Lymphoma/Myeloma and Lymphopoiesis

437

TRANSPLANTABLE MURINE NATURAL KILLER CELL PROGENITORS: IDENTIFICATION AND ENRICHMENT.

Mootz TA*, Bennett M, Kumke V**, U.T. Southwestern Medical Center, Dallas, Texas, U.S.A.

Little is understood about the earliest stages of natural killer (NK) cell differentiation in bone marrow or the lineage relationship of immature NK cells to other, more well defined lineages of the hematopoietic system. By sensitivity to antibody + C depletion, we have previously identified a transplantable NK progenitor population to be heat stable antigen (HSA)+ NK1.1- 34A4+. To measure NK progenitors, recipient mice are treated with anti-NK1.1 mAb to deplete endogenous mature NK cells, lethally irradiated, then injected with syngeneic bone marrow cells. Ten to 14 days later, regeneration of mature NK cell function is assessed by measuring the clearance of injected radiolabelled YAC-1 tumor targets from the lungs.

Using well documented flow cytometric procedures, we have enriched this progenitor from within the blast size population of bone marrow and with the surface phenotype Ly-6 (Sca-1)+ Lin (B220, Gr-1, CD2, CD3, NK1.1)+. This population comprises approximately 0.5-1.0% of total bmc.

Since this population is also greatly enriched for pluripotent stem cells as well as other hematopoietic lineage progenitor cells, we are currently attempting to further subdivide this population in order to identify a cell phenotype capable of generating exclusively NK cells upon in vivo transfer. Antigens to be examined include HSA, Fall-3, and C2-1.

Finally, since NK progenitors are unresponsive to IL-2 in vitro, we are also examining the cellular and/or cytokine interactions which drive progenitors to differentiate into IL-2 responsive NK precursor cells, which then generate mature NK cells.

438

IN VITRO EVIDENCES OF T CELL COMMITMENT IN HUMAN BONE MARROW.

Schmitt CA*, Dalloul AH, Arreck M, Debre P*, Messori MD, Department of Molecular Immunohematology, Pitié-Salpêtrière Hospital, Paris, France.

Human thymus is necessary for normal development of T cell compartment. However, the question remains as to whether T cell commitment occurs intrathymically, or that prothymocytes are yet developed in the bone marrow. To approach this question, we have analysed phenotypic and functional capacities of thymic and bone marrow CD2+ precursors by taking advantage of CD7 and CD34 expression. Three subsets were analysed: CD7+34+, CD7+34+ and CD7+34-. Our data show that in the bone marrow CD2+ cells were not able to generate myeloid colonies (4/35-53 × 10⁶) while myeloid clones did not surpass 4/350. Therefore, thymic CD2+ cells contain 0.2-0.4% of total thymocytes while CD7+34+ and CD7+34- belong to both subsets, CD7+34- cells were not able to generate myeloid colony upon in vivo transfer. Antigens to be examined include phenotype capable of generating exclusively NK cells and lethally irradiated then injected with syngeneic bone marrow.

Commitment to T cell lineage already occurs in human bone marrow CD2+ precursors by taking advantage of CD7 and CD34 expression. Three subsets were analysis: CD7+34+, CD7+34+ and CD7+34-. Our data show that in the bone marrow CD2+ cells were committed to T cell lineage with rare exception. In the bone marrow, CD7 prothymocytes are present and seem to be derived from more immature CD34+ precursors possessing both myeloid and lymphoid potential. As CD7+CD2- CD34+ cells were previously detected in the upper thorax region of human fetus just before thymus genesis. We therefore suggest that commitment to T cell lineage already occurs in human bone marrow.

439

RECOVERY OF MURINE LYMPHOPOIESIS FOLLOWING IN VIVO ABLATION WITH ANTI-L3T4 ANTIBODY.

Kukuruga M*, Scheding S*, Media JS*, Nakell J, Division of Hematology and Oncology, Wayne State University School of Medicine, Detroit, MI, USA.

We have utilized multivariate flow cytometry to investigate the recovery of spleen lymphocytes following the in vivo depletion of the L3T4 (murine equivalent to human CD4) subset in mice injected with anti-L3T4 ascites. BDF1 mice received a single i.p. injection of 0.2 ml GK1.5 (anti-L3T4) ascites. L3T4 subsets were ablated from about 30% of total spleen cells to undetectable levels within 3 hrs and remained so for 2 weeks. Since L3T4 cells comprise ~70% of all T-cells, we were surprised to observe that the latter did not differ in number from control values at 3 hrs and at no later time did they decrease more than 15%. No changes in splenic weight, cellularity or the LYT2 subset were detected that could account for the discrepancy between total THY1.2 cells and the corresponding T-cell subsets, not were any changes noted in the number of IgG, ASIALO-GM1, and MAC-1 cells. By the third week following the initial depletion, L3T4 cells had recovered to 10% of total spleen cells and over the next two weeks increased slowly to about 20%. LYT2 cells were elevated at 4 and 5 weeks post ablation such that the LYT2 plus L3T4 subsets added up to the number of THY1.2 cells. Our results indicate that a considerable fraction of splenic progenitors are detected within the first two weeks following in vivo ablation of the L3T4 subset that remains undetected by monoclonal markers for L3T4 and LYT2.

440

ACTIVATION MARKER EXPRESSION ON THE PERIPHERAL BLOOD LYMPHOCYTES OF NORMAL VOLUNTEERS, RECIPIENTS OF INTERLEUKIN 2 AND PATIENTS UNDERGOING BONE MARROW TRANSPLANTATION.

A. Inciogullari, P. Oblikovac, MD, Hamon, G. Golotowics, AV Hoffbrand, CG Fidjeler*, and HJ Prentice, Department of Haematology, Royal Free Hospital School of Medicine, London, UK and 'National Cancer Institute, 1066 CX Amsterdam, The Netherlands.

Dual colour immunophenotyping and cytotoxicity assays on the peripheral blood lymphocytes (PBL) of normal volunteers, after culture with or without interleukin 2 (IL2) demonstrated that the in vitro induction of cytotoxicity for a natural killer (NK) resistant cell line was accompanied by an increase in the number of cells positive for the antigen bound by the monoclonal antibody NKI-1.16 (17 ± 6% unstimulated, 45 ± 18% 1.2 stimulated, mean ± standard deviation, p<0.008) and an increase in CD57 (transferrin receptor) expression (2 ± 1.6% unstimulated, 12 ± 9% 1.2 stimulated, p=0.04). PBL from patients who have undergone bone marrow transplantation (BMT), autologous or allogeneic, also showed increased killing of the NK resistant cell line (1.2 ± 0.9% pre BMT, 0 ± 7.2% post BMT, p=0.004) which was accompanied by increased NKI-1.16 binding (33.1 ± 13.8% pre, 50.3 ± 21.2% post BMT, p=0.063). Increased NKI-1.16 binding was predominantly on CD2 positive, CD68 negative cells. After BMT there was no change in K562 killing (16.5 ± 15% pre, 15.5 ± 18% post) nor in the number expressing CD57 post BMT.

By increased killing of the NK resistant cell line (1.2 ± 0.9% pre BMT, 0 ± 7.2% post BMT, p=0.004) which was accompanied by increased NKI-1.16 binding (33.1 ± 13.8% pre, 50.3 ± 21.2% post BMT, p=0.063). Increased NKI-1.16 binding was predominantly on CD2 positive, CD68 negative cells. After BMT there was no change in K562 killing (16.5 ± 15% pre, 15.5 ± 18% post) nor in the number expressing CD57 post BMT.

Summary: The study investigated the recovery of murine lymphopoiesis following in vivo ablation with anti-L3T4 antibody. This was achieved by using multivariate flow cytometry to observe the recovery of spleen lymphocytes following the in vivo depletion of the L3T4 subset in mice injected with anti-L3T4 ascites. The study found that L3T4 subsets were ablated from about 30% of total spleen cells to undetectable levels within 3 hours and remained so for 2 weeks. Since L3T4 cells comprised ~70% of all T-cells, the study was surprised to observe that the latter did not differ in number from control values at 3 hours and at no later time did they decrease more than 15%. No changes in splenic weight, cellularity, or the LYT2 subset were detected that could account for the discrepancy between total THY1.2 cells and the corresponding T-cell subsets. No changes were noted in the number of IgG, ASIALO-GM1, and MAC-1 cells. By the third week following the initial depletion, L3T4 cells had recovered to 10% of total spleen cells and over the next two weeks increased slowly to about 20%. LYT2 cells were elevated at 4 and 5 weeks post ablation such that the LYT2 plus L3T4 subsets added up to the number of THY1.2 cells. Our results indicate that a considerable fraction of splenic progenitors are detected within the first two weeks following in vivo ablation of the L3T4 subset that remains undetected by monoclonal markers for L3T4 and LYT2.

Summary: The study investigated the recovery of murine lymphopoiesis following in vivo ablation with anti-L3T4 antibody. This was achieved by using multivariate flow cytometry to observe the recovery of spleen lymphocytes following the in vivo depletion of the L3T4 subset in mice injected with anti-L3T4 ascites. The study found that L3T4 subsets were ablated from about 30% of total spleen cells to undetectable levels within 3 hours and remained so for 2 weeks. Since L3T4 cells comprised ~70% of all T-cells, the study was surprised to observe that the latter did not differ in number from control values at 3 hours and at no later time did they decrease more than 15%. No changes in splenic weight, cellularity, or the LYT2 subset were detected that could account for the discrepancy between total THY1.2 cells and the corresponding T-cell subsets. No changes were noted in the number of IgG, ASIALO-GM1, and MAC-1 cells. By the third week following the initial depletion, L3T4 cells had recovered to 10% of total spleen cells and over the next two weeks increased slowly to about 20%. LYT2 cells were elevated at 4 and 5 weeks post ablation such that the LYT2 plus L3T4 subsets added up to the number of THY1.2 cells. Our results indicate that a considerable fraction of splenic progenitors are detected within the first two weeks following in vivo ablation of the L3T4 subset that remains undetected by monoclonal markers for L3T4 and LYT2.