” of the 
space under the influence of the kernel function. So, 
the RBF networks divide the input space into regions 
(not necessarily disjointed) each under the influence 
of one (or more) radial function, like a clustering 
technique. 

For classification problems, a simple modification 
of the Gaussian function can be used [ 131 to improve 
the performance of an RBF network. The modified 
kernel function is defined as: 

l+R 
ccl(x) = 2 

i 1 

(3) 

R + exp 3 

where the R parameter was added to the original 
Gaussian function. The performance of an RBF net- 
work for classification tasks is enhanced by the addi- 
tion of the factor R to the Gaussian kernel function. 
The optimal values for R are problem dependant and 
should be fixed keeping in mind the relationship be- 
tween R and (T. The (T parameter still determines the 
portion of the space under the influence of the kernel 
function (see Fig. la>. The R parameter flattens the 
kernel function around zero (Fig. lb) so the outputs 
of the objects lying within the influence region of the 
function are similar and near one (the highest value 
the function can allow). For function approximation, 
RBF networks have a better performance with low 
values for R and IT, whereas for classification tasks 
bigger values give better results. This is because RBF 
networks model a kernel function around a certain 
cluster of points in the input space. Within these 
clusters the responses of the kernel function should be 
more or less the same while at the boundaries of 
cluster the responses of the kernel function should 
change quickly to zero. With this modification and an 
appropriate value for R, objects belong to the same 
class, supposing they are close to each other (thus in 
the same influence region), obtain the same value as 
output from the hidden layer. So, the network needs 
fewer hidden units and it is easier for the final linear 
regression to separate the classes. 

Once the topology for both types of networks is 
decided and the different weights are initialized, the 
output of the network can be obtained. In this step, 
some criteria must be defined to say whether the re- 
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Euclidean distance between input and amroid ol kernel function. 

Euddean distance between input and cammid al kernel function. 

Fig. 1. Modifications of the Gaussian function. (a) Effect of the S 
parameter (squared width of the kernel function). R was con- 
stantly equal to 1. (b) Effect of the R parameter in flatting the 
Gaussian kernel function. S was fixed at 2. 

sponse is acceptable or not. If it is not, there are some 
learning algorithms, both supervised and unsuper- 
vised, to train the network until the acceptable re- 
sponse is reached. 

Above all for RBF networks several different 
training algorithms are proposed to find the optimal 
settings of the networks. One of the methods is the 
training by gradient descent through backpropagation 
D41. 

This was the method used to train both types of 
networks, although this is a learning algorithm spe- 
cially suited for fitting problems because it tries to 
approximate the target output that in a classification 
problem is only a codification of the classes not a 

value we try to fit. This idea of using regression 
methods for resolving qualitative problems is not new 
[15,16], and in [17] it is shown that MLF neural net- 
works trained with the backpropagation learning rule 
for classification problems exhibited a similar perfor- 
mance to optimal discriminant methods dealing with 
normal multivariate distributed data sets. 

As a supervised learning rule, backpropagation 
needs a way to measure the difference between the 
output obtained for the network and the target out- 
put. So an error function has to be defined for look- 
ing for a minimum in the error hyper-surface. The 
most usual error function is the squared scaled eu- 
clidean distance between the output and the target 
values. 

Based on the calculated error, the delta term is 
computed and backpropagated through the network 
correcting the weights and starting again until some 
goals are reached. Here, several questions need to be 
taken into account before and during training: a cor- 
rect initialization of the weights must be chosen, an 
adequate learning rate for controlling the stepsize of 
change of the weights, maybe a momentum term, 
minimization method for moving along the error hy- 
persurface, etc. 

Another question to consider is the overtraining 
effect, i.e. the effect in which the network uses its 
degrees of freedom to store the individual patterns 
instead of learning the underlying features [5]. Such 
a network is good at recognizing the patterns used for 
learning but has lost its generalization ability, that is 
to say its ability to respond correctly to other struc- 
turally equal inputs but which differ from the pat- 
terns for random reasons (experimental variability, 
etc.). 

3. Experimental and results 

3.1. Data 

One of the goals of the paper is to compare the 
classification ability between MLF and RBF neural 
networks. So, the authors decided to simulate the data 
sets used for the training of the networks. This is 
above all to control the distribution of the data, to be 
sure the training and test sets are exactly in the same 
input space and to avoid any other additional and 
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probably unknown problems that can appear with real ance is one, with D according to Eq. (4) for n = 5. 
data sets and can mask some properties of the net- So, the classes are defined by their centroid: (0, . . . , 0) 
works. for class 1 and ([D/ 61,. . . , [D/ \/31) for class 2. 

Taking into account the differences between a dis- 
criminant and a modelling technique and in order to 
evaluate the quality of the results, it was decided to 
use data sets with “a priori” established values for 
the sensibility and specificity. In this way one can 
obtain some conclusions about the performance of 
both kinds of networks. 

Specificity of a class depends basically on the 
separation between class models so depends on the 
criterion used for computing the class boundaries. As 
in fact the class boundaries are represented by the 
critical distance, sensibility and specificity depend on 
the distance used. 

When the networks are used for classification 
tasks, binary target outputs can be selected. In this 
way, the output of the network should give the class 
of the object presented to the network. Among all the 
possible codifications, each class was associated with 
only one output unit. This is in order to simplify the 
interpretation of the network outputs and to avoid an 
implicit sort of ordering in the classes [ 181. So the 
codification of the classes was (1,0) for class 1 and 
(0,l) for class 2. 

3.2. Neural networks 

According to [4], using the Euclidean distance, D, 
and p and p’ being the values for sensibility and 
specificity respectively, D( p, p’) can be expressed as 
a linear combination of non-integer powers of the 
number of variables in the problem. 

At 95% confidence level, thus considering CY = p 
= 0.05, the theoretical values for sensibility (1 - a) 
and specificity (1 - p) are both equal to 0.95. 

Based on the different ways the networks operate, 
only the number of units in the input and output lay- 
ers was previously fixed (five and two units, respec- 
tively). The final topology of the networks, i.e. num- 
ber of hidden units, was decided during training in the 
sense that the training procedure checked the results 
with different configurations before choosing the fi- 
nal one. 

If n represents the number of variables in the 
problem, the corresponding theoretical distance be- 
tween models for p = p’ = 0.95 can be calculated by 
means of the following formula [4]: 

3.2.1. Structure of the networks 

D(O.95,0.95) = 2.80589 + 0.894416 - 0.08390n 

+ 0.00465& (4) 

Based on this formula, three independent normal 

In practice, if x = (xi, xz, . . . , x5> represents an 
object in the five dimensional input space, “rrhid” is 
the number of hidden units in the network, Ajk are the 
weights connecting the various kernels with the out- 
put unit and 0 = (O,, 0,) is the output of the net- 
work, we can write: 

multivariate data sets with objects belonging to two 
classes were generated in a 5-dimensional space. All 
of them with theoretical values for sensibility and 
specificity equal to 0.95. These three sets were: (i) a 
training set to train the network, with 50 objects in 
each class; (ii) a monitoring set, also with 100 ob- 
jects (50 per class) and dedicated to control (“to 
monitor”) the prediction behaviour of the networks 
during learning to avoid the overtraining effect; (iii) 
a test set with 200 objects (100 per class) in order to 
test the prediction ability of the networks. 

(i) For an h4LF neural network that uses as trans- 
fer functions in its hidden layer those defined by Eq. 
(1) 

%id 

o,= CAjk.qJj cwijxi 
j=l i 1 i=l 

(5) 

where wij represents the connection weight between 
the ith unit in the input layer and the jth hidden unit. 

(ii) For an RBF neural network that uses as radial 
functions in its hidden layer those defined by Eq. (3) 

The objects are characterized by five uncorrelated 
variables. Each variable in class 1 follows a normal 
distribution with zero mean and variance equal to one, 
whereas in class 2 the mean is D/ 6 and the vari- 

%id 

O!i= C hj~~~j(llCj-xX(IZ) (6) 
j=l 

where cj E R5 represents the centroid of the jth ker- 
nel function. 
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Then, the error is computed as the difference be- 
tween the output obtained by the network, 0, and the 
target output, T = (T,, T,>, based on the following 
error function: 

(7) 

3.2.2. Training 
A lot of network parameters (weights) need to be 

trained. In addition to the generic problems concern- 
ing the training of neural networks with the back- 
propagation learning rule, some aspects need to be 
considered when training RBF networks: 

(i) The initialization of the centroids of the kernel 
functions. If these centroids are chosen too far from 
the input range, the output of the RBF-unit becomes 
zero almost independently of the initial widths. This 
results in very long training and probably the net- 
work will not be able to find the correct parameters. 
There are several methods to find the initial cen- 
troids of the radial base functions in the range of a 
class in the input space, for example by means of the 
k-means clustering technique (for example [ 191) or 
using a Kohonen learning rule [20] or by means of a 
genetic algorithm (e.g. [21]). All of them are unsu- 
pervised techniques that place the centroid among the 
centroids of a certain cluster. Therefore the initial 
centroids of the radial base functions are better cho- 
sen around the real centroids of the input data, if they 
are known. 

Fig. 2. Radial base function in one dimension: effect of moving the 
centroid and the width of the kernel function to obtain the target 
value y1 for the corresponding input x,. 

(ii) The width factors. In fact, the learning of the 
network is done by adjusting the size of S = a* (not 
of a) in the modified Gaussian kernel function [Eq. 
(3)]. So for mathematical reasons this value must not 
become zero nor negative during training. A precau- 
tion for this problem must be taken. 

(iv) Related to the last questions, the same situa- 
tion is likely to occur during training. There are two 
ways of adapting the weights of the hidden layer: the 
centroid of the kernel function can be adjusted or the 
S factor can be adjusted (see Fig. 2). It has been found 
that when larger networks are trained, the factor S 
tends to drift towards very low values. This is usu- 
ally an indication that the data are linearly separable. 
As in (i) there are several ways to tackle this ques- 
tion. One of them is to train separately the centres - 
by means of clustering techniques, estimating the lo- 
cal densities for each kernel, . ..- and then fix them 
and train the rest of the parameters. Maintaining the 
idea of using the backpropagation algorithm to train 
simultaneously all the weights involved in the net- 
work, a way to counter this behaviour without modi- 
fying the simultaneous algorithm is to introduce an 
extra smaller learning rate for the S factor. In this way 
the adaption of the centroid is favoured. 

(iii) The initialization of the S factors. Even if the (v) The delta term used for updating the weights 
centroids of the kernel functions are in the correct is computed based on the direction shown by the 
range, the behaviour of the network depends on the steepest gradient descent method. For MLF networks 
S factors. If they are chosen too large, the responses the direction shown is the direction in which the 
will become one for every object and the training time derivative of the function respect to the weights wij 
will become very long. If they are chosen too small, is negative. For RBF networks, using the same error 
the responses will become zero for every object and function, the network parameters have a different 
we end up in the same situation as (i). So a kind of meaning and they are adjusted independently but si- 
compromise between the centroids of the radial base multaneously. So there are two, not necessarily equal, 
functions and their widths has to be found. directions shown by the method: one computed based 
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on the derivative of the function with respect to the 
centroids of the kernel functions, cij, and another 
based on the derivative with respect to the Sj (the S 
factor associated with the jth kernel function). 

3.3. Replication of the networks 

Both MLF and RBF were trained with the same 
procedure. For MLF all the weights were initialized 
randomly using the Nguyen-Widrow initialization 
method which is implemented in the Neural Network 
Toolbox [22] from MATLAB. For RBF, due to the 
different meaning of the hidden units and the bigger 
problems with the initialization of their weights, the 
initialization was different: the parameters associated 
with the output layer were initialized with random 
normal values with zero mean and standard deviation 
of one; the centroids of the radial base functions were 
initialized near the theoretical class centroids; all the 
widths were initialized constantly equal to 0.5; and R 
was fixed at 1, because this value exhibited the best 
performance. 

As with other flexible estimation techniques, it is 
desirable to allow the structural parameters of the 
networks to be chosen based at least partly on the data 
[23]. The topology selection problem can be ad- 
dressed in a variety of ways. In this paper we used a 
monitoring set approach [5] to model selection, stop- 
ping the training when the error on the monitoring set 
reaches a minimum. So, various attempts with differ- 
ent numbers of hidden units were checked to find out 
the best topology of the network. In every case, the 
monitoring set was used as stopping criterion to avoid 
the overtraining effect, based on the best prediction 
ability of the networks during training. 

The best results for MLF networks were obtained 
with one hidden unit. For RBF networks, despite the 
fact that, due to the structure of the data sets and the 
way the networks operate, one hidden unit per class 
should perform the classification task, in fact this was 
not the case. When only two hidden units (one unit 
per class) are used, the networks exhibited a very bad 
performance. The best results were obtained with six 
hidden units. When more hidden units are used, tbe 
network has a better performance but also the train- 
ing time increases rapidly. 

To study the stability and reproducibility of the 

networks, ten different networks of each type were 
independently trained with the use of the same data 
set. 

The twenty networks were trained based on the 
percentage of correct classifications on the monitor- 
ing set and, also taking into account the behaviour of 
the error on this monitoring set during training. When 
the percentage of correct classifications started to de- 
crease and the error to increase, the training was con- 
sidered finished. 

The training was implemented in batch mode, i.e. 
all the objects belonging to the training set were pre- 
sented to the network simultaneously. In this way, the 
dependency of the delta learning rule to the presenta- 
tion of the objects was avoided. But, in this case, the 
error function should take into account the error for 
all the objects. 

If “nobj” represents the number of objects in the 
data matrix, each one has its own output, OPk, and 
target, TPk, and Eq. (7) becomes: 

Then percentages of correct classifications for the 
training and test sets were computed. The results ob- 
tained are listed in Tables 1 and 2, together with cali- 
bration error (value of Eq. (8) with the outputs ob- 
tained by applying the networks on the training set) 

Table 1 
Percentage of correct classifications for RBF networks. % CC is 
the percentage of correct classifications on the referenced set. The 
last row contains the mean values for the ten networks 

Calibration 

0.1351 0.1364 
0.1375 0.1368 
0.1588 0.1629 
0.1383 0.1423 
0.1387 0.1386 
0.1352 0.1463 
0.1451 0.1437 
0.1260 0.1276 
0.1258 0.1304 
0.1257 0.1313 

Prediction 
error 

%CC %CC 
training test 

98 98.0 
96 98.5 
96 96.0 
91 98.5 
98 91.5 
98 97.5 
98 98.5 
98 98.5 
98 98.5 
98 98.5 

0.1366 0.1396 97.5 98.0 
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Table 2 
Percentage of correct classifications for MLF networks. % CC is 
the percentage of correct classifications on the referenced set. The 
last row contains the mean values for the ten networks 

Calibration 
error 

Prediction 
error 

%CC 
training 

%CC 
test 

0.0373 
0.0386 
0.0378 
0.0384 
0.0365 
0.0370 
0.0375 
0.0369 
0.0365 
0.0384 

0.0769 
0.0771 
0.0770 
0.0771 
0.0768 
0.0769 
0.0769 

0.0768 
0.0771 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

0.0375 0.0770 100 100 

and prediction error (value of Eq. (8) with the out- 
puts of the test set). As can be seen in the tables and, 
regarding to the errors and percentages of correct 
classifications, MLF networks perform better than 
RBF networks. Anyway, the networks are very re- 
producible and quite stable. 

3.4. Structural similarity of the different indepen- 
dently trained networks on the same data set 

We have ten RBF networks and ten MLF net- 
works with similar performance and similar values for 
percentage of correct classifications in both classes 
but with different weights. As, in fact, a network is 
determined by the values of its weights, we have ten 
different networks of each type that solve the prob- 
lem in a similar way. The training of the network 
consists of looking for a minimum in an unknown 
error surface, so obviously the solution is not neces- 
sarily unique. However, there should be some com- 
mon characteristics for all networks because they are 
solving exactly the same problem and with the same 
topology. 

For our purposes, we will describe RBF networks 
by three matrices: C, S and W, which will store the 
parameters associated with the hidden (C and S) and 
the output layer (WI. This means that in C we have 

stored the values for the centroids of the radial base 
functions, ci, and in S the squared widths of the ker- 
nel functions, Si, whereas in W the parameters hjk are 
stored. In this sense, the ith column of C contains the 
coordinates of the centroid of the ith-kernel function, 
ci, and the ith column in S stores the corresponding 
Si factor. W contains the coefficients for the final 
linear combination of kernel functions, one column 
per output there are in the problem. 

In our case, the RBF networks have 6 hidden units, 
five inputs and two outputs, so the size of C is 5 by 
6, of S is 1 by 6 and of W is 6 by 2. 

As the structure of the weights and their meaning 
are clear, in fact, we can define each network by only 
one matrix, N, which consists of joining vertically C, 
S and the transpose of W. Thus N is an 8 by 6 matrix 
that stores in each of their columns one centroid, the 
corresponding squared width and the corresponding 
parameters (one per class) of the final linear layer. 

In this way, we have ten different matrices, Ni (i 
= 1, 2, . ..) lo), each one defining an RBF network. 
If we superimpose all of them, we have a so-called 
three-way data set (three-dimensional array), Z, 
which contains the information of all networks. We 
are interested in studying the information provided by 
Z. 

If we imagine Z as a parallelepiped in the three- 
dimensional space and call I, J, K the three axes in- 
volved in the space (as if it were a three-dimensional 
system of coordinates) with I = (1, 2, . . . , lo), J = { 1, 
2 ,..., 6) and K = { 1, 2,. . . , 8) we have, from the 
mathematical point of view, a mapping Z: I X J X K 
+ Iw that assigns to each triple (i, j, k) E I X J X K 
the observation zijk. 

To handle this three-dimensional array, we re- 
duced it to a data table by so called unfolding. With 
this unfolded matrix, one tries to obtain some con- 
clusions by analysing it by principal component 
analysis (PCA). 

There are three possibilities of unfolding the ma- 
trix Z [24]. In each situation, one of the modes re- 
mains unchanged and the other two are combined to 
yield a single one. In this way, we obtain three two- 
dimensional matrices, Zi, Zj and Z, where the index 
refers to the mode that remains unchanged. 

More specifically, the matrices are: 
(1) Zi consists of a matrix 10 by 48 made by 

choosing in Z the planes parallel to the IK-plane (J- 
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slices), transposing them and joining them horizon- 
tally (i.e. putting them next to each other). This way, 
in the rows of the matrix appear the different net- 
works: 

ClSl4142 ... ‘6 s6 ‘6 1’62 

. . . 

qs, A,, A,, . . . C6 . . . A,, 

(2) Zj consists of a 6 by 80 matrix made by 
choosing in Z the planes parallel to the IJ-plane (K- 
slices), transposing them and joining them horizon- 
tally: 

network 1 network 10 

C1~l*ll*l2 ... C,S,4,4* 

. . . 

C6S6 A61 A,* ..’ ‘6 ‘6 ‘6, ‘62 I 

(3) Z, consists of an 8 by 60 matrix made by 
choosing in Z the planes parallel to the JK-plane (I- 
slices), transposing them and joining them horizon- 
tally: 

(N, N, . ..N.o) 

Following the Tucker 1 method [25] separate PCA 
analyses were performed for each data matrix ob- 
tained by the different ways of unfolding. Then, ig- 
noring the loadings of combination models and sav- 
ing merely the scores of the respective isolated mod- 

1 54 
2 

5 
I 
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H 
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Fig. 3. Plot the scores of Z, unfolding in the plane formed by the Fig. 5. Plot the scores of Zi unfolding in the plane formed by the 
first two eigenvectors. first two eigenvectors. 
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Fig. 4. Plot the scores of Zj unfolding in the plane formed by the 
first two eigenvectors. 

els, one obtains separate PCA representations for the 
items of each mode. 

Figs. 3-5 plot the scores in the plane formed by 
the first two eigenvectors and for the three ways of 
unfolding. 

For Z, the first two eigenvectors explain 73.61% 
of the variance. From Fig. 3 it can be deduced that 
these two eigenvectors separate rows l-5 (which in 
Z, contain the class centroids of the kernel func- 
tions) from row 6 (the S factors) and from rows 7-8 
(which contain the coefficients of the output layer). 
This structure coincides with the structure of the ma- 
trices Ni joined to form Z,. 
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For Zj the first two eigenvectors explain 64.69% 
of the variance. From Fig. 4 it can be deduced that 
these two eigenvectors separate the first three rows of 
Zj from the last three rows. In the structure of Zj each 
row corresponds with each centroid (of the kernel 
functions) and its associated parameters. In all the 
networks, the first three kernel functions are mod- 
elling class 1 and the last three class 2, so this is what 
we see in this plot. 

For Zi the first two eigenvectors explain 84.60% 
of the variance and Fig. 5 does not show any special 
structure in the disposition of the scores. As here the 
rows of Zi represent the different networks, we can 
say that there are not significant differences between 
them, that is, from among the numerical values of the 
parameters, they are structurally equal. 

These analyses confirm what one can expect as 
regards the behaviour of the networks and the struc- 
ture of the different ways of unfolding. 

For MLF networks, a similar analysis does not 
have such a clear interpretation, because the MLF- 
weights have no physical meaning and, in contrast 
with RBF, MLF is not a local method, so, the infor- 
mation is distributed globally in the network. 

3.5. Discrimination and modelling 

In this paper, RBF and MLF networks are trained 
to classify objects into two different classes. When an 
object belongs to class 1 the network should produce 
an output of (1,O) and an object of class 2 should 
produce an output of (0,l). But, in fact, these values 
are not obtained because of the linear output of the 
networks. Instead, the network produces values that 
spread around zero and one. So, the user must inter- 
pret the output of the network. 

Different classification criteria can be used for the 
interpretation of the output. The most usual one is 
based only on discrimination and consists of defining 
a threshold value to assign each output of the net- 
work either to one or zero. Results shown in Tables 
1 and 2 were computed based on this criterion using 
0.5 as threshold value. 

In class modelling techniques there are two ques- 
tions to consider: (i) the way the model is con- 
structed and (ii) the decision rule used for assigning 
an object to a class (closed box). 

The class models are defined with the outputs ob- 

tained with the training set. In this case, the models 
consist of a class centroid and a critical distance (that 
acts as a class boundary). The class centroids were 
calculated as the mean values of the outputs for class 
1 and class 2 separately. The class boundary can be 
defined based on the similarities (or on the dissimi- 
larities) among the objects in that class. In this paper, 
the distance between each object in a class and its 
class centroid was computed, so fifty values of the 
distances were obtained for each class. From the dis- 
tribution of these values, a critical value for the dis- 
tance was computed. In this way, we have two class 
centroids, ci and c2, and two critical distances, dcrit I 
and dcrit . 

The decision rule for the classification of an ob- 
ject in a class is then made with the critical distance. 
If the distance between an object in the output space 
and ci is less than dcrit, then the object is assigned 
to class 1. If the distance between an object in the 
output space and c2 is less than dcrit, then the object 
is assigned to class 2. 

To calculate the critical distance, a value of the 
probability is needed to express the percentage of ob- 
jects in the training set that belong to a certain class. 
As the value for CY was a priori fixed at 0.05, this 
value was chosen. In this way, 95% of the objects are 
within the class model (that means 95% of the dis- 
tances computed between the object and the class 
centroid are smaller than the corresponding critical 
distance). 

Among the possibilities for calculating the critical 
distance, in this paper the following were considered: 

3.5.1. Euclidean distance with 95% sample per- 
centile (so 1 - (Y probability) 

To construct the model, the euclidean distance be- 
tween each output obtained for the network with the 
training set and the corresponding class centroid is 
calculated. The critical distance is the value for which 
the cumulative distribution function is equal to 95%, 
the 95% sample percentile. To determine [2] this 
sample percentile, the fifty distances per class are or- 
dered in increasing order giving a vector d of dis- 
tances. The critical distance is the value whose posi- 
tion fits the equation: 

dcTit = d(47) + 0.5[d(48) - d(47)] 

so the corresponding point obtained by interpolating 
the distribution function to 95%. 
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Table 3 
Class models (class centroids and critical distances), sensibility and specificity for RBF networks. The last row contains the mean values for 
the ten networks. Euclidean distance 

Centroid class 1 Centroid class 2 dcrit , 

(0.9382, 0.0157) (0.0808, 0.9745) 0.2813 0.3861 
(0.9642, 0.0204) (0.0098, 0.9044) 0.3258 0.3619 
(0.9627,0.0312) (-0.0061, 0.8535) 0.3456 0.3761 
(0.8852,0.0160) (0.0262,0.9208) 0.2357 0.3562 
(0.9628,0.0268) (0.0060,0.9 124) 0.3323 0.3508 
(0.9726, 0.0276) (0.0039, 0.9089) 0.3107 0.3618 
(0.9703,0.0409) (0.0091, 0.8474) 0.3023 0.3447 
(0.9644,0.0117) (0.0183, 0.9981) 0.3152 0.3832 
(0.9583.0.0199) (0.0233,0.9663) 0.2855 0.3823 
(0.9677, 0.0199) (0.0207,0.9628) 0.2886 0.3841 

Sensibility Specificity Sensibility Specificity 
class 1 class 1 class 2 class 2 

95 100 93 100 
95 100 95 100 
94 100 92 100 
96 100 92 100 
94 100 92 100 
97 100 88 100 
97 100 95 100 
96 100 95 100 
96 100 94 100 
96 100 93 100 

0.3023 0.3687 95.6 100 92.9 100 

Once the model is defined, the test set is pre- 
sented to the networks and the euclidean distance be- 
tween each output and both class centroids is com- 
puted. With the decision rule described before, the 
sensibility and specificity can be obtained for both 
classes on the test set. Tables 3 and 4 show the class 
models (class centroid and critical distance con- 
structed with the training set independently for class 
1 and class 2), sensibility and specificity for both 
classes (applying the network on the test set) and for 
the ten networks. 

It can be seen from the tables that there is a good 
reproducibility of both RBF and MLF networks and 
there is no significant difference between the ob- 

tained models with regard to sensibility and speci- 
ficity. 

Considering that the class centroids of the models 
were computed as the mean values of the outputs ob- 
tained for the network on the training set, the class 
centroids found are really close to the theoretical class 
centroids in the output space, (1,O) and (0,l). Look- 
ing at the boundaries of the models (critical dis- 
tances) which contain inside 95% of the output val- 
ues, it is evident that in every case, these outputs for 
objects in class 1 form a cluster around the target 
output (1,O) and for class 2 form a cluster around the 
target output (0,l). The RBF values are more spread 
out than the values obtained with MLF networks, that 

Table 4 
Class models (class centroids and critical distances), sensibility and specificity for MLF networks. The last row contains the mean values for 
the ten networks. Euclidean distance 

Centroid class 1 Centroid class 2 dcrit , dcrit2 

(0.9972, 0.0027) (0.0027,0.9972) 0.1253 0.0963 98 
(0.9970, 0.0029) (0.0029,0.9970) 0.1303 0.0994 98 
(0.9971,0.0028) (0.0028, 0.9971) 0.1274 0.0976 98 
(0.9970, 0.0029) (0.0029, 0.9970) 0.1294 0.0989 98 
(0.9973, 0.0026) (0.0026, 0.9973) 0.1223 0.0943 98 
(0.9972, 0.0027) (0.0027, 0.9972) 0.1245 0.0957 98 
(0.9971,0.0028) (0.0028,0.9971) 0.1261 0.0967 98 
(0.9972,0.0027) (0.0027,0.9972) 0.1239 0.0953 98 
(0.9973, 0.0026) (0.0026, 0.9973) 0.1226 0.0945 98 
(0.9970,0.0029) (0.0029,0.9970) 0.1296 0.0990 98 

Sensibility 
class 1 

Specificity 
class 1 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

Sensibility 
class 2 

93 
93 
93 
93 
93 
93 
93 
93 
93 
93 

Specificity 
class 2 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 

0.1261 0.0968 98 100 93 100 
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Table 5 
Class models (class centroids and critical distances), sensibility and specificity for RBF networks. The last row contains the mean values for 
the ten networks. Mahalanobis distance 

Centroid class 1 Centroid class 2 dcrit, Sensibility 
class 1 

Specificity 
class 1 

Sensibility 
class 2 

Specificity 
class 2 

(0.9382, 0.0157) 
(0.9642, 0.0204) 
(0.9627, 0.0312) 
(0.8852,0.0160) 
(0.9628, 0.0268) 
(0.9726, 0.0276) 
(0.9703,0.0409) 
(0.9644,0.0117) 
(0.9583, 0.0199) 
(0.9677, 0.0199) 

(0.0808, 0.9745) 2.9293 2.9610 95 100 94 100 
(0.0098, 0.9044) 2.9156 2.9674 96 100 95 100 

(-0.0061, 0.8535) 2.7761 2.6060 94 100 91 100 
(0.0262, 0.9208) 2.2332 2.9447 96 100 93 100 
(0.0060, 0.9124) 2.8793 2.8085 94 100 94 100 
(0.0039, 0.9089) 2.8038 2.9314 94 100 90 100 
(0.0091, 0.8474) 2.8923 2.9592 94 100 96 100 
(0.0183, 0.9981) 2.7925 2.9889 95 100 95 100 
(0.0233, 0.9663) 2.7800 2.9023 96 100 94 100 
(0.0207, 0.9628) 2.6889 2.9235 95 100 94 100 

2.7691 2.8993 94.9 100 93.6 100 

is, for MLF networks the clusters are smaller than for 
RBF networks, which is what one expects for the way 
the networks operate. 

The input space was constructed with 95% sensi- 
bility and specificity. The models obtained with the 
output of the networks show a too high value for the 
specificity (100%) whereas the sensibility is always 
higher for class 1 (and greater than the theoretical 
sensibility) than for class 2 (always less than the the- 
oretical value). Also, for MLF networks the models 
have larger values for the sensibility in both classes 
than for RBF networks. These results correspond to 
what one could expect because of the “size” of the 
clusters. Anyway, the results are not very different 
and almost stable for all networks. 

3.5.2. Mahalanobis distance with 95% sample per- 
centile 

The model is constructed as in the last section, but 
using the Mahalanobis distance instead of the eu- 
clidean distance. In this way, the correlation among 
the variables is taken into account and the model fol- 

lows the direction shown for the outputs of the net- 
works. Tables 5 and 6 show the class models, sensi- 
bility and specificity computed with this criterion and 
for both RBF and MLF networks. For MLF net- 
works, only the results of one of the networks are 
shown, because only this result is reliable. For the 
calculation of the Mahalanobis distance an inverse 
variance-covariance matrix needs to be calculated. In 
the other nine networks this matrix is close to a sin- 
gular matrix so the results may be inaccurate. 

Also in this case, the models are quite repro- 
ducible and there is no significant difference be- 
tween the obtained models related to sensibility and 
specificity. 

The class centroids of the models are, of course, 
the same. For the sensibility, the only reliable result 
for MLF shows the same performance as for section 
3.5.1. This is because the clusters are almost spheri- 
cal and very close to the class centroid, so the eu- 
clidean distance is equal to the Mahalanobis dis- 
tance. For RBF networks, the models are better in 
both classes related to the sensibility. This is because 

Table 6 
Class models (class centroids and critical distances), sensibility and specificity for MLF networks. The last row contain the mean values for 
the ten networks. Mahalanobis distance 

Centroid class 1 Centroid class 2 dcIit, d Cr,tZ Sensibility 
class 1 

Specificity 
class 1 

Sensibility 
class 2 

Specificity 
class 2 

(0.9972, 0.0027) (0.0027, 0.9972) 2.0065 2.1797 98 100 93 100 
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they are following the direction of the spread of the different sign that are “compensating” with each 
values. But, even in this case, the models for both other. See the probability density function plotted in 
RBF and MLF networks have a specificity of 100%. Fig. 6a. 

3.6. Robustness of the trained networks 0.6, 

So far, we have studied properties about the per- 
formance of the networks both as discriminating and 
as modelling techniques. Now we are interested in the 
sensitivity of the networks to deviations in the input 
space, in other words, in the robustness of the net- 
works obtained. These deviations are likely to occur 
in practice, the measurements in a laboratory, for in- 
stance, are not exact and for future predictions it is 
not guaranteed that the data will have the same struc- 
ture than the data used for training the networks. The 
problem posed now is the behaviour of the networks 
when predicting new data that can vary with respect 
to those data used to train the networks. This ques- 
tion is central in all the inference procedures be- 
cause, in practice, one will deal with unexpected and 
unknown deviations. So, further to the noise in the 
training data sets, we consider an additional source of 
noise, probably unknown and different, which is dis- 
torting the expected noise taken into account when 
training the networks. 

4 
0.7. 

0.6 - 

0.5. 

b) 
0.7- 

0.6- 

0.5. 

0.4- 

As the networks are nonparametric inference pro- 
cedures, we followed a scheme similar to those used 
to evaluate the robustness of nonparametric statisti- 
cal procedures: Monte Carlo simulations were per- 
formed to obtain some information about the effect of 
noise to the networks and about the amount of noise 
the networks can support. On the other hand, the er- 
rors in the input space are usually assumed to be nor- 
mally distributed but in practice this assumption does 
not always hold. Thus, a study of the robustness of 
the networks to different types of noise in the input 
space was also performed. 

0.6, 

Three different kinds of noise were used: noise 
following (i) a normal distribution, (ii> a uniform dis- 
tribution and (iii> a Laplace distribution, all of them 
with zero mean. 

These distributions are commonly used to study 
the efficiency of non-parametric and robust statistical 
procedures [26]. These distributions show the differ- 
ent situations which might occur in practice: 

(i) Noise due to errors with the highest probability 
in its central part, due for instance to errors which 

Fig. 6. Probability density function for: (a) normal distributed data, 
(b) uniform distributed data, (c) Laplace distributed data. 
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Fig. 7. Plot of the percentages of correct classifications together with their 99%~confidence limits for RBF networks. Dashed line: value 
obtained with the test set (without noise). Dotted line: Laplace distribution of noise. Solid line: normal distribution of noise. Dashdot line: 
uniform distribution of noise. 

5 
standard deviation of noise 

Fig. 8. Plot of the percentages of correct classifications together with their 99%-confidence limits for MLF networks. Dashed line: value 
obtained with the test set (without noise). Dotted line: Laplace distribution of noise. Solid line: normal distribution of noise. Dashdot line: 
uniform distribution of noise. 
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(ii) Noise due to errors without any privileged 
value, for instance, due to make a sum up to a round 
number. The corresponding probability density func- 
tion is plotted in Fig. 6b. 

(iii) Noise due to errors with one privileged value 
(the mean) but with still a rather high probability of 
obtaining values far away from the mean. Its proba- 
bility density function is plotted in Fig. 6c. 

In every case, the noise is sampled from the cor- 
responding known distribution with a mean of zero 
and an increasing value of the standard deviation. 
This data set is added to the test set giving the noisy 
data set. The noisy data is presented to the trained 
network and the output of the network is calculated. 
With the output values, percentage of correct classi- 
fications, sensibility and specificity are calculated. 
This whole process is repeated for a thousand times 
for every kind of noise at different levels. This way 
an estimation of the mean and the confidence levels 
of the network output can be obtained (here, the con- 
fidence levels were calculated at 99% confidence). 

This procedure can be written in a pseudo-code as: 
Initialization: 

1. Choose a zero mean distribution function (nor- 
mal, uniform or Laplace). 

2. Fill an array with A values for the standard devia- 
tion of the input noise. 
Simulations: 

for standard-deviation-index = 1 to A 
for simulation -number = 1 to 

number_of_simulations 
1. Add noise, sampled with the chosen distri- 

bution, to the test set. 
2. Present the noisy data to the trained net- 

work. 
3. Compute and store the values of the per- 

centage of correct classifications, sensibility 
and specificity. 

End 
Calculate the mean and standard deviation of 
the results, 

End 

0.5 1 
standard deviation of noise 

Fig. 9. Plot of the sensibility and specificity together with their 99%-confidence limits computed with the euclidean distance 95% sample 
percentile criterion for both classes and for RBF networks. Dashed line: values obtained with the test set (without noise). Solid line: sensibil- 
ity for class 2. Dotted line: sensibility/specificity for class 1. The upper dotted line corresponds to the specificity and the lower lines to the 
sensibility. Only the specificity for class 1 is shown because the specificity for class 2 coincides with it. 
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Model the results obtained with their confidence 
limits as a function of the standard deviation of the 
input noise. 

The behaviour of the percentages of correct clas- 
sifications for RBF is shown in Fig. 7 for the three 
kinds of noise. It can be observed that as the stan- 
dard deviation increases the values are dropping very 
fast, but in a similar trend for every kind of noise. For 
MLF networks (Fig. 8) the percentages drop also 
similarly for the different kinds of noise but much 
slower than for RBF, showing an almost linear ten- 
dency. Thus, related to the discriminating ability, it 
seems that MLF supports bigger amount of noise than 
that supported by RBF. But this is not necessarily a 
good property because for high values of the stan- 
dard deviation, the input noisy data set has nothing to 
see with the original data set. For instance if an addi- 
tional source of variability appears in the data, it can 
cause an increment of the errors which would go un- 
noticed for MLF while for RBF would not. This can 
be of great importance in quality control processes, 
for example. 

In this sense, we can say that for small deviations 

in the input space, both RBF and MLF networks still 
produce acceptable results and act similarly. For 
higher deviations, RBF can recognize that the data set 
we are applying to is different from the data set the 
network was trained with, whereas MLF is still able 
to classify the objects. 

For normal distribution of noise, Fig. 9 shows the 
sensibility and specificity computed with the eu- 
clidean distance 95% sample percentile criterion for 
both classes and for RBF networks. As can be ob- 
served, the specificity of the models remains almost 
on the values obtained with the original data set 
(without noise) whereas the sensibility gives accept- 
able values for small deviations and, again, drops fast 
when the deviations increase and in the same trend for 
both classes. The same behaviour is observed when 
one is computing the sensibility and specificity with 
the Mahalanobis distance criterion (Fig. 10). 

Figs. 11 and 12 show the sensibility and speci- 
ficity computed with the euclidean distance 95% 
sample percentile and Mahalanobis distance 95% 
sample percentile criteria respectively, for MLF net- 
works and for both class 1 and class 2. In this case, 

80- 

80- 

standard deviation of noise 

Fig. 10. Plot of the sensibility and specificity together with their 99%~confidence limits computed with the Mahalanobis distance 95% sam- 
ple percentile criterion for both classes and for RBF networks. Dashed line: values obtained with the test set (without noise). Solid line: 
sensibility for class 2. Dotted line: sensibility/specificity for class 1. The upper dotted line corresponds to the specificity and the lower lines 
to the sensibility. Only the specificity for class 1 is shown because the specificity for class 2 coincides with it. 
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standard deviation of noise 

Fig. 11. Plot of the sensibility and specificity together with their 99%-confidence limits computed with the euclidean distance 95% sample 
percentile criterion for both classes and for MLF networks. Dashed line: values obtained with the test set (without noise). The upper lines 
correspond to the specificity and the lower lines to the sensibility: solid line for class 2 and dotted line for class 1. 

loo- 
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5 

Fig. 12. Plot of the sensibility and specificity together with their 99%-confidence limits computed with the Mahalanobis distance 95% sam- 
ple percentile criterion for both classes and for MLF networks. Dashed line: values obtained with the test set (without noise). The upper 
lines correspond to the specificity and the lower lines to the sensibility: solid line for class 2 and dotted line for class 1. 
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the same tendency is observed in both graphs: sensi- 
bility and specificity of the classes drop more or less 
in the same range. 

These different results for RBF and MLF net- 
works can be explained by the way the networks op- 
erate: the outputs obtained with MLF networks are 
always in the line that join the theoretical centroids 
in the output space ((0,l) and (1,O)) so when the net- 
work starts getting worse, the outputs of the objects 
move themselves along the straight line and lie in- 
side the class box of the other category. So, both the 
sensibility and specificity decrease. In RBF net- 
works, if the objects are far away from the centroids 
of the radial base functions, they obtain a zero output 
and lie outside both models. Thus the sensibility is 
decreasing but the specificity remains 100%. 

The tendency of the results obtained with uniform 
and Laplace distributions were exactly the same as for 
normal distribution, so we do not show the figures to 
avoid including different figures with the same infor- 
mation. 

Summarizing, both types of networks yield simi- 
lar results when the various noise distributions are 
applied and related to both discriminating and mod- 
elling ability. MLF networks start dropping later than 
RBF networks but RBF can recognize that the ob- 
jects are no in the same range that the objects in the 
training set. 

4. Software and hardware 

Principal component analysis has been performed 
with the PARVUS package [27]. All the programs for 
neural networks were written in MATLAB code and 
all the calculations were performed on IBM-compati- 
ble PCs 80486 at 50-66 MHz. 

5. Conclusions 

Ten MLF and ten RBF networks have been inde- 
pendently trained on a simulated data set with a pri- 
ori known values for the sensibility and specificity. 
Estimating both the discriminating and modelling 
ability of the networks, the results show that the 
models are quite reproducible and, with the variabil- 
ity due to the estimators, the “a priori” established 

values for sensibility and specificity can be obtained. 
Also, PCA for independent ways of unfolding for 
RBF networks, show there are no structural differ- 
ences among the ten networks trained to solve the 
same classification problem. 

Furthermore, a robustness analysis has been car- 
ried out to study the sensitivity of this kind of net- 
works to deviations in input space due to different 
distributional noise. In this case, MLF networks sup- 
port a rather high amount of noise but RBF networks 
can detect faster that the input space is changing with 
respect to the data set used for training the networks. 

Based on all the results it is hard to conclude which 
network is better for this classification task. In per- 
centage of correct classifications MLF obtains higher 
values than RBF. The closure line between both types 
of networks is weak regarding to sensibility and 
specificity. And despite the fact that MLF networks 
seem to be more robust to noise in the input space, 
RBF networks are more sensitive to deviations in in- 
put space in the sense that they detect faster varia- 
tions in the new object presented to the network. In 
this way, interpolation and extrapolation effects [28] 
can be detected. So when it comes to model valida- 
tion, RBF can be considered more reliable. 

Summarizing, the choice of a neural network con- 
cept (RBF or MLF) for classification tasks strongly 
depends on how the priorities about the model prop- 
erties, with respect to sensibility, specificity and also 
parsimonity, are defined. 
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