A Novel and Convenient Synthesis of 3-Methylfuran-2(5H)-one

Gerard H. L. Nefkens, Jan Willem J. F. Thuring, Binne Zwanenburg

NSR-Center for Molecular Structure, Design and Synthesis, Department of Organic Chemistry, University of Nijmegen, Toernooiveld, NL-6525 ED Nijmegen, The Netherlands
Fax +31(24)3652929; E-mail zwanenb@sci.kun.nl
Received 24 July 1996; revised 17 September 1996

3-Methylfuran-2(5H)-one (1a), a precursor of strigol and its analogues, is prepared in a highly efficient manner by a regiocontrolled alcoholysis of citraconic anhydride and subsequent reduction via the mixed anhydride 5c.

The 3-methylfuran-2(5H)-one moiety 1a is a common structural feature of all known "strigolactones", such as (+)-strigol, which are naturally occurring germination stimulants of seeds of the parasitic weeds Striga and Orobanche sp.1-4 Moreover, structure-activity relationship studies revealed that the presence of this structural unit is essential to retain full biological activity, results of which will be published separately.5

In view of our interest in the synthesis of simple, biologically active analogues of strigol, which are suitable for weed control purposes,6,7 a convenient multigram preparation of 1a is required, using cheap chemicals. This compound can readily be transformed into the corresponding 5-bromo derivative 1b, which is the D-ring precursor in the synthesis of the strigolactones and their analogues.8 Several procedures for the synthesis of 1a have been reported, but none of them fulfils these criteria satisfactorily.7,9-15 The present paper deals with an improved procedure for the preparation of 3-methylfuran-2(5H)-one (1a).

An attractive cheap, commercially available starting material is citraconic anhydride (2), as it only requires a formal reduction of the β-carbonyl function. However, this approach is not feasible as such, because reduction of the sterically more hindered α-carbonyl function strongly prevails. This observation was supported by ab initio calculations, showing a larger LUMO coefficient on the α-carbonyl.16 This implies that nucleophilic attack takes place preferentially at the α-carbonyl, which is thus primarily determined by electron factors. The intrinsic difference in reactivity of both carbonyl functions of 2 could advantageously be used to accomplish the reduction in the desired regiocontrolled fashion in an indirect manner, as is outlined in the Scheme.

Alcoholysis of 2 in the presence of dicyclohexylamine (DCA) with either methanol or 4-methoxybenzyl alcohol gave the esters 3a and 3b, respectively, isolated as the DCA salts, in high yield (80%) and with high regioselectivity (>90%). In our first approach the DCA salts 3a,b were converted into the corresponding carboxylic acids 4a,b by acidification with citric acid or potassium hydrogen sulfate, followed by treatment with ethyl chloroformate in the presence of triethylamine to give the mixed anhydrides 5a,b. Removal of the Et3N * HC1 precipitate by filtration, immediately followed by addition of the filtrate containing 5a,b to a saturated aqueous solution of sodium borohydride, smoothly produced 1a.17 After conventional workup, butenolide 1a was isolated in a high overall yield (~80 % from crude 3a,b) after purification by fractional distillation under reduced pressure. The choice of the 4-methoxybenzyl ester was advantageous because carboxylic acid 4b is much more stable than 4a. However, the formation of 4-methoxybenzyl alcohol during the reduction process severely complicated the purification of 1a by distillation. A considerable improvement of the above procedure is the direct formation of mixed anhydride 5c from 3a (Scheme). This could be accomplished by treatment of 3a with isobutyl chloroformate, which circumvented the need to isolate carboxylic acid 4a. In this experimental setup ethyl chloroformate is not a suitable reagent, as a considerable amount of the corresponding ethyl ester of 4a was formed under these conditions. The mixed anhydride 5c was then immediately subjected to reduction with NaBH4, using a reversed addition procedure, i.e. addition of a saturated aqueous solution of NaBH4 to 5c, which avoids a laborious extractive workup. Crude butenolide
to a stirred solution of 2 (5.6 g, 0.05 mol) in EtOAc (50 mL) 4-
-oxybenzyl) Ester (3 b):

To a stirred solution of 2 (5.6 g, 0.05 mol) in MeO\textsubscript{2} (400 mL) was added gradually DCA (1.1 equiv).

1-Methyl-2-oxo-4-(4-methoxybenzyl) 1-Methyl
2-Methylenecyclohexanecarboxylic Acid Ester

Spectra were measured on a Unical Mattson 5000 FT-IR spectrometer. 100 MHz. 1H NMR spectra were recorded on a Bruker AC 100 spectrometer (TMS as internal standard). All coupling constants are given as \(J \) in Hz, unless indicated otherwise. GC was performed on a Hewlett-Packard HP 5890 gas chromatograph, using a capillary column (25 m) of HP-1, and N\textsubscript{2} (0.5 atm) as the carrier gas. Mps were measured with a Reichert Thermoplan microscope and are uncorrected. Elemental analyses were performed at the Department of Microanalysis of this laboratory. This method is therefore superior to all previously reported syntheses.

In conclusion, a convenient and simple preparation of 3-methylfur-an-2(5H)-one (1a), starting from citraconic anhydride (2), has been accomplished by making use of the intrinsic difference in reactivity of both carboxyl groups in citraconic anhydride (2). The procedure has been performed on at least a 0.2 mole scale using inexpensive ingredients and standard laboratory equipment.

IR spectra were measured on a Unical Mattson 5000 FT-IR spectrometer. 100 MHz. 1H NMR spectra were recorded on a Bruker AC 100 spectrometer (TMS as internal standard). All coupling constants are given as \(J \) in Hz, unless indicated otherwise. GC was performed on a Hewlett-Packard HP 5890 gas chromatograph, using a capillary column (25 m) of HP-1, and N\textsubscript{2} (0.5 atm) as the carrier gas. Mps were measured with a Reichert Thermoplan microscope and are uncorrected. Elemental analyses were performed at the Department of Microanalysis of this laboratory. This method is therefore superior to all previously reported syntheses.

In conclusion, a convenient and simple preparation of 3-methylfur-an-2(5H)-one (1a), starting from citraconic anhydride (2), has been accomplished by making use of the intrinsic difference in reactivity of both carboxyl groups in citraconic anhydride (2). The procedure has been performed on at least a 0.2 mole scale using inexpensive ingredients and standard laboratory equipment.

IR spectra were measured on a Unical Mattson 5000 FT-IR spectrometer. 100 MHz. 1H NMR spectra were recorded on a Bruker AC 100 spectrometer (TMS as internal standard). All coupling constants are given as \(J \) in Hz, unless indicated otherwise. GC was performed on a Hewlett-Packard HP 5890 gas chromatograph, using a capillary column (25 m) of HP-1, and N\textsubscript{2} (0.5 atm) as the carrier gas. Mps were measured with a Reichert Thermoplan microscope and are uncorrected. Elemental analyses were performed at the Department of Microanalysis of this laboratory. This method is therefore superior to all previously reported syntheses.

In conclusion, a convenient and simple preparation of 3-methylfur-an-2(5H)-one (1a), starting from citraconic anhydride (2), has been accomplished by making use of the intrinsic difference in reactivity of both carboxyl groups in citraconic anhydride (2). The procedure has been performed on at least a 0.2 mole scale using inexpensive ingredients and standard laboratory equipment.

IR spectra were measured on a Unical Mattson 5000 FT-IR spectrometer. 100 MHz. 1H NMR spectra were recorded on a Bruker AC 100 spectrometer (TMS as internal standard). All coupling constants are given as \(J \) in Hz, unless indicated otherwise. GC was performed on a Hewlett-Packard HP 5890 gas chromatograph, using a capillary column (25 m) of HP-1, and N\textsubscript{2} (0.5 atm) as the carrier gas. Mps were measured with a Reichert Thermoplan microscope and are uncorrected. Elemental analyses were performed at the Department of Microanalysis of this laboratory. This method is therefore superior to all previously reported syntheses.

In conclusion, a convenient and simple preparation of 3-methylfur-an-2(5H)-one (1a), starting from citraconic anhydride (2), has been accomplished by making use of the intrinsic difference in reactivity of both carboxyl groups in citraconic anhydride (2). The procedure has been performed on at least a 0.2 mole scale using inexpensive ingredients and standard laboratory equipment.

IR spectra were measured on a Unical Mattson 5000 FT-IR spectrometer. 100 MHz. 1H NMR spectra were recorded on a Bruker AC 100 spectrometer (TMS as internal standard). All coupling constants are given as \(J \) in Hz, unless indicated otherwise. GC was performed on a Hewlett-Packard HP 5890 gas chromatograph, using a capillary column (25 m) of HP-1, and N\textsubscript{2} (0.5 atm) as the carrier gas. Mps were measured with a Reichert Thermoplan microscope and are uncorrected. Elemental analyses were performed at the Department of Microanalysis of this laboratory. This method is therefore superior to all previously reported syntheses.

In conclusion, a convenient and simple preparation of 3-methylfur-an-2(5H)-one (1a), starting from citraconic anhydride (2), has been accomplished by making use of the intrinsic difference in reactivity of both carboxyl groups in citraconic anhydride (2). The procedure has been performed on at least a 0.2 mole scale using inexpensive ingredients and standard laboratory equipment.

IR spectra were measured on a Unical Mattson 5000 FT-IR spectrometer. 100 MHz. 1H NMR spectra were recorded on a Bruker AC 100 spectrometer (TMS as internal standard). All coupling constants are given as \(J \) in Hz, unless indicated otherwise. GC was performed on a Hewlett-Packard HP 5890 gas chromatograph, using a capillary column (25 m) of HP-1, and N\textsubscript{2} (0.5 atm) as the carrier gas. Mps were measured with a Reichert Thermoplan microscope and are uncorrected. Elemental analyses were performed at the Department of Microanalysis of this laboratory. This method is therefore superior to all previously reported syntheses.
(15) Alternative convenient procedures involve the use of \(\alpha \)-methyl-\(\gamma \)-butyrolactone (ref 13) or \(\alpha \)-methylene-\(\gamma \)-butyrolactone (ref 12), which are very expensive starting materials and difficult to prepare.

