Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by $\delta^{13}C$ and $\delta^{15}N$

S. Marguillier1,*, G. van der Velde2, F. Dehairs1, M. A. Hemminga3, S. Rajagopal2

1Department of Analytical Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
2Department of Ecology, Laboratory of Aquatic Ecology, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands
3Netherlands Institute of Ecology, Centre for Estuarine and Coastal Ecology, Vierstraat 28, 4401 EA Yerseke, The Netherlands

ABSTRACT: The food web structure of a mangrove forest and adjacent seagrass beds in Gazi Bay, Kenya, was examined with stable carbon and nitrogen isotope ratio techniques. A carbon isotope ratio gradient was found from mangroves with mean (±SD) $\delta^{13}C$ value of $-26.75 \pm 1.64\%$ to seagrass beds with $-16.23 \pm 4.35\%$. Seagrasses close to the mangroves were more depleted in ^{13}C than seagrasses close to the major coral reef. Macroinvertebrates collected along this mangrove seagrass bed transect showed a similar $\delta^{13}C$ gradient. Fishes collected near the mangroves were depleted in ^{13}C compared to fishes collected in the seagrass meadows. The fish community was differentiated on the basis of its carbon isotope ratios and the site where individuals were collected. Three groups were identified: (1) species occurring in seagrass meadows in the close vicinity of the mangrove swamps; (2) species migrating between mangroves and the seagrass meadows, together with species occurring throughout the entire seagrass area, from close to the mangroves to the outer bay; and (3) species that use the seagrass meadows proper as a lifetime habitat. The results show that seagrass stands are the main feeding grounds providing food for all fish species studied. $\delta^{15}N$ signatures allowed to the identification of the following trophic levels: (1) fish species feeding on seagrasses and macroalgae (herbivores); (2) fish feeding on zoobenthos-plankton (zoobenthoplanktivores); and (3) other fish and/or macro-crustacea (piscivores/benthivores). A ^{15}N isotope enrichment of $<2\%$ was found between successive trophic levels suggesting significant omnivory.

KEY WORDS: $\delta^{13}C$ • $\delta^{15}N$ • Mangroves • Seagrasses • Fishes • Trophic relationships

INTRODUCTION

Measurements of natural $^{13}C/^{12}C$ and $^{15}N/^{14}N$ isotope ratios provide a powerful tool in determining respectively sources of nutrition for consumers and trophic relationships among organisms and have often been used in the study of marine food webs (e.g. Hobson & Welch 1992, Rau et al. 1992, Newell et al. 1995). Stable carbon and nitrogen isotopic ratios in animals are largely determined by those of their diet (Fry & Sherr 1984). As a consequence of isotopically selective excretion or respiration of the lighter isotopes, heavy isotope enrichment can occur over a trophic gradient.

However, for ^{13}C, this enrichment is small and the $^{13}C/^{12}C$ ratio of an animal reflects the $^{13}C/^{12}C$ of its diet (0 to 1% increase of $\delta^{13}C$ per trophic level; Fry & Sherr 1984). Thus, $\delta^{13}C$ measurements primarily indicate the main sources of carbon to consumers. On the other hand, enrichment of ^{15}N in consumers relative to food is larger than for ^{13}C, thus $\delta^{15}N$ values rather inform on trophic distance of consumers from the foodbase (Minagawa & Wada 1984). The simultaneous use of $\delta^{13}C$ and $\delta^{15}N$ values therefore allows the elucidation of trophic relationships in food webs.

Hemminga et al. (1994) and Rao et al. (1994) reported a non-overlapping $\delta^{13}C$ signal range for mangrove leaves and seagrasses in Gazi Bay, Kenya. Furthermore, Hemminga et al. (1994) reported a $\delta^{13}C$ gradient in the seagrass Thalassodendron ciliatum.
STUDY AREA AND METHODS

Study area. The study was carried out in Gazi Bay, south of Mombasa, Kenya (4°25'S, 39°30'E) (Fig. 1). Gazi Bay is characterised by a zonation of mangrove forest, seagrass meadows and coral reef. There are 2 major tidal creeks with seagrasses penetrating the mangrove forest. The western creek is the mouth of the river Kidogoweni, a seasonal river, while the eastern creek (Kinondo creek) is a small tidal creek (Slim & Gwada 1993). The vegetation in these creeks is described by van Avesaath et al. (1993), van der Velde et al. (1995) and Slim et al. (1997).

Sampling. Samples for isotopic analysis were collected during the Coastal Research Programme of the Netherlands Indian Ocean Programme (1990 to 1995) and the European Community (EC) STD-3 project on 'Interlinkages between Eastern-African coastal ecosystems' (1992 to 1995). Mangrove leaves of 8 species occurring in Gazi Bay were collected from zones 1, 2 and 4 (Fig. 1) and the samples were pooled for each species. These species were: *Rhizophora mcroronata*, *Ceriops tagal*, *Sonneratia alba*, *Avicennia marina*, *Bruguiera gymnorrhiza*, *Xylocarpus granatum*, *Lumnitzera racemosa* and *Heritiera littoralis*. Fresh leaves of the same physiological age were collected by choosing the second one from the terminal bud. The leaves were dried at 80°C for 5 h. Further details on sampling were provided by Rao et al. (1994). *Thalassodendron ciliatum* is the dominant seagrass of the subtidal area (Coppejans et al. 1992) and leaves were taken at 4 different distances from the mangroves towards the coral reef (Fig. 1). The pooled seagrass samples were dried at 60°C. Four species of molluscs, 2 species of macrocrustaceans and 12 of the most abundant fish species were caught in the eastern and western creeks and in the seagrass meadows. For the invertebrates (molluscs and crustaceans), at least 5 whole individuals were pooled. In the case of fishes, muscle tissues were carefully excised from each specimen with a clean scalpel. Only muscle tissue was used because its slow turnover rate results in integrating diet effects over months, and thus allows the exclusion of short-term variability effects (Gearing 1991). In each analysis, dried samples were pretreated with 20% HCl for removing carbonates since carbonates are known to interfere with C signatures. Dry animal tissue and leaf tissue were ground to a fine powder using a mortar, pestle and liquid nitrogen.

Isotopic analysis. Mass spectrometric measurements were performed using a Delta E, Finnigan Mat isotope ratio mass spectrometer. For carbon isotopic ratios, the organic material was combusted in an Elemental...
analysed (Carlo Erba NA1500). The CO₂ generated during the combustion was automatically trapped in an online Finnigan Mat trapping box for cryopurification before injection into the mass spectrometer. For the nitrogen isotopic ratios, the N₂ gas produced during combustion was cryogenically trapped in stainless steel tubes filled with a molecular sieve, and samples were manually introduced into the mass spectrometer. A graphite reference material (USG-24) was used as a standard for carbon isotopic ratio measurements. Values are expressed relative to the VPDB (Vienna Peedee Belemnite) standard (Coplen 1996). High purity tank nitrogen gas was used as a working standard for the nitrogen isotope ratio measurements. This working standard was calibrated against N1 and N2 ammonium sulphate (IAEA, Vienna). \[\delta R = \left[\frac{X_{\text{sample}}}{X_{\text{standard}}} \right] \times 10^3 \] (‰)

where \(R = \frac{^{15}N}{^{14}N} \) or \(X = \frac{^{13}C}{^{12}C} \).

Reproducibility for the analysis of different aliquots of the same tissue sample was generally better than 0.2‰ for both isotopes. \(\delta^{15}N \) analysis was duplicated for pooled samples of molluscs, crustaceans and fishes (Para­scorpaena mossambica, Paramonacanthus barnardi and juvenile Siganus sutor). The standard deviations varied from 0.08 (Terebralia palustris) to 0.22 (Cypraeidae) for molluscs, 0.46 (Metopograpbus thukuhar) to 0.62 (Uca lactea) for crustaceans, and 0.06 (P. barnardi) to 0.11 (P. mossambica) for fishes.

RESULTS

Flora

The most important primary producers were the mangrove trees and the seagrasses. The mangrove leaves had a signal range between -24.28 and -29.71‰, typical for C₃ plants (Table 1). The carbon isotopic ratios for the seagrasses were observed to range from -10.02 to -19.82‰. The more negative values were observed for seagrass leaves from sites close to the mangrove forest, while seagrass leaves in the vicinity of the coral reef had the least negative values. The mean \(\delta^{15}N \) values for the mangrove leaves and seagrasses were +1.11 and +1.51‰, respectively (Table 1).

Molluscs and crustaceans

The gastropods Terebralia palustris and Cerithidea decollata and the crabs Uca lactea and Metopograpbus thukuhar were collected in the Ceriops tagal stands (Fig. 1). T. palustris exhibited a more negative \(\delta^{13}C \) value (-24.23‰) than the other 3 species (-20.64, -18.96 and -19.83‰, respectively; Fig. 2).

Table 1. Stable carbon and nitrogen isotopic ratios for samples collected in the mangrove ecosystem of Gazi Bay, Kenya. Number of individuals in parentheses. The values for the mangrove and seagrass leaves were obtained from pooled samples of more than 10 leaves.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sampling site</th>
<th>(\delta^{13}C) (%)</th>
<th>SD</th>
<th>(\delta^{15}N) (%)</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangrove leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avicennia marina (fringing)</td>
<td>-29.71ᵇ</td>
<td>+1.63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heritiera littoralis</td>
<td>-28.78ᵇ</td>
<td>+0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumnitzea racemosa</td>
<td>-27.17ᵇ</td>
<td>+0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avicennia marina</td>
<td>-26.82ᵇ</td>
<td>+2.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sonneratia alba</td>
<td>-26.50ᵇ</td>
<td>+1.66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhizophora mcrconata</td>
<td>-26.69ᵇ</td>
<td>+1.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td>-25.87ᵇ</td>
<td>+0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruguiera gymnorrhiza</td>
<td>-25.77ᵇ</td>
<td>+0.86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td>-24.28ᵇ</td>
<td>+0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seagrass leaves</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thalassodendron ciliatum from Site A</td>
<td>-19.82</td>
<td>+1.60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-18.67</td>
<td>+0.82</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>-16.34</td>
<td>+0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-10.07</td>
<td>+2.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siganus sutor (juvenile) (5)ᵇ</td>
<td>-19.31</td>
<td>+0.56</td>
<td>0.56</td>
<td>+5.88</td>
<td>0.15</td>
</tr>
<tr>
<td>Valamugil seheli (6)</td>
<td>-18.85</td>
<td>+8.55</td>
<td>2.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphaeramia orbicularis (9)</td>
<td>-17.28</td>
<td>+7.90</td>
<td>2.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siganus sutor (24)</td>
<td>-16.50</td>
<td>+11.36</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylosurus crocodilus (2)</td>
<td>-16.11</td>
<td>+9.77</td>
<td>3.63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conger cinereus (13)</td>
<td>-15.95</td>
<td>+11.05</td>
<td>2.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sphyraena barracuda (10)</td>
<td>-14.46</td>
<td>+6.60</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paramonacanthus barnardi (5)ᵇ</td>
<td>-14.22</td>
<td>+10.30</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plotosus lineatus (11)</td>
<td>-14.17</td>
<td>+10.04</td>
<td>1.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithianus fulviflamma (24)</td>
<td>-14.05</td>
<td>+9.10</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheilo inermis (21)</td>
<td>-13.91</td>
<td>+6.29</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parascorpaena mossambica (5)ᵇ</td>
<td>-12.80</td>
<td>+6.62</td>
<td>3.02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ᵃSee Fig. 1 for abbreviations. Most dominant foraging groups in bold
ᵇData from Rao et al. (1994)
ᶜPooled sample
The oyster *Saccostrea cucullata* was collected from an oyster nursery located in the western creek and had a δ13C value of −20.08‰. The gastropods (Cypraeidae) collected in the seagrasses near sites C and D (see Fig. 1) had a δ13C value of −11.88‰ (Fig. 2).

The δ15N values of the molluscs and crabs ranged from +2.20‰ (*Cerithidea decollata*) to +5.08‰ (*Cypraeidae*) (Fig. 2).

Fish

The δ13C values for the fishes collected in Gazi Bay ranged from −22.20‰ (*Conger cinereus*) to −9.35‰ (*Leptoscarus vaigiensis*), and δ15N values ranged from +5.32‰ (*L. vaigiensis*) to +12.16‰ (*Sphyraena barracuda*) (Table 1).

DISCUSSION

Flora

Hemminga et al. (1994) and Rao et al. (1994) reported that mangrove leaves and seagrasses in Gazi Bay do not overlap in their δ13C signal, and have average (±SD) values of −26.75 ± 1.64 and −16.23 ± 4.35‰, respectively. The seagrasses exhibit a very large range in their δ13C values (Fig. 2), an observation also reported by others (McMillan et al. 1980, Fry & Sherr 1984, Lin et al. 1991, Hemminga & Mateo 1996). The δ13C values for most seagrasses are within the range usually associated with C₄ metabolism (Hatch-Slack cycle) (Fry & Sherr 1984). However, it has been observed that carboxylation in seagrasses occurs through the C₃ pathway (Benedict et al. 1980). Aquatic plants use the dissolved inorganic carbon (DIC) pool during photosynthesis and therefore the δ13C signal of these aquatic plants is affected by the isotopic composition of the DIC pool. The δ13C signal of DIC set by the CO₂ air-sea exchange processes also...
depends on the production of respiratory CO₂ during decomposition of plant material such as mangrove detritus. During decomposition, mangrove leaves or mangrove-derived material show little change in the δ¹³C signal (Zieman et al. 1984). Since the δ¹³C signal of the mangroves is very negative (close to -27%), mineralisation of mangrove detritus induces a shift in δ¹³C of DIC to more negative values (Mook & Tan 1991). This process may explain the more negative δ¹³C values (-19.82‰) for seagrasses near the mangroves and the less negative δ¹³C values (-10.09‰) for seagrasses near the coral reef, as discussed by Hemminga et al. (1994). The observed δ¹⁵N values for the mangrove leaves and seagrasses are 2‰ lower than those reported by Zieman et al. (1984) and Newell et al. (1995).

Molluscs and crustaceans

The herbivorous gastropod Terebralia palustris, collected in the Ceriops tagal stands (sampling station 4, Fig. 1), had a δ¹³C signal of -24.23‰, which is close to that of the C. tagal leaves (-24.28‰), indicating that leaves of this species are the main carbon source for the gastropod (Fig. 2a). This agrees well with field observations of T. palustris feeding behaviour (Slim et al. 1997). In contrast, the gastropod Cerithidea decollata and the crabs Uca lactea and Metopograpsus thukuhar, which occur also in the C. tagal stands, have tissue δ¹³C values showing enrichment in δ¹³C (Fig. 2a). Inundation of the stands during spring tides imports carbon from the seagrass meadows (Hemminga et al. 1994, Slim et al. 1996). A possible explanation for the observed less negative δ¹³C signal for C. decollata, U. lactea and M. thukuhar is that they feed on a mixture of inwelled seagrass and local mangrove detritus. The oyster Saccostrea cucullata was collected from sampling station 5 and has a δ¹³C signature of -20.08‰ (Fig. 2a). Kazungu (1996) reported a δ¹³C value of particulate organic matter (POM) at station 5 of -21.39‰ at high tide when the oyster nursery is inundated. This δ¹³C value, and the fact that the C/N atom ratio of POM was very low (3.14) relative to the mangroves and seagrasses, suggests that phytoplankton contributed significantly to POM composition and the oyster diet. The cypraeid snails were collected between sampling sites C and D and had a δ¹³C signature (-11.88‰) close to the one of the local seagrass leaves (Fig. 2a). Kazungu (1966) reported a mean δ¹³C value of POM at site D of -18.39‰, which indicates that the main carbon source for the cypraeid snails is not derived from POM, and must originate from local seagrasses and seagrass-derived material.

Fishes δ¹³C

Valamugil seheli and Sphaeramia orbicularis, with average δ¹³C values of -19.31 and -18.85‰, respectively (Fig. 2b), were most abundant in the mangrove creeks. Mwamsujo (1994) reported that S. orbicularis is restricted to the mangrove area and that it is a true resident of mangrove creeks. Individuals of this species were collected at the edge of the mangrove creeks, close to the seagrasses. δ¹³C values of muscle tissue of S. orbicularis suggest this species also consumes carbon from outside the mangroves, i.e. from the nearby seagrasses. We believe that S. orbicularis feeds on shelter between the roots of the mangrove trees but feeds outside or near the edge of the mangroves. Individuals of Leptoscarus vaigiensis and Siganus sutor were found over the entire seagrass area and this was confirmed by their wide δ¹³C range: -21.26‰ to -9.35‰ for L. vaigiensis and -21.58‰ to -14.36‰ for S. sutor (Fig. 2b). Juvenile S. sutor had a δ¹³C value of -21.2‰, suggesting mangrove derived material was the basis of its diet. Cheilo inermis, Plotosus lineatus and Lutjanus fulviflamma were most abundant in the outer bay seagrass zone (seagrass δ¹³C between -16.34 and -10.07‰) and had a mean carbon isotopic signature of -14.05‰, -14.22‰, and -14.17‰, respectively, similar to that of the local seagrasses. This indicates a strong dependency on seagrass material via seagrass-supported trophic intermediates. The carnivorous species Sphyraena barracuda and Conger cinereus were collected in the mangrove creeks, but had average δ¹³C signals of -15.95‰ and -16.11‰, respectively. These values fall within the range observed for seagrasses. Observations indicate that these fishes migrate between the seagrasses and the mangroves but feed on fish and/or macrocrustacea located in the seagrasses.

The fish community was differentiated into subgroups on the basis of carbon isotopic composition and collection site of individuals. Three different groups were distinguished: (1) species occurring in seagrass meadows in the close vicinity of mangrove swamps and showing the largest depletions (lowest δ¹³C values) (Valamugil seheli and Sphaeramia orbicularis), (2) species migrating between mangroves and the seagrass meadows, together with species occurring throughout the entire seagrass-covered area from close to the mangroves to the coral reef, showing intermediate δ¹³C values (Sphyraena barracuda, Tylosurus crocodilus, Conger cinereus and Siganus sutor), and (3) species that use the seagrass meadows as a lifetime habitat and show the least negative δ¹³C values (Plotosus lineatus, Lutjanus fulviflamma, Cheilo inermis, Leptoscarus vaigiensis, Paramonacanthus barnardi and Parascopaena mossambica) (Fig. 2b).
Fishes $\delta^{15}N$

A rough distinction in the feeding patterns of the fish species was made based on literature data (Smith & Heemstra 1986). Three feeding guilds were distinguished: (1) species feeding mainly or partly on seagrasses and macroalgae (herbivores) (Valamugil seheli, Leptostracus vaigiensis, Paramonacanthus barnardi and Siganus sutor); (2) species feeding on zoo/benthos-plankton (zoobenthoplanktivores) (Sphaeramia orbicularis); and (3) species feeding on other fish and/or macro-crustacea (pisivores/benthivores) (Sphyraena barracuda, Tylosurus crocodilus, Conger cinereus, Plotus lineatus, Lutjanus fulviflamma and Cheilo inermis). Pseudocirrha mossambica showed a remarkably low $\delta^{15}N$ value, indicating that this predator may feed on e.g. macroinvertebrates that feed on seagrass detritus.

These groups were also differentiated on the basis of their $\delta^{15}N$ signature. The first group had a range of mean $\delta^{15}N$ values from $+5.88\%$ (Valamugil seheli) to $+6.62\%$ (Leptostracus vaigiensis) (Fig. 2c). However, Siganus sutor, also a herbivorous fish, showed more enriched values ($+7.90\%$) than the former species. Together with its negative $\delta^{13}C$ values, this observation suggests that not all S. sutor are herbivorous, but that some individuals are also omnivorous.

Sphaeramia orbicularis had a mean $\delta^{15}N$ of $+8.55\%$. Mwamsojo (1994) reported that the gut content of this species consisted of epibenthic and hyperbenthic crustacea and a few molluscs. Taking into account literature data (Smith & Heemstra 1986), this species can therefore be classified as zoobenthoplanktivorous.

Plotosus lineatus, Conger cinereus, Lutjanus fulviflamma and Cheilo inermis, which are classified as zoobenthivores and piscivores (Smith & Heemstra 1986), had a range of mean $\delta^{15}N$ values from $+9.10\%$ (Cheilo inermis) to $+10.30\%$ (Plotosus lineatus).

Sphyraena barracuda and Tylosurus crocodilus were the top predators observed in this study, and their $\delta^{15}N$ values were the highest, reaching $+11.05$ and $+11.36\%$, respectively.

For all fishes taken together, the $\delta^{15}N$ signature ranged from $+5.32\%$ (for a Leptostracus vaigiensis) to $+12.16\%$ (for a Sphyraena barracuda), showing about a 2% increase per trophic level (Fig. 2c). Cabana & Rasmussen (1994) reported that $\delta^{15}N$, as a tracer of trophic position, reflects variations in the underlying food web structure, rather than variable fractionation along the food chain. According to them, an average increase between trophic pairs in a food chain smaller than $+3.4\%$, which is the $\delta^{15}N$ change per trophic level as reported by Minagawa & Wada (1984), may indicate significant levels of omnivory in these food webs. In the present study, the overlaps in the $\delta^{15}N$ and $\delta^{13}C$ ratios of the various groups and an enrichment in $\delta^{15}N$ smaller than 2% suggests a high contribution by omnivory.

Acknowledgements. We are grateful to Prof. Dr Keppens and A. Van Riet for access to mass spectrometer facilities and for help with measurements. We are thankful to P. H. van Avesaath for helping with the fieldwork. F. Deheurs is a research associate at the National Science Foundation, Belgium. We also thank 3 anonymous reviewers for their helpful comments and suggestions on earlier version of the manuscript. This is Netherlands Institute of Ecology, Centre for Estuarine and Coastal Ecology publication no. 2224.

LITERATURE CITED

Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using $\delta^{13}C$ and $\delta^{15}N$ analysis. Mar Ecol Prog Ser 84:333–341

McMillan C, Parker PL, Fry B (1980) $\delta^{13}C/\delta^{15}N$ ratios in seagrasses. Aquat Bot 9:237–249

Mwamsojo GUJ (1994) The feeding ecology of the chubby cardinalfish Sphaeramia orbicularis (Pisces: Apogonidae)
in a tropical mangrove creek. MSc thesis, Free University of Brussels

This article was submitted to the editor

Manuscript first received: October 14, 1996
Revised version accepted: March 5, 1997