
ELSEVIER Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

Chemometrics and
intelligent
laboratory systems

Performance of multi layer feedforward and radial base function
neural networks in classification and modelling

M.S. SGnchez a1 * , H. Swierenga b, L.A. Sarabia a, E. Derks b, L. Buydens b
a Department of Mathematics and Computation, Faculty of Science and Food Technology and Chemistry, Universi~ of Burgas, Pza. Misael

Baiiuelos s/n, 09001 Burgos, Spain
b Laboratory for Analytical Chemistry, Faculty of Science, Catholic University of Nijmegen, Toernooiueld 1, 6525 ED Nijmegen, The

Netherlands

Received 10 February 1995; accepted 6 November 1995

Abstract

Neural networks have been used in multiple applications, but as a kind of black box for dealing with problems where
there is no a priori information about the data. This means that the model is constructed based solely upon information ob-
tained from the data themselves. This seems to be a good property but makes it difficult to validate the models obtained. The
classification properties of neural classifiers are usually described by the percentage of correctly classified objects in a test
set. Since these straight methods are only based on discrimination, no information can be obtained in a statistical way. In this
paper, on a simulated data set, two different types of neural networks, MLF (multi layer feedforward) and RBF (radial base
function), are applied to solve a classification problem. The modelling ability, stability and reproducibility of this kind of
networks are studied based on various different networks independently trained on the same data set with a predetermined
value for the sensibility and specificity. Robustness to different kinds of error is also studied by means of Monte Carlo simu-
lations adding noise at different levels and from different theoretical distributions. Further to this, an analysis based on prin-
cipal components is carried out to study the apparently different networks obtained. The simulation studies reveal that both
types of networks perform well enough to reproduce the input space. For RBF networks, due to the local approach, the study
showed some properties related to sensibility and specificity which are relevant in practical problems.

Keywords: Multi layer feedforward; Radial base function; Neural networks; Classification; Modelling

1. Introduction networks when they are trained, as far as possible, in

Previous work on the predictive ability of radial
base function (RBF) and multi layered feedforward
(MLF) neural networks on function approximation
problems has been carried out [l] showing the simi-
larities and differences between these two kinds of

the same way and with the same data sets. In the pa-
per mentioned in [l] it is shown that MLF is faster
than RBF for fitting problems and, in general, RBF
is more robust than MLF for input noise, which
means RBF better supports the normal random noise
in the input space.

* Corresponding author.
In this paper we focus attention on the differences

between MLF and RBF neural networks for classifi-

0169-7439/96/$15.00 Published by Elsevier Science B.V.
SSDI 0169-7439(95)00089-5

102 MS. Sbnchez et al. /Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

cation tasks. Both types of networks are trained with
the backpropagation algorithm on the same data set.

In the paper we will maintain a distinction be-
tween discriminating and class-modelling techniques
[2]. Both fall inside the field of classification but have
a clearly different meaning.

The classification rules defined by the discrimi-
nating techniques correspond to boundaries that par-
tition the input space into a predefined number of re-
gions, as many as there are classes in the training set.
In this way, every object is assigned necessarily to a
class. Neural networks can be an example of discrim-
inating techniques.

In class-modelling techniques, the classification
rule corresponds to closed boundaries, the input space
is divided into as many closed regions (“class
boxes”) as classes there are, not necessarily dis-
jointed and not necessarily covering the whole input
space. This means that, in this case, not every object
is assigned to a class, so the classes defined are more
specific allowing one to detect objects that are differ-
ent from the rest (“outhers”); on the other hand, as
the classes are not necessarily disjointed, there can be
confusion regions, the overlapping regions, where the
method is necessarily ambiguous. UNEQ [3] is a typ-
ical example of a class modelling technique.

From the statistical point of view, a model can be
considered as a hypothesis test [4] for each class in
the problem: the null hypothesis, Ha, is that a spe-
cific object belongs to a class and the alternative hy-
pothesis, H,, is that this object does not belong to this
class. In this case, one can select a value for the
probability of rejecting H, if it is true, cr, and looks
for a strategy to define the critical distance such that
the probability of accepting H, if it is false, /3, be
minimum. In other words, LY is the significance level
of the test, i.e. the probability of false positive (prob-
ability of error type I), whereas /3 is the probability
of false negative (probability of error type II). In this
way the set of objects whose distance to the model is
greater than the critical distance, defines the
(mathematical) complement of the class box. Thus,
the probability p is a measure of the quality of the
model.

But it is not always possible to compute exactly the
values for CY and p, so their estimations have to be
used. In this sense, an estimation of the 1 - (Y value
is the sensibility of the model, that is, percentage of

objects belonging to a class that are correctly classi-
fied into this class, while 1 - p can be estimated as
the specificity of the model, percentage of objects not
belonging to a class that are correctly classified as
being outside the class.

Both the specificity and the sensibility are related.
The sensibility can be increased using a higher value
for the critical distance (thus “increasing” the class
boundaries); more objects are within the class and the
sensibility will increase. But when the boundary of a
certain class is higher, the specificity of the model
will decrease.

For classification problems neural networks are
used, in general, in well-defined problems, for exam-
ple, to evaluate if an object is acceptable or not in a
multivariate quality control process. In this case, one
is dealing with a discriminant problem and the train-
ing of the network is carried out by evaluating the
performance of the network as discrimination
method, i.e. by means of the percentage of correct
classifications. But, when the network is used to pre-
dict whether a new object is acceptable or not, it
should be taken into account that variations in the
production process can provide characteristics to the
new object different from those which the objects
have in the training set. In this case, the problem is a
modelling problem: the question now is to detect that
the object is different. So, a problem which is posed
and solved as a discriminating problem becomes a
modelling problem. It is interesting to know the abil-
ity of the networks to react to this situation.

It is in this context that the results shown in this
paper should be evaluated. The networks are trained
to solve a discriminant problem, and then attempts to
make a model with the outputs of the networks are
done based on different criteria to establish the class
boundaries [2]. Thus, much attention is paid to the
additional information one can obtain with a mod-
elling technique: the sensibility and specificity com-
puted based on various criteria to define a model with
the outputs obtained with both type of networks.

2. Theory

Both MLF and RBF neural networks are known
from the literature [5-71 as well as several applica-
tions [g-lo]. Here we will only write the basic for-

M.S. S&chez et al./Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 103

mulae in order to describe the networks used and to
uniform the notation.

For both kind of networks, there are theoretical
results (see for instance [ll] for RBF and [12] for
MLF) which show that only one hidden layer is
enough to make the networks universal approxima-
tors.

Based on the mentioned theoretical results and, as
far as possible, the networks were configured simi-
larly: both types are three layer fully connected neu-
ral networks, this means, only one hidden layer was
used with a variable number of hidden units and a
linear output layer.

In both cases the networks receive information
from the “real world” and pass it to the hidden layer
by means of a distributional layer, the input layer of
the network. In the hidden layer, the information is
processed and the resulting signal is sent to the out-
put layer that acts as a linear regression between the
outputs of the hidden layer and the target output, the
response we try to obtain.

The main difference between MLF and RBF net-
works is the way their hidden layer processes the in-
formation it receives:

. An MLF network uses logistic functions in its
hidden unit. The most usual, and that used in this pa-
per, is the sigmoidal function defined as:

1
*(4 =

1 +exp[-(x+cr)] (1)

where g is the bias term used to shift the sigmoid
function along the abscissa axis.

Each unit in an MLF-hidden layer computes an
hyperplane in the input space. These kinds of trans-
fer functions act as soft-limiter functions using the
computed hyperplanes as discriminant hyperplanes to
separate the classes in the training set.

. An RBF network works as a kind of kernel esti-
mation method. It approximates an unknown func-
tion by the weighted sum of different kernel func-
tions, the radial basis functions, which are used in the
hidden layer of an RBF network. The most common
kernel function is the Gaussian function defined as:

where (T is a specific parameter of the radial func-
tion (the width) that represents the “portion” of the
space under the influence of the kernel function. So,
the RBF networks divide the input space into regions
(not necessarily disjointed) each under the influence
of one (or more) radial function, like a clustering
technique.

For classification problems, a simple modification
of the Gaussian function can be used [131 to improve
the performance of an RBF network. The modified
kernel function is defined as:

l+R
ccl(x) = 2

i 1

(3)

R + exp 3

where the R parameter was added to the original
Gaussian function. The performance of an RBF net-
work for classification tasks is enhanced by the addi-
tion of the factor R to the Gaussian kernel function.
The optimal values for R are problem dependant and
should be fixed keeping in mind the relationship be-
tween R and (T. The (T parameter still determines the
portion of the space under the influence of the kernel
function (see Fig. la>. The R parameter flattens the
kernel function around zero (Fig. lb) so the outputs
of the objects lying within the influence region of the
function are similar and near one (the highest value
the function can allow). For function approximation,
RBF networks have a better performance with low
values for R and IT, whereas for classification tasks
bigger values give better results. This is because RBF
networks model a kernel function around a certain
cluster of points in the input space. Within these
clusters the responses of the kernel function should be
more or less the same while at the boundaries of
cluster the responses of the kernel function should
change quickly to zero. With this modification and an
appropriate value for R, objects belong to the same
class, supposing they are close to each other (thus in
the same influence region), obtain the same value as
output from the hidden layer. So, the network needs
fewer hidden units and it is easier for the final linear
regression to separate the classes.

Once the topology for both types of networks is
decided and the different weights are initialized, the
output of the network can be obtained. In this step,
some criteria must be defined to say whether the re-

104 MS. Scinchez et al. /Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

Euclidean distance between input and amroid ol kernel function.

Euddean distance between input and cammid al kernel function.

Fig. 1. Modifications of the Gaussian function. (a) Effect of the S
parameter (squared width of the kernel function). R was con-
stantly equal to 1. (b) Effect of the R parameter in flatting the
Gaussian kernel function. S was fixed at 2.

sponse is acceptable or not. If it is not, there are some
learning algorithms, both supervised and unsuper-
vised, to train the network until the acceptable re-
sponse is reached.

Above all for RBF networks several different
training algorithms are proposed to find the optimal
settings of the networks. One of the methods is the
training by gradient descent through backpropagation
D41.

This was the method used to train both types of
networks, although this is a learning algorithm spe-
cially suited for fitting problems because it tries to
approximate the target output that in a classification
problem is only a codification of the classes not a

value we try to fit. This idea of using regression
methods for resolving qualitative problems is not new
[15,16], and in [17] it is shown that MLF neural net-
works trained with the backpropagation learning rule
for classification problems exhibited a similar perfor-
mance to optimal discriminant methods dealing with
normal multivariate distributed data sets.

As a supervised learning rule, backpropagation
needs a way to measure the difference between the
output obtained for the network and the target out-
put. So an error function has to be defined for look-
ing for a minimum in the error hyper-surface. The
most usual error function is the squared scaled eu-
clidean distance between the output and the target
values.

Based on the calculated error, the delta term is
computed and backpropagated through the network
correcting the weights and starting again until some
goals are reached. Here, several questions need to be
taken into account before and during training: a cor-
rect initialization of the weights must be chosen, an
adequate learning rate for controlling the stepsize of
change of the weights, maybe a momentum term,
minimization method for moving along the error hy-
persurface, etc.

Another question to consider is the overtraining
effect, i.e. the effect in which the network uses its
degrees of freedom to store the individual patterns
instead of learning the underlying features [5]. Such
a network is good at recognizing the patterns used for
learning but has lost its generalization ability, that is
to say its ability to respond correctly to other struc-
turally equal inputs but which differ from the pat-
terns for random reasons (experimental variability,
etc.).

3. Experimental and results

3.1. Data

One of the goals of the paper is to compare the
classification ability between MLF and RBF neural
networks. So, the authors decided to simulate the data
sets used for the training of the networks. This is
above all to control the distribution of the data, to be
sure the training and test sets are exactly in the same
input space and to avoid any other additional and

MS. Skhez et al./Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 105

probably unknown problems that can appear with real ance is one, with D according to Eq. (4) for n = 5.
data sets and can mask some properties of the net- So, the classes are defined by their centroid: (0, . . . , 0)
works. for class 1 and ([D/ 61,. . . , [D/ \/31) for class 2.

Taking into account the differences between a dis-
criminant and a modelling technique and in order to
evaluate the quality of the results, it was decided to
use data sets with “a priori” established values for
the sensibility and specificity. In this way one can
obtain some conclusions about the performance of
both kinds of networks.

Specificity of a class depends basically on the
separation between class models so depends on the
criterion used for computing the class boundaries. As
in fact the class boundaries are represented by the
critical distance, sensibility and specificity depend on
the distance used.

When the networks are used for classification
tasks, binary target outputs can be selected. In this
way, the output of the network should give the class
of the object presented to the network. Among all the
possible codifications, each class was associated with
only one output unit. This is in order to simplify the
interpretation of the network outputs and to avoid an
implicit sort of ordering in the classes [181. So the
codification of the classes was (1,0) for class 1 and
(0,l) for class 2.

3.2. Neural networks

According to [4], using the Euclidean distance, D,
and p and p’ being the values for sensibility and
specificity respectively, D(p, p’) can be expressed as
a linear combination of non-integer powers of the
number of variables in the problem.

At 95% confidence level, thus considering CY = p
= 0.05, the theoretical values for sensibility (1 - a)
and specificity (1 - p) are both equal to 0.95.

Based on the different ways the networks operate,
only the number of units in the input and output lay-
ers was previously fixed (five and two units, respec-
tively). The final topology of the networks, i.e. num-
ber of hidden units, was decided during training in the
sense that the training procedure checked the results
with different configurations before choosing the fi-
nal one.

If n represents the number of variables in the
problem, the corresponding theoretical distance be-
tween models for p = p’ = 0.95 can be calculated by
means of the following formula [4]:

3.2.1. Structure of the networks

D(O.95,0.95) = 2.80589 + 0.894416 - 0.08390n

+ 0.00465& (4)

Based on this formula, three independent normal

In practice, if x = (xi, xz, . . . , x5> represents an
object in the five dimensional input space, “rrhid” is
the number of hidden units in the network, Ajk are the
weights connecting the various kernels with the out-
put unit and 0 = (O,, 0,) is the output of the net-
work, we can write:

multivariate data sets with objects belonging to two
classes were generated in a 5-dimensional space. All
of them with theoretical values for sensibility and
specificity equal to 0.95. These three sets were: (i) a
training set to train the network, with 50 objects in
each class; (ii) a monitoring set, also with 100 ob-
jects (50 per class) and dedicated to control (“to
monitor”) the prediction behaviour of the networks
during learning to avoid the overtraining effect; (iii)
a test set with 200 objects (100 per class) in order to
test the prediction ability of the networks.

(i) For an h4LF neural network that uses as trans-
fer functions in its hidden layer those defined by Eq.
(1)

%id

o,= CAjk.qJj cwijxi
j=l i 1 i=l

(5)

where wij represents the connection weight between
the ith unit in the input layer and the jth hidden unit.

(ii) For an RBF neural network that uses as radial
functions in its hidden layer those defined by Eq. (3)

The objects are characterized by five uncorrelated
variables. Each variable in class 1 follows a normal
distribution with zero mean and variance equal to one,
whereas in class 2 the mean is D/ 6 and the vari-

%id

O!i= C hj~~~j(llCj-xX(IZ) (6)
j=l

where cj E R5 represents the centroid of the jth ker-
nel function.

106 M.S. Srinchez et al. / Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

Then, the error is computed as the difference be-
tween the output obtained by the network, 0, and the
target output, T = (T,, T,>, based on the following
error function:

(7)

3.2.2. Training
A lot of network parameters (weights) need to be

trained. In addition to the generic problems concern-
ing the training of neural networks with the back-
propagation learning rule, some aspects need to be
considered when training RBF networks:

(i) The initialization of the centroids of the kernel
functions. If these centroids are chosen too far from
the input range, the output of the RBF-unit becomes
zero almost independently of the initial widths. This
results in very long training and probably the net-
work will not be able to find the correct parameters.
There are several methods to find the initial cen-
troids of the radial base functions in the range of a
class in the input space, for example by means of the
k-means clustering technique (for example [191) or
using a Kohonen learning rule [20] or by means of a
genetic algorithm (e.g. [21]). All of them are unsu-
pervised techniques that place the centroid among the
centroids of a certain cluster. Therefore the initial
centroids of the radial base functions are better cho-
sen around the real centroids of the input data, if they
are known.

Fig. 2. Radial base function in one dimension: effect of moving the
centroid and the width of the kernel function to obtain the target
value y1 for the corresponding input x,.

(ii) The width factors. In fact, the learning of the
network is done by adjusting the size of S = a* (not
of a) in the modified Gaussian kernel function [Eq.
(3)]. So for mathematical reasons this value must not
become zero nor negative during training. A precau-
tion for this problem must be taken.

(iv) Related to the last questions, the same situa-
tion is likely to occur during training. There are two
ways of adapting the weights of the hidden layer: the
centroid of the kernel function can be adjusted or the
S factor can be adjusted (see Fig. 2). It has been found
that when larger networks are trained, the factor S
tends to drift towards very low values. This is usu-
ally an indication that the data are linearly separable.
As in (i) there are several ways to tackle this ques-
tion. One of them is to train separately the centres -
by means of clustering techniques, estimating the lo-
cal densities for each kernel, . ..- and then fix them
and train the rest of the parameters. Maintaining the
idea of using the backpropagation algorithm to train
simultaneously all the weights involved in the net-
work, a way to counter this behaviour without modi-
fying the simultaneous algorithm is to introduce an
extra smaller learning rate for the S factor. In this way
the adaption of the centroid is favoured.

(iii) The initialization of the S factors. Even if the (v) The delta term used for updating the weights
centroids of the kernel functions are in the correct is computed based on the direction shown by the
range, the behaviour of the network depends on the steepest gradient descent method. For MLF networks
S factors. If they are chosen too large, the responses the direction shown is the direction in which the
will become one for every object and the training time derivative of the function respect to the weights wij
will become very long. If they are chosen too small, is negative. For RBF networks, using the same error
the responses will become zero for every object and function, the network parameters have a different
we end up in the same situation as (i). So a kind of meaning and they are adjusted independently but si-
compromise between the centroids of the radial base multaneously. So there are two, not necessarily equal,
functions and their widths has to be found. directions shown by the method: one computed based

MS. Scinchez et al. /Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 107

on the derivative of the function with respect to the
centroids of the kernel functions, cij, and another
based on the derivative with respect to the Sj (the S
factor associated with the jth kernel function).

3.3. Replication of the networks

Both MLF and RBF were trained with the same
procedure. For MLF all the weights were initialized
randomly using the Nguyen-Widrow initialization
method which is implemented in the Neural Network
Toolbox [22] from MATLAB. For RBF, due to the
different meaning of the hidden units and the bigger
problems with the initialization of their weights, the
initialization was different: the parameters associated
with the output layer were initialized with random
normal values with zero mean and standard deviation
of one; the centroids of the radial base functions were
initialized near the theoretical class centroids; all the
widths were initialized constantly equal to 0.5; and R
was fixed at 1, because this value exhibited the best
performance.

As with other flexible estimation techniques, it is
desirable to allow the structural parameters of the
networks to be chosen based at least partly on the data
[23]. The topology selection problem can be ad-
dressed in a variety of ways. In this paper we used a
monitoring set approach [5] to model selection, stop-
ping the training when the error on the monitoring set
reaches a minimum. So, various attempts with differ-
ent numbers of hidden units were checked to find out
the best topology of the network. In every case, the
monitoring set was used as stopping criterion to avoid
the overtraining effect, based on the best prediction
ability of the networks during training.

The best results for MLF networks were obtained
with one hidden unit. For RBF networks, despite the
fact that, due to the structure of the data sets and the
way the networks operate, one hidden unit per class
should perform the classification task, in fact this was
not the case. When only two hidden units (one unit
per class) are used, the networks exhibited a very bad
performance. The best results were obtained with six
hidden units. When more hidden units are used, tbe
network has a better performance but also the train-
ing time increases rapidly.

To study the stability and reproducibility of the

networks, ten different networks of each type were
independently trained with the use of the same data
set.

The twenty networks were trained based on the
percentage of correct classifications on the monitor-
ing set and, also taking into account the behaviour of
the error on this monitoring set during training. When
the percentage of correct classifications started to de-
crease and the error to increase, the training was con-
sidered finished.

The training was implemented in batch mode, i.e.
all the objects belonging to the training set were pre-
sented to the network simultaneously. In this way, the
dependency of the delta learning rule to the presenta-
tion of the objects was avoided. But, in this case, the
error function should take into account the error for
all the objects.

If “nobj” represents the number of objects in the
data matrix, each one has its own output, OPk, and
target, TPk, and Eq. (7) becomes:

Then percentages of correct classifications for the
training and test sets were computed. The results ob-
tained are listed in Tables 1 and 2, together with cali-
bration error (value of Eq. (8) with the outputs ob-
tained by applying the networks on the training set)

Table 1
Percentage of correct classifications for RBF networks. % CC is
the percentage of correct classifications on the referenced set. The
last row contains the mean values for the ten networks

Calibration

0.1351 0.1364
0.1375 0.1368
0.1588 0.1629
0.1383 0.1423
0.1387 0.1386
0.1352 0.1463
0.1451 0.1437
0.1260 0.1276
0.1258 0.1304
0.1257 0.1313

Prediction
error

%CC %CC
training test

98 98.0
96 98.5
96 96.0
91 98.5
98 91.5
98 97.5
98 98.5
98 98.5
98 98.5
98 98.5

0.1366 0.1396 97.5 98.0

108 MS. Snchez et al./ Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

Table 2
Percentage of correct classifications for MLF networks. % CC is
the percentage of correct classifications on the referenced set. The
last row contains the mean values for the ten networks

Calibration
error

Prediction
error

%CC
training

%CC
test

0.0373
0.0386
0.0378
0.0384
0.0365
0.0370
0.0375
0.0369
0.0365
0.0384

0.0769
0.0771
0.0770
0.0771
0.0768
0.0769
0.0769

0.0768
0.0771

100
100
100
100
100
100
100
100
100
100

100
100
100
100
100
100
100
100
100
100

0.0375 0.0770 100 100

and prediction error (value of Eq. (8) with the out-
puts of the test set). As can be seen in the tables and,
regarding to the errors and percentages of correct
classifications, MLF networks perform better than
RBF networks. Anyway, the networks are very re-
producible and quite stable.

3.4. Structural similarity of the different indepen-
dently trained networks on the same data set

We have ten RBF networks and ten MLF net-
works with similar performance and similar values for
percentage of correct classifications in both classes
but with different weights. As, in fact, a network is
determined by the values of its weights, we have ten
different networks of each type that solve the prob-
lem in a similar way. The training of the network
consists of looking for a minimum in an unknown
error surface, so obviously the solution is not neces-
sarily unique. However, there should be some com-
mon characteristics for all networks because they are
solving exactly the same problem and with the same
topology.

For our purposes, we will describe RBF networks
by three matrices: C, S and W, which will store the
parameters associated with the hidden (C and S) and
the output layer (WI. This means that in C we have

stored the values for the centroids of the radial base
functions, ci, and in S the squared widths of the ker-
nel functions, Si, whereas in W the parameters hjk are
stored. In this sense, the ith column of C contains the
coordinates of the centroid of the ith-kernel function,
ci, and the ith column in S stores the corresponding
Si factor. W contains the coefficients for the final
linear combination of kernel functions, one column
per output there are in the problem.

In our case, the RBF networks have 6 hidden units,
five inputs and two outputs, so the size of C is 5 by
6, of S is 1 by 6 and of W is 6 by 2.

As the structure of the weights and their meaning
are clear, in fact, we can define each network by only
one matrix, N, which consists of joining vertically C,
S and the transpose of W. Thus N is an 8 by 6 matrix
that stores in each of their columns one centroid, the
corresponding squared width and the corresponding
parameters (one per class) of the final linear layer.

In this way, we have ten different matrices, Ni (i
= 1, 2, . ..) lo), each one defining an RBF network.
If we superimpose all of them, we have a so-called
three-way data set (three-dimensional array), Z,
which contains the information of all networks. We
are interested in studying the information provided by
Z.

If we imagine Z as a parallelepiped in the three-
dimensional space and call I, J, K the three axes in-
volved in the space (as if it were a three-dimensional
system of coordinates) with I = (1, 2, . . . , lo), J = { 1,
2 ,..., 6) and K = { 1, 2,. . . , 8) we have, from the
mathematical point of view, a mapping Z: I X J X K
+ Iw that assigns to each triple (i, j, k) E I X J X K
the observation zijk.

To handle this three-dimensional array, we re-
duced it to a data table by so called unfolding. With
this unfolded matrix, one tries to obtain some con-
clusions by analysing it by principal component
analysis (PCA).

There are three possibilities of unfolding the ma-
trix Z [24]. In each situation, one of the modes re-
mains unchanged and the other two are combined to
yield a single one. In this way, we obtain three two-
dimensional matrices, Zi, Zj and Z, where the index
refers to the mode that remains unchanged.

More specifically, the matrices are:
(1) Zi consists of a matrix 10 by 48 made by

choosing in Z the planes parallel to the IK-plane (J-

MS. S&her et al. / Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 109

slices), transposing them and joining them horizon-
tally (i.e. putting them next to each other). This way,
in the rows of the matrix appear the different net-
works:

ClSl4142 ... ‘6 s6 ‘6 1’62

. . .

qs, A,, A,, . . . C6 . . . A,,

(2) Zj consists of a 6 by 80 matrix made by
choosing in Z the planes parallel to the IJ-plane (K-
slices), transposing them and joining them horizon-
tally:

network 1 network 10

C1~l*ll*l2 ... C,S,4,4*

. . .

C6S6 A61 A,* ..’ ‘6 ‘6 ‘6, ‘62 I

(3) Z, consists of an 8 by 60 matrix made by
choosing in Z the planes parallel to the JK-plane (I-
slices), transposing them and joining them horizon-
tally:

(N, N, . ..N.o)

Following the Tucker 1 method [25] separate PCA
analyses were performed for each data matrix ob-
tained by the different ways of unfolding. Then, ig-
noring the loadings of combination models and sav-
ing merely the scores of the respective isolated mod-

1 54
2

5
I

E

H
5 o__ . . ._...__.__.._.._.._...................... _

i

E
z-5- 6

8
I

7

-lO-

-150
6

5 10 15 20 25 30
Firsl principal mmpment

-8
11 12 13 14 15 16 17 16

FM principal component

Fig. 3. Plot the scores of Z, unfolding in the plane formed by the Fig. 5. Plot the scores of Zi unfolding in the plane formed by the
first two eigenvectors. first two eigenvectors.

‘O:
6

2

, 3

-15 -10 -5
Fitxl principl mmponem

Fig. 4. Plot the scores of Zj unfolding in the plane formed by the
first two eigenvectors.

els, one obtains separate PCA representations for the
items of each mode.

Figs. 3-5 plot the scores in the plane formed by
the first two eigenvectors and for the three ways of
unfolding.

For Z, the first two eigenvectors explain 73.61%
of the variance. From Fig. 3 it can be deduced that
these two eigenvectors separate rows l-5 (which in
Z, contain the class centroids of the kernel func-
tions) from row 6 (the S factors) and from rows 7-8
(which contain the coefficients of the output layer).
This structure coincides with the structure of the ma-
trices Ni joined to form Z,.

110 MS. Srinchez et al. / Chemometrics and Intelligent Laboratory System 33 (1996) 101-119

For Zj the first two eigenvectors explain 64.69%
of the variance. From Fig. 4 it can be deduced that
these two eigenvectors separate the first three rows of
Zj from the last three rows. In the structure of Zj each
row corresponds with each centroid (of the kernel
functions) and its associated parameters. In all the
networks, the first three kernel functions are mod-
elling class 1 and the last three class 2, so this is what
we see in this plot.

For Zi the first two eigenvectors explain 84.60%
of the variance and Fig. 5 does not show any special
structure in the disposition of the scores. As here the
rows of Zi represent the different networks, we can
say that there are not significant differences between
them, that is, from among the numerical values of the
parameters, they are structurally equal.

These analyses confirm what one can expect as
regards the behaviour of the networks and the struc-
ture of the different ways of unfolding.

For MLF networks, a similar analysis does not
have such a clear interpretation, because the MLF-
weights have no physical meaning and, in contrast
with RBF, MLF is not a local method, so, the infor-
mation is distributed globally in the network.

3.5. Discrimination and modelling

In this paper, RBF and MLF networks are trained
to classify objects into two different classes. When an
object belongs to class 1 the network should produce
an output of (1,O) and an object of class 2 should
produce an output of (0,l). But, in fact, these values
are not obtained because of the linear output of the
networks. Instead, the network produces values that
spread around zero and one. So, the user must inter-
pret the output of the network.

Different classification criteria can be used for the
interpretation of the output. The most usual one is
based only on discrimination and consists of defining
a threshold value to assign each output of the net-
work either to one or zero. Results shown in Tables
1 and 2 were computed based on this criterion using
0.5 as threshold value.

In class modelling techniques there are two ques-
tions to consider: (i) the way the model is con-
structed and (ii) the decision rule used for assigning
an object to a class (closed box).

The class models are defined with the outputs ob-

tained with the training set. In this case, the models
consist of a class centroid and a critical distance (that
acts as a class boundary). The class centroids were
calculated as the mean values of the outputs for class
1 and class 2 separately. The class boundary can be
defined based on the similarities (or on the dissimi-
larities) among the objects in that class. In this paper,
the distance between each object in a class and its
class centroid was computed, so fifty values of the
distances were obtained for each class. From the dis-
tribution of these values, a critical value for the dis-
tance was computed. In this way, we have two class
centroids, ci and c2, and two critical distances, dcrit I
and dcrit .

The decision rule for the classification of an ob-
ject in a class is then made with the critical distance.
If the distance between an object in the output space
and ci is less than dcrit, then the object is assigned
to class 1. If the distance between an object in the
output space and c2 is less than dcrit, then the object
is assigned to class 2.

To calculate the critical distance, a value of the
probability is needed to express the percentage of ob-
jects in the training set that belong to a certain class.
As the value for CY was a priori fixed at 0.05, this
value was chosen. In this way, 95% of the objects are
within the class model (that means 95% of the dis-
tances computed between the object and the class
centroid are smaller than the corresponding critical
distance).

Among the possibilities for calculating the critical
distance, in this paper the following were considered:

3.5.1. Euclidean distance with 95% sample per-
centile (so 1 - (Y probability)

To construct the model, the euclidean distance be-
tween each output obtained for the network with the
training set and the corresponding class centroid is
calculated. The critical distance is the value for which
the cumulative distribution function is equal to 95%,
the 95% sample percentile. To determine [2] this
sample percentile, the fifty distances per class are or-
dered in increasing order giving a vector d of dis-
tances. The critical distance is the value whose posi-
tion fits the equation:

dcTit = d(47) + 0.5[d(48) - d(47)]

so the corresponding point obtained by interpolating
the distribution function to 95%.

MS. Snchez et al. / Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 111

Table 3
Class models (class centroids and critical distances), sensibility and specificity for RBF networks. The last row contains the mean values for
the ten networks. Euclidean distance

Centroid class 1 Centroid class 2 dcrit ,

(0.9382, 0.0157) (0.0808, 0.9745) 0.2813 0.3861
(0.9642, 0.0204) (0.0098, 0.9044) 0.3258 0.3619
(0.9627,0.0312) (-0.0061, 0.8535) 0.3456 0.3761
(0.8852,0.0160) (0.0262,0.9208) 0.2357 0.3562
(0.9628,0.0268) (0.0060,0.9 124) 0.3323 0.3508
(0.9726, 0.0276) (0.0039, 0.9089) 0.3107 0.3618
(0.9703,0.0409) (0.0091, 0.8474) 0.3023 0.3447
(0.9644,0.0117) (0.0183, 0.9981) 0.3152 0.3832
(0.9583.0.0199) (0.0233,0.9663) 0.2855 0.3823
(0.9677, 0.0199) (0.0207,0.9628) 0.2886 0.3841

Sensibility Specificity Sensibility Specificity
class 1 class 1 class 2 class 2

95 100 93 100
95 100 95 100
94 100 92 100
96 100 92 100
94 100 92 100
97 100 88 100
97 100 95 100
96 100 95 100
96 100 94 100
96 100 93 100

0.3023 0.3687 95.6 100 92.9 100

Once the model is defined, the test set is pre-
sented to the networks and the euclidean distance be-
tween each output and both class centroids is com-
puted. With the decision rule described before, the
sensibility and specificity can be obtained for both
classes on the test set. Tables 3 and 4 show the class
models (class centroid and critical distance con-
structed with the training set independently for class
1 and class 2), sensibility and specificity for both
classes (applying the network on the test set) and for
the ten networks.

It can be seen from the tables that there is a good
reproducibility of both RBF and MLF networks and
there is no significant difference between the ob-

tained models with regard to sensibility and speci-
ficity.

Considering that the class centroids of the models
were computed as the mean values of the outputs ob-
tained for the network on the training set, the class
centroids found are really close to the theoretical class
centroids in the output space, (1,O) and (0,l). Look-
ing at the boundaries of the models (critical dis-
tances) which contain inside 95% of the output val-
ues, it is evident that in every case, these outputs for
objects in class 1 form a cluster around the target
output (1,O) and for class 2 form a cluster around the
target output (0,l). The RBF values are more spread
out than the values obtained with MLF networks, that

Table 4
Class models (class centroids and critical distances), sensibility and specificity for MLF networks. The last row contains the mean values for
the ten networks. Euclidean distance

Centroid class 1 Centroid class 2 dcrit , dcrit2

(0.9972, 0.0027) (0.0027,0.9972) 0.1253 0.0963 98
(0.9970, 0.0029) (0.0029,0.9970) 0.1303 0.0994 98
(0.9971,0.0028) (0.0028, 0.9971) 0.1274 0.0976 98
(0.9970, 0.0029) (0.0029, 0.9970) 0.1294 0.0989 98
(0.9973, 0.0026) (0.0026, 0.9973) 0.1223 0.0943 98
(0.9972, 0.0027) (0.0027, 0.9972) 0.1245 0.0957 98
(0.9971,0.0028) (0.0028,0.9971) 0.1261 0.0967 98
(0.9972,0.0027) (0.0027,0.9972) 0.1239 0.0953 98
(0.9973, 0.0026) (0.0026, 0.9973) 0.1226 0.0945 98
(0.9970,0.0029) (0.0029,0.9970) 0.1296 0.0990 98

Sensibility
class 1

Specificity
class 1

100
100
100
100
100
100
100
100
100
100

Sensibility
class 2

93
93
93
93
93
93
93
93
93
93

Specificity
class 2

100
100
100
100
100
100
100
100
100
100

0.1261 0.0968 98 100 93 100

112 M.S. Scinchez et al./ Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

Table 5
Class models (class centroids and critical distances), sensibility and specificity for RBF networks. The last row contains the mean values for
the ten networks. Mahalanobis distance

Centroid class 1 Centroid class 2 dcrit, Sensibility
class 1

Specificity
class 1

Sensibility
class 2

Specificity
class 2

(0.9382, 0.0157)
(0.9642, 0.0204)
(0.9627, 0.0312)
(0.8852,0.0160)
(0.9628, 0.0268)
(0.9726, 0.0276)
(0.9703,0.0409)
(0.9644,0.0117)
(0.9583, 0.0199)
(0.9677, 0.0199)

(0.0808, 0.9745) 2.9293 2.9610 95 100 94 100
(0.0098, 0.9044) 2.9156 2.9674 96 100 95 100

(-0.0061, 0.8535) 2.7761 2.6060 94 100 91 100
(0.0262, 0.9208) 2.2332 2.9447 96 100 93 100
(0.0060, 0.9124) 2.8793 2.8085 94 100 94 100
(0.0039, 0.9089) 2.8038 2.9314 94 100 90 100
(0.0091, 0.8474) 2.8923 2.9592 94 100 96 100
(0.0183, 0.9981) 2.7925 2.9889 95 100 95 100
(0.0233, 0.9663) 2.7800 2.9023 96 100 94 100
(0.0207, 0.9628) 2.6889 2.9235 95 100 94 100

2.7691 2.8993 94.9 100 93.6 100

is, for MLF networks the clusters are smaller than for
RBF networks, which is what one expects for the way
the networks operate.

The input space was constructed with 95% sensi-
bility and specificity. The models obtained with the
output of the networks show a too high value for the
specificity (100%) whereas the sensibility is always
higher for class 1 (and greater than the theoretical
sensibility) than for class 2 (always less than the the-
oretical value). Also, for MLF networks the models
have larger values for the sensibility in both classes
than for RBF networks. These results correspond to
what one could expect because of the “size” of the
clusters. Anyway, the results are not very different
and almost stable for all networks.

3.5.2. Mahalanobis distance with 95% sample per-
centile

The model is constructed as in the last section, but
using the Mahalanobis distance instead of the eu-
clidean distance. In this way, the correlation among
the variables is taken into account and the model fol-

lows the direction shown for the outputs of the net-
works. Tables 5 and 6 show the class models, sensi-
bility and specificity computed with this criterion and
for both RBF and MLF networks. For MLF net-
works, only the results of one of the networks are
shown, because only this result is reliable. For the
calculation of the Mahalanobis distance an inverse
variance-covariance matrix needs to be calculated. In
the other nine networks this matrix is close to a sin-
gular matrix so the results may be inaccurate.

Also in this case, the models are quite repro-
ducible and there is no significant difference be-
tween the obtained models related to sensibility and
specificity.

The class centroids of the models are, of course,
the same. For the sensibility, the only reliable result
for MLF shows the same performance as for section
3.5.1. This is because the clusters are almost spheri-
cal and very close to the class centroid, so the eu-
clidean distance is equal to the Mahalanobis dis-
tance. For RBF networks, the models are better in
both classes related to the sensibility. This is because

Table 6
Class models (class centroids and critical distances), sensibility and specificity for MLF networks. The last row contain the mean values for
the ten networks. Mahalanobis distance

Centroid class 1 Centroid class 2 dcIit, d Cr,tZ Sensibility
class 1

Specificity
class 1

Sensibility
class 2

Specificity
class 2

(0.9972, 0.0027) (0.0027, 0.9972) 2.0065 2.1797 98 100 93 100

MS. Srinchez et al. / Chemometrics and Intelligent L.aboratov Systems 33 (19961 101-I 19 113

they are following the direction of the spread of the different sign that are “compensating” with each
values. But, even in this case, the models for both other. See the probability density function plotted in
RBF and MLF networks have a specificity of 100%. Fig. 6a.

3.6. Robustness of the trained networks 0.6,

So far, we have studied properties about the per-
formance of the networks both as discriminating and
as modelling techniques. Now we are interested in the
sensitivity of the networks to deviations in the input
space, in other words, in the robustness of the net-
works obtained. These deviations are likely to occur
in practice, the measurements in a laboratory, for in-
stance, are not exact and for future predictions it is
not guaranteed that the data will have the same struc-
ture than the data used for training the networks. The
problem posed now is the behaviour of the networks
when predicting new data that can vary with respect
to those data used to train the networks. This ques-
tion is central in all the inference procedures be-
cause, in practice, one will deal with unexpected and
unknown deviations. So, further to the noise in the
training data sets, we consider an additional source of
noise, probably unknown and different, which is dis-
torting the expected noise taken into account when
training the networks.

4
0.7.

0.6 -

0.5.

b)
0.7-

0.6-

0.5.

0.4-

As the networks are nonparametric inference pro-
cedures, we followed a scheme similar to those used
to evaluate the robustness of nonparametric statisti-
cal procedures: Monte Carlo simulations were per-
formed to obtain some information about the effect of
noise to the networks and about the amount of noise
the networks can support. On the other hand, the er-
rors in the input space are usually assumed to be nor-
mally distributed but in practice this assumption does
not always hold. Thus, a study of the robustness of
the networks to different types of noise in the input
space was also performed.

0.6,

Three different kinds of noise were used: noise
following (i) a normal distribution, (ii> a uniform dis-
tribution and (iii> a Laplace distribution, all of them
with zero mean.

These distributions are commonly used to study
the efficiency of non-parametric and robust statistical
procedures [26]. These distributions show the differ-
ent situations which might occur in practice:

(i) Noise due to errors with the highest probability
in its central part, due for instance to errors which

Fig. 6. Probability density function for: (a) normal distributed data,
(b) uniform distributed data, (c) Laplace distributed data.

114 MS. Srinchez et al./Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

‘Z

3 ic ._
3 80-
u
v
!!
8 m-
is

0
= E! 80-

x

50- ‘&

40’
0 0.5 1

standard deviation of noise
5

Fig. 7. Plot of the percentages of correct classifications together with their 99%~confidence limits for RBF networks. Dashed line: value
obtained with the test set (without noise). Dotted line: Laplace distribution of noise. Solid line: normal distribution of noise. Dashdot line:
uniform distribution of noise.

5
standard deviation of noise

Fig. 8. Plot of the percentages of correct classifications together with their 99%-confidence limits for MLF networks. Dashed line: value
obtained with the test set (without noise). Dotted line: Laplace distribution of noise. Solid line: normal distribution of noise. Dashdot line:
uniform distribution of noise.

MS. S&chez ef al. / Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-l 19 115

(ii) Noise due to errors without any privileged
value, for instance, due to make a sum up to a round
number. The corresponding probability density func-
tion is plotted in Fig. 6b.

(iii) Noise due to errors with one privileged value
(the mean) but with still a rather high probability of
obtaining values far away from the mean. Its proba-
bility density function is plotted in Fig. 6c.

In every case, the noise is sampled from the cor-
responding known distribution with a mean of zero
and an increasing value of the standard deviation.
This data set is added to the test set giving the noisy
data set. The noisy data is presented to the trained
network and the output of the network is calculated.
With the output values, percentage of correct classi-
fications, sensibility and specificity are calculated.
This whole process is repeated for a thousand times
for every kind of noise at different levels. This way
an estimation of the mean and the confidence levels
of the network output can be obtained (here, the con-
fidence levels were calculated at 99% confidence).

This procedure can be written in a pseudo-code as:
Initialization:

1. Choose a zero mean distribution function (nor-
mal, uniform or Laplace).

2. Fill an array with A values for the standard devia-
tion of the input noise.
Simulations:

for standard-deviation-index = 1 to A
for simulation -number = 1 to

number_of_simulations
1. Add noise, sampled with the chosen distri-

bution, to the test set.
2. Present the noisy data to the trained net-

work.
3. Compute and store the values of the per-

centage of correct classifications, sensibility
and specificity.

End
Calculate the mean and standard deviation of
the results,

End

0.5 1
standard deviation of noise

Fig. 9. Plot of the sensibility and specificity together with their 99%-confidence limits computed with the euclidean distance 95% sample
percentile criterion for both classes and for RBF networks. Dashed line: values obtained with the test set (without noise). Solid line: sensibil-
ity for class 2. Dotted line: sensibility/specificity for class 1. The upper dotted line corresponds to the specificity and the lower lines to the
sensibility. Only the specificity for class 1 is shown because the specificity for class 2 coincides with it.

116 MS. Sbnchez et al./Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

Model the results obtained with their confidence
limits as a function of the standard deviation of the
input noise.

The behaviour of the percentages of correct clas-
sifications for RBF is shown in Fig. 7 for the three
kinds of noise. It can be observed that as the stan-
dard deviation increases the values are dropping very
fast, but in a similar trend for every kind of noise. For
MLF networks (Fig. 8) the percentages drop also
similarly for the different kinds of noise but much
slower than for RBF, showing an almost linear ten-
dency. Thus, related to the discriminating ability, it
seems that MLF supports bigger amount of noise than
that supported by RBF. But this is not necessarily a
good property because for high values of the stan-
dard deviation, the input noisy data set has nothing to
see with the original data set. For instance if an addi-
tional source of variability appears in the data, it can
cause an increment of the errors which would go un-
noticed for MLF while for RBF would not. This can
be of great importance in quality control processes,
for example.

In this sense, we can say that for small deviations

in the input space, both RBF and MLF networks still
produce acceptable results and act similarly. For
higher deviations, RBF can recognize that the data set
we are applying to is different from the data set the
network was trained with, whereas MLF is still able
to classify the objects.

For normal distribution of noise, Fig. 9 shows the
sensibility and specificity computed with the eu-
clidean distance 95% sample percentile criterion for
both classes and for RBF networks. As can be ob-
served, the specificity of the models remains almost
on the values obtained with the original data set
(without noise) whereas the sensibility gives accept-
able values for small deviations and, again, drops fast
when the deviations increase and in the same trend for
both classes. The same behaviour is observed when
one is computing the sensibility and specificity with
the Mahalanobis distance criterion (Fig. 10).

Figs. 11 and 12 show the sensibility and speci-
ficity computed with the euclidean distance 95%
sample percentile and Mahalanobis distance 95%
sample percentile criteria respectively, for MLF net-
works and for both class 1 and class 2. In this case,

80-

80-

standard deviation of noise

Fig. 10. Plot of the sensibility and specificity together with their 99%~confidence limits computed with the Mahalanobis distance 95% sam-
ple percentile criterion for both classes and for RBF networks. Dashed line: values obtained with the test set (without noise). Solid line:
sensibility for class 2. Dotted line: sensibility/specificity for class 1. The upper dotted line corresponds to the specificity and the lower lines
to the sensibility. Only the specificity for class 1 is shown because the specificity for class 2 coincides with it.

MS. S&chez et al./ Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 117

standard deviation of noise

Fig. 11. Plot of the sensibility and specificity together with their 99%-confidence limits computed with the euclidean distance 95% sample
percentile criterion for both classes and for MLF networks. Dashed line: values obtained with the test set (without noise). The upper lines
correspond to the specificity and the lower lines to the sensibility: solid line for class 2 and dotted line for class 1.

loo-

0.5 1
standard deviation of noise

5

Fig. 12. Plot of the sensibility and specificity together with their 99%-confidence limits computed with the Mahalanobis distance 95% sam-
ple percentile criterion for both classes and for MLF networks. Dashed line: values obtained with the test set (without noise). The upper
lines correspond to the specificity and the lower lines to the sensibility: solid line for class 2 and dotted line for class 1.

118 MS. Szchez et al. / Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119

the same tendency is observed in both graphs: sensi-
bility and specificity of the classes drop more or less
in the same range.

These different results for RBF and MLF net-
works can be explained by the way the networks op-
erate: the outputs obtained with MLF networks are
always in the line that join the theoretical centroids
in the output space ((0,l) and (1,O)) so when the net-
work starts getting worse, the outputs of the objects
move themselves along the straight line and lie in-
side the class box of the other category. So, both the
sensibility and specificity decrease. In RBF net-
works, if the objects are far away from the centroids
of the radial base functions, they obtain a zero output
and lie outside both models. Thus the sensibility is
decreasing but the specificity remains 100%.

The tendency of the results obtained with uniform
and Laplace distributions were exactly the same as for
normal distribution, so we do not show the figures to
avoid including different figures with the same infor-
mation.

Summarizing, both types of networks yield simi-
lar results when the various noise distributions are
applied and related to both discriminating and mod-
elling ability. MLF networks start dropping later than
RBF networks but RBF can recognize that the ob-
jects are no in the same range that the objects in the
training set.

4. Software and hardware

Principal component analysis has been performed
with the PARVUS package [27]. All the programs for
neural networks were written in MATLAB code and
all the calculations were performed on IBM-compati-
ble PCs 80486 at 50-66 MHz.

5. Conclusions

Ten MLF and ten RBF networks have been inde-
pendently trained on a simulated data set with a pri-
ori known values for the sensibility and specificity.
Estimating both the discriminating and modelling
ability of the networks, the results show that the
models are quite reproducible and, with the variabil-
ity due to the estimators, the “a priori” established

values for sensibility and specificity can be obtained.
Also, PCA for independent ways of unfolding for
RBF networks, show there are no structural differ-
ences among the ten networks trained to solve the
same classification problem.

Furthermore, a robustness analysis has been car-
ried out to study the sensitivity of this kind of net-
works to deviations in input space due to different
distributional noise. In this case, MLF networks sup-
port a rather high amount of noise but RBF networks
can detect faster that the input space is changing with
respect to the data set used for training the networks.

Based on all the results it is hard to conclude which
network is better for this classification task. In per-
centage of correct classifications MLF obtains higher
values than RBF. The closure line between both types
of networks is weak regarding to sensibility and
specificity. And despite the fact that MLF networks
seem to be more robust to noise in the input space,
RBF networks are more sensitive to deviations in in-
put space in the sense that they detect faster varia-
tions in the new object presented to the network. In
this way, interpolation and extrapolation effects [28]
can be detected. So when it comes to model valida-
tion, RBF can be considered more reliable.

Summarizing, the choice of a neural network con-
cept (RBF or MLF) for classification tasks strongly
depends on how the priorities about the model prop-
erties, with respect to sensibility, specificity and also
parsimonity, are defined.

References

[l] E.P.P.A. Derks, MS. Sanchez Pastor and L.M.C. Buydens,
Chemom. Intelligent Lab. Sys., 28 (1995) 49-60.

[2] M.P. Derde, L. Kaufman and D.L. Massart, J. Chemom., 3
(1989) 375-395.

[3] M.P. Derde and D.L. Massart, Anal. Chim. Acta, 184 (1986)
33-51.

[4] M. Forma, S. Lanteri and L. Sarabia, J. Chemom., 9 (1995)
69-89.

[5] A. Bos, Artificial Neural Networks as a Tool in Chemomet-
rics, Ph.D. Thesis, University of Twente, Enschede, The
Netherlands, 1993.

[6] D.A. White and D.A. Sofge, Handbook of Intelligent Con-
trol, Van Nostrand Reinhold, New York, 1992.

[7] J. Zupan and J. Gasteiger, Networks for Chemists. An Intro-
duction, VCH, Weinheim, 1993.

[S] M. Carlin, T. Kavli and B. Lillekjendlie, Chemom. Intelli-
gent Lab. Sys., 23 (1994) 163-177.

MS. Srinchez. et al./ Chemometrics and Intelligent Laboratory Systems 33 (1996) 101-119 119

[9] M. Hartnett, D. Diamond and P.G. Barker, Analyst, 118 [19] L.-X. Sim et al., Chemom. Intelligent Lab. Sys., 25 (1994)
(1993) 347-354. 51-60.

[lo] T.B. Blank and SD. Brown, Anal. Chem., 65 (1993) 3081-
3089.

[20] T. Kohonen, Self-Organization and Associative Memory,
Springer, Berlin, 1989.

[ll] .I. Park and I.W. Sandberg, Neural Comput., 5 (1993) 305-
316.

[12] K.M. Homik, M. Stinchcombe and H. White, Neural Net-
works, 2 (1989) 359-366.

[13] H. Lohninger, J. Chem. Inf. Comput. Sci., 33 (1993) 736-
744.

1211 D.E. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison-Wesley, New York, 1989.

1221 H. Demuth and M. Beale, Neural Network Toolbox User’s
Guide, The MathWorks Inc., Natick, MA, 1993.

[23] M.I. Jordan and R.A. Jacobs, Neural Comput., 6 (1994)181-
214.

[14] D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning in-
ternal representations by error propagation, in D.E. Rumel-
hart and J.L. McClelland (Eds.), Parallel Distributed Process-
ing, Vol. 1, MIT Press, Cambridge, MA, 1986.

[15] N. Draper and H. Smith, Applied Regression Analysis, 2nd
edn., New York, 1981.

[24] R. Henrion, Chemom. Intelligent Lab. Sys., 25 (1994) l-23.
[25] L.R. Tucker, Psychometrika, 31 (1966) 279-311.
[26] T.P. Hettmansperger, Statistical Inference Based on Ranks,

Wiley, NY, 1984.

[16] M.C. Ortiz, J.A. Sbz and J. L6pez, Analyst, 118 (1993)
801-805.

[27] M. Forma, R. Leardi, C. Armanino and S. Lanteri, PARVUS:
An extendable Package of Programs for Data Exploration,
Classification and Correlation, Release 1.2 available from the
authors, Genoa, Italy, 1994.

[17] M.S. Sanchez and L.A. Sarabia, Chemom. Intelligent Lab.
Sys., 28 (1995) 287-303.

[28] J.A. Leonard, M.A. Kramer and L.H. Ungar, Comput. Chem.
Eng., 16 (1992) 819-836.

[18] J.R.M. Smits, W.J. Melssen, L.M.C. Buydens and G. Kate-
man, Chemom. Intelligent Lab. Sys., 22 (1994) 165-189.

