Angular dependence of factorial moments in π^+/K^+p interactions at 250 GeV/c

EHS/NA22 Collaboration

Abstract

A sample of π^+p and K^+p non-diffractive interactions at $\sqrt{s} = 22$ GeV is used to investigate factorial multiplicity moments as a function of the CMS opening angle θ between particles. The angular dependence is very different for unlike-charge and like-charge particle combinations. For the latter, factorial moments increase with decreasing opening angle approximately as a power law. The θ dependence is stronger for central production-angle intervals than in the forward and backward regions. The predictions of the standard version of the FRITIOF model deviate strongly from the data, but including Bose-Einstein correlations leads to qualitative agreement.

1. Introduction

In recent years, much attention has been paid to the possible existence of dynamical density fluctuations of...
particles produced in high energy collisions \[1\]. Such fluctuations have indeed been observed experimentally (see \[2\] and references therein). The effect has become known under the term intermittency, defined \[3\] as a power-law rise of normalized factorial moments \(F_q\) of order \(q\) of the (charged) particle multiplicity \(n\),

\[
F_q = \left(\frac{n(n-1)\ldots(n-q+1)}{(n)^q} \right)
\]

as a function of decreasing size \(\delta\) of phase space cells:

\[
F_q(\delta) \sim \delta^{-\phi_q}.
\]

The positive powers \(\phi_q\) are known as intermittency indices.

The primary reasons for the interest in intermittency are, on the one hand, that current models of hadron production in hadronic collisions cannot reproduce the strength of the observed fluctuations and, on the other, that perturbative QCD itself turns out to be inherently intermittent.

The first studies were performed in the kinematical variables rapidity \(y\) or pseudo-rapidity \(\eta\), azimuthal angle \(\phi\) and transverse momentum \(p_T\). Later analyses \[4,5\] have indicated, that the squared four-momentum difference \(Q^2 = -(q_1 - q_2)^2\) or the invariant mass \(M_{inv} = \sqrt{Q^2 + 4m^2}\) of the particles are more suitable to isolate the effect.

Studies of factorial moments in terms of \(Q^2\) and \(M_{inv}\) \[4-7\] show, that correlations between like-charge particles and, consequently, Bose-Einstein (BE) correlations play a predominant role in the observed intermittency effect at small \(Q^2\) of \(M_{inv}\), while indications exist that QCD is responsible at larger \(Q^2\). However, detailed understanding of the intermittency phenomena is still lacking and experimental data for the \(F_q\) dependence are needed in variables sensitive to these details.

In perturbative QCD, the intermittency indices \(\phi_q\) are directly related to the anomalous dimension \(\gamma_0 = (3\alpha_s/2\pi)^{1/2}\) \[8-10\] and, therefore, to the running coupling constant \(\alpha_s\). In the same theoretical context, it has been argued \[9,10\] that the opening angle \(\theta\) between particles is a suitable and sensitive variable to analyse. It is, of course, closely related to \(Q\) (or \(M_{inv}\)).

The theoretical analysis in \[9,10\] is particularly applicable to hadron production in \(e^+e^-\) collisions. A proper interpretation of future \(e^+e^-\) data in a perturbative QCD framework requires, however, a good understanding of similar data from interactions which are not dominated by hard QCD effects.

In the present analysis we, therefore, investigate the opening-angle dependence of factorial moments in (soft) hadronic collisions. Use is made of the correlation (or density) strip integral method \[11\], a recent methodological improvement in the study of intermittency.

2. The data

The full experimental set-up of EHS, exposed to a positive meson enriched beam with momentum 250 GeV/c, is described in detail in \[12,13\]. It consists of an active vertex detector (Rapid Cycling Bubble Chamber filled with H2) and a down-stream two-lever-arm spectrometer. Tracks of secondary charged particles are reconstructed from hits in the wire and drift chambers of the spectrometer and from measurement in RCBC. The momentum resolution varies from \(1–2\)% for tracks reconstructed in RCBC, to \(1–2.5\)% for tracks reconstructed in the first lever arm and to 1.5% for tracks reconstructed in the full spectrometer.

An event is accepted for analysis if the measured and the reconstructed charge multiplicity is the same, charge balance is satisfied, no electron is detected among the secondary tracks and there are no badly reconstructed (and therefore rejected) tracks. The loss of events during measurement and reconstruction is corrected for by means of the topological cross section data \[13\]. Elastic events are excluded. Furthermore, an event is called single-diffractive and excluded from the sample if the total charge multiplicity is smaller than 8 and at least one of the positive tracks has \(|x_0| > 0.88\). After these cuts, the inelastic non-single-diffractive sample consists of 59 200 \(\pi^+p\) and \(K^+p\) events.

For momenta \(p_{lab} < 0.7\) GeV/c, the range in the bubble chamber and/or the change of track curvature is used for proton identification. In addition, a visual ionization scan has been performed for \(p_{lab} < 1.2\) GeV/c on the full \(K^+p\) and on 62% of the \(\pi^+p\) sample. A positive particle with \(p_{lab} > 150\) GeV/c is given the identity of the beam particle. Other particles with momenta \(p_{lab} > 1.2\) GeV/c are not identified in the present analysis and are treated as pions. The \(\pi^+p\) and
3. The method

The phase space variable used for the present analysis is the center of mass opening angle θ_{ij} between two particles:

$$\theta_{ij} = \arccos \left(\frac{\mathbf{p}_i \cdot \mathbf{p}_j}{|\mathbf{p}_i| |\mathbf{p}_j|} \right),$$

with \mathbf{p}_i and \mathbf{p}_j being the three-momenta of particles i and j. An angular distance measure for more than two particles is defined as:

$$\text{dist}(\mathbf{p}_{i_1}, \ldots, \mathbf{p}_{i_n}) = \max_{\text{all pairs } i_1,i_2} \theta_{i_1,i_2}.$$ (4)

In terms of the density strip integral, the numerator of F_q can be determined by counting, for each event, the number of q-tuples that have a pairwise angular opening smaller than a given value θ and then averaging.

![Fig. 1](image-url)
Fig. 1. Dependence of factorial moments of order $q = 2$ to $q = 5$ on the opening angle θ for various charge configurations.
over all events. Using the Heaviside unit step function \(\Theta \), this can mathematically be expressed as

\[
F_q(\theta) + \frac{1}{\text{norm}} \left\{ q! \sum_{i_1 < \ldots < i_q} \prod_{k_1,k_2} \Theta(\theta - \theta_{i_1,i_2}) \right\},
\]

where the factor \(q! \) takes into account the number of permutations within a \(q \)-tuple.

The normalization is obtained from "mixed" events constructed by random selection of tracks from different events in a track pool [5]. The multiplicity of a mixed event is taken to be a Poissonian random variable, thereby ensuring that no extra correlations are introduced. The mixed events are treated in the same way as real events. A correction factor is applied for the difference in average multiplicity of the Poissonian and the experimental distribution.

4. The results

In Fig. 1, the data for \(\ln F_q \) are plotted as a function of \(-\ln \theta \) for all charges combined and, separately, for positive, negative and unlike-charge particle combinations. Factorial moments are plotted for order \(q = 2 \)–\(5 \) in the four sub-figures, respectively. On the double logarithmic plot used, the increase should be linear if (2) was strictly applicable. For our data, this holds at most in limited \(\theta \) regions. Nevertheless, as a rough indication for the \(\theta \) dependence, intermittency indices \(\phi_q \) are given in column 4 of Table 1, as obtained from a fit by

\[
\ln F_q = a - \phi_q \ln \theta
\]

in the \(\theta \) range given in column 2 and indicated by arrows in Fig. 1.

From Fig. 1 and Table 1 it can be seen that:

(i) for all-negative particle combinations, the \(\ln F_q \) (for all orders) rise for all values of \(-\ln \theta \);

Table 1

<table>
<thead>
<tr>
<th>(q)</th>
<th>(\theta) range</th>
<th>Data</th>
<th>FRITIOF</th>
<th>FRITIOF + BE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(4^\circ < \theta < 47^\circ)</td>
<td>(++)</td>
<td>0.024 ± 0.004</td>
<td>-0.033 ± 0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+ -)</td>
<td>0.002 ± 0.003</td>
<td>-0.055 ± 0.003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(- -)</td>
<td>0.048 ± 0.006</td>
<td>-0.035 ± 0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cc)</td>
<td>0.018 ± 0.003</td>
<td>-0.044 ± 0.002</td>
</tr>
<tr>
<td>3</td>
<td>(7^\circ < \theta < 51^\circ)</td>
<td>(++ +)</td>
<td>0.08 ± 0.02</td>
<td>-0.18 ± 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+ - -)</td>
<td>-0.07 ± 0.01</td>
<td>-0.22 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(- - -)</td>
<td>-0.06 ± 0.02</td>
<td>-0.16 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ccc)</td>
<td>-0.01 ± 0.01</td>
<td>-0.19 ± 0.01</td>
</tr>
<tr>
<td>4</td>
<td>(18^\circ < \theta < 51^\circ)</td>
<td>(++ + +)</td>
<td>0.32 ± 0.10</td>
<td>-0.44 ± 0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++ + -)</td>
<td>-0.02 ± 0.06</td>
<td>-0.35 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++ - -)</td>
<td>-0.26 ± 0.06</td>
<td>-0.31 ± 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+ - - -)</td>
<td>0.02 ± 0.08</td>
<td>-0.26 ± 0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(- - - -)</td>
<td>0.95 ± 0.18</td>
<td>-0.68 ± 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cccc)</td>
<td>-0.05 ± 0.05</td>
<td>-0.31 ± 0.04</td>
</tr>
<tr>
<td>5</td>
<td>(27^\circ < \theta < 51^\circ)</td>
<td>(++ + + +)</td>
<td>0.6 ± 0.4</td>
<td>0.0 ± 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++ + + -)</td>
<td>-0.2 ± 0.2</td>
<td>-0.3 ± 0.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++ + - -)</td>
<td>-0.5 ± 0.2</td>
<td>-0.5 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(++ - - -)</td>
<td>-0.4 ± 0.2</td>
<td>-0.3 ± 0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(+ - - - -)</td>
<td>0.6 ± 0.4</td>
<td>-1.0 ± 0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(- - - - -)</td>
<td>1.8 ± 0.6</td>
<td>-1.9 ± 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(cccccc)</td>
<td>0.6 ± 0.4</td>
<td>-0.4 ± 0.2</td>
</tr>
</tbody>
</table>
(ii) for all-positive particle combinations, the F_q first decrease when $-\ln \theta$ increases, have a minimum and then increase for high $-\ln \theta$ values;

(iii) for mixed-charge combinations F_2 increases at high $-\ln \theta$, but no strong θ dependence is observed in the higher orders.

As in our previous analyses [4,5], we conclude that the rise of the factorial moments at small phase-space distances is caused by like-charge combinations, not only for $q=2$, but also for orders up to 5. The increase of F_2 at small distances for the $(+ -)$ combination is difficult to interpret because of contamination from Dalitz decay, γ conversions and η or η' decays.

A comparison of the data has been performed with the FRITIOF Monte Carlo model versions 2.0 [14] and 7.0 [15]. Events generated with these models are subject to the same selection criteria as the real data. Since version 2.0 is better tuned to our data [5] and the results obtained from both versions are very similar, we show the comparison for version 2.0. To include BE correlations, we use the algorithm developed for

FRITIOF 2.0

Fig. 2. Same as in Fig. 1, but for FRITIOF 2.0 without Bose–Einstein effect.
JETSET 7.3 [16] with exponential parametrisation\(^1\) in \(Q\) and measured parameters \(r\) and \(\lambda\) [5].

Fig. 2 and Fig. 3 show, respectively, the FRITIOF 2.0 predictions without and with BE correlations. The intermittency indices are given in columns 5 and 6 of Table 1.

FRITIOF without BE correlations (Fig. 2) strongly deviates from the data. FRITIOF with BE correlations (Fig. 3) can reproduce the rise of \(F_q\) but, as already noted in [16], the effect is overestimated, particularly for high-order factorial moments.

In a more differential analysis, we study the angular dependence of factorial moments in intervals of the CMS production angle \(\Theta_0\) defined as

\[
\Theta_0 = \arccos \left(\frac{\mathbf{p} \cdot \mathbf{p}_{\text{beam}}}{|\mathbf{p}| |\mathbf{p}_{\text{beam}}|} \right).
\]

Fig. 4 shows a strong \(\Theta_0\) dependence of the intermittency indices \(\phi_2\) and \(\phi_3\), with the largest values obtained in \(\Theta_0\) intervals close to 90°. For this \(\Theta_0\) region, the effect is even stronger in \(\Theta\) than in \(Q^2\) (not shown).

\(^1\) FRITIOF 2.0 with BE describes the shape of the \(Q^3\) dependence of the second order factorial moment, but overestimates the increase with increasing \(-\ln Q^2\) of the third order factorial moment [5].
Production Angle θ_0

For like-charge combinations, FRITIOF without BE correlations does not reproduce the data (dashed lines in Figs. 4a, 4b). Including BE effects in the model leads to reasonable agreement with the data (full lines in Fig. 4a, 4b).

5. Conclusions

In this paper we present the first results on the opening-angle dependence of factorial multiplicity moments F_q for various charge combinations. For like-charge particle combinations, the F_q rise with decreasing cms opening angle θ between particles, for $q = 2$–5. Only a weak dependence is observed for unlike-charge combinations. The intermittency indices ϕ_q depend strongly on the production angle θ_0 of the particles. For the region close to $\theta_0 = 90^\circ$, the dependence of factorial moments is even stronger in θ than in Q^2. The standard version of the Monte Carlo program FRITIOF is unable to reproduce the data. When Bose–Einstein correlations are included, the model reproduces the rise of the factorial moments, but the effect is overestimated in particular for higher orders. Because of its relevance in a perturbative-QCD treatment of intermittency, the angular variable would be particularly well suited for an analysis of e^+e^- data at LEP. A comparison to the present (soft) NA22 results might help in clarifying the importance of perturbative and non-perturbative contributions to hadron production in e^+e^- annihilation at high energies.

6. Acknowledgement

It is a pleasure to thank the EHS coordinator L. Montanet and the operating crews and staffs of the EHS, SPS and H2 beam, as well as the scanning and processing teams of our laboratories for their invaluable help with this experiment. We are grateful to the III. Physikalisches Institut B, RWTH Aachen, Germany, the DESY-Institut für Hoch-energiephysik, Berlin-Zeuthen, Germany, the Department of High Energy Physics, Helsinki University, Finland, and the University of Warsaw and Institute of Nuclear Problems, Poland for early contributions to this experiment. We, furthermore, would like to thank R. Peschanski and J.-
L. Meunier for clarifying discussions.
This work is part of the research programme of the "Stichting voor Fundamenteel Onderzoek der Materie (FOM)", which is financially supported by the "Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)".

We further thank NWO for support of this project within the program for subsistence to the former Soviet Union (07-13-038).

References

Angular dependence of factorial moments in π^+/K^+p interactions at 250 GeV/c

EHS/NA22 Collaboration

a Institute of Physics, AM-375036 Yerevan, Armenia
b Institute for High Energy Physics, RU-142284 Protvino, Russia
c University of Nijmegen and NIKHEF-H, NL-6525 ED Nijmegen, The Netherlands
d Department of Physics, Universitaire Instelling Antwerp, B-2610 Wilrijk and Inter-University Institute for High Energies, B-1050 Brussels, Belgium
e Institute of Physics and Nuclear Techniques of Academy of Mining and Metallurgy and Institute of Nuclear Physics, PL-30055 Krakow, Poland
f Centro Brasileiro de Pesquisas Físicas, 22290 Rio de Janeiro, Brazil
g Institute of High Energy Physics of Tbilisi State University, GE-380086 Tbilisi, Georgia
h Nuclear Physics Institute, Moscow State University, RU-119899 Moscow, Russia

Received 26 March 1994
Editor: L. Montanet

Abstract

A sample of π^+p and K^+p non-diffractive interactions at $\sqrt{s}=22$ GeV is used to investigate factorial multiplicity moments as a function of the CMS opening angle θ between particles. The angular dependence is very different for unlike-charge and like-charge particle combinations. For the latter, factorial moments increase with decreasing opening angle approximately as a power law. The θ dependence is stronger for central production-angle intervals than in the forward and backward regions. The predictions of the standard version of the FRITIOF model deviate strongly from the data, but including Bose–Einstein correlations leads to qualitative agreement.

1. Introduction

In recent years, much attention has been paid to the possible existence of dynamical density fluctuations of...
particles produced in high energy collisions [1]. Such fluctuations have indeed been observed experimentally (see [2] and references therein). The effect has become known under the term intermittency, defined as a power-law rise of normalized factorial moments \(F_q \) of order \(q \) of the (charged) particle multiplicity \(n \),

\[
F_q = \frac{(n(n-1) \ldots (n-q+1))}{(n)^q}
\]

as a function of decreasing size \(\delta \) of phase space cells:

\[
F_q(\delta) \sim \delta^{-\phi_q}.
\]

The positive powers \(\phi_q \) are known as intermittency indices.

The primary reasons for the interest in intermittency are, on the one hand, that current models of hadron production in hadronic collisions cannot reproduce the strength of the observed fluctuations and, on the other, that perturbative QCD itself turns out to be inherently intermittent.

The first studies were performed in the kinematical variables rapidity \(y \) or pseudo-rapidity \(\eta \), azimuthal angle \(\varphi \) and transverse momentum \(p_t \). Later analyses [4,5], have indicated, that the squared four-momentum difference \(Q^2 = -(q_1 - q_2)^2 \) or the invariant mass \(M_{inv} = (Q^2 + 4m^2)_{1/2} \) of the particles are more suitable to isolate the effect.

Studies of factorial moments in terms of \(Q^2 \) and \(M_{inv} \) [4–7] show, that correlations between like-charge particles and, consequently, Bose–Einstein (BE) correlations play a predominant role in the observed intermittency effect at small \(Q^2 \) of \(M_{inv} \), while indications exist that QCD is responsible at larger \(Q^2 \). However, detailed understanding of the intermittency phenomena is still lacking and experimental data for the \(F_q \) dependence are needed in variables sensitive to these details.

In perturbative QCD, the intermittency indices \(\phi_q \) are directly related to the anomalous dimension \(\gamma_0 = (3\alpha_s/2\pi)^{1/2} \) [8–10] and, therefore, to the running coupling constant \(\alpha_s \). In the same theoretical context, it has been argued [9,10] that the opening angle \(\theta \) between particles is a suitable and sensitive variable to analyse. It is, of course, closely related to \(Q \) (or \(M_{inv} \)). The theoretical analysis in [9,10] is particularly applicable to hadron production in \(e^+e^- \) collisions. A proper interpretation of future \(e^+e^- \) data in a perturbative QCD framework requires, however, a good understanding of similar data from interactions which are not dominated by hard QCD effects.

In the present analysis we, therefore, investigate the opening-angle dependence of factorial moments in (soft) hadronic collisions. Use is made of the correlation (or density) strip integral method [11], a recent methodological improvement in the study of intermittency.

2. The data

The full experimental set-up of EHS, exposed to a positive meson enriched beam with momentum 250 GeV/c, is described in detail in [12,13]. It consists of an active vertex detector (Rapid Cycling Bubble Chamber filled with H2) and a down-stream two-lever-arm spectrometer. Tracks of secondary charged particles are reconstructed from hits in the wire and drift chambers of the spectrometer and from measurement in RCBC. The momentum resolution varies from \((1–2\%) \) for tracks reconstructed in RCBC, to \((1–2.5\%) \) for tracks reconstructed in the first lever arm and to \(1.5\% \) for tracks reconstructed in the full spectrometer.

An event is accepted for analysis if the measured and the reconstructed charge multiplicity is the same, charge balance is satisfied, no electron is detected among the secondary tracks and there are no badly reconstructed (and therefore rejected) tracks. The loss of events during measurement and reconstruction is corrected for by means of the topological cross section data [13]. Elastic events are excluded. Furthermore, an event is called single-diffractive and excluded from the sample if the total charge multiplicity is smaller than 8 and at least one of the positive tracks has \(|x_\varphi| > 0.88 \). After these cuts, the inelastic non-single-diffractive sample consists of 59 200 \(\pi^+p \) and \(K^+p \) events.

For momenta \(p_{lab} < 0.7 \) GeV/c, the range in the bubble chamber and/or the change of track curvature is used for proton identification. In addition, a visual ionization scan has been performed for \(p_{lab} < 1.2 \) GeV/c on the full \(K^+p \) and on 62% of the \(\pi^+p \) sample. A positive particle with \(p_{lab} > 150 \) GeV/c is given the identity of the beam particle. Other particles with momenta \(p_{lab} > 1.2 \) GeV/c are not identified in the present analysis and are treated as pions. The \(\pi^+p \) and
K^+p samples are combined and only particles in the CMS rapidity window $-2 < y < 2$ are used.

3. The method

The phase space variable used for the present analysis is the center of mass opening angle θ_{ij} between two particles

$$\theta_{ij} = \arccos\left(\frac{p_i \cdot p_j}{|p_i||p_j|}\right),$$

with p_i and p_j being the three-momenta of particles i and j. An angular distance measure for more than two particles is defined as:

$$\text{dist}(p_{i1}, \ldots, p_{in}) = \max_{k_1,k_2} \theta_{i_k,i_{j}},$$

In terms of the density strip integral, the numerator of F_q can be determined by counting, for each event, the number of q-tuples that have a pairwise angular opening smaller than a given value θ and then averaging.

![Graphs showing the dependence of factorial moments of order $q = 2$ to $q = 5$ on the opening angle θ for various charge configurations.](image)

Fig. 1. Dependence of factorial moments of order $q = 2$ to $q = 5$ on the opening angle θ for various charge configurations.
over all events. Using the Heaviside unit step function \(\Theta \), this can mathematically be expressed as

\[
F_q(\theta) + \frac{1}{\text{norm}} \left(q! \sum_{i_1 < \cdots < i_q} \prod_{k_1,k_2} \Theta(\theta - \theta_{i_1,i_2}) \right),
\]

where the factor \(q! \) takes into account the number of permutations within a \(q \)-tuple.

The normalization is obtained from "mixed" events constructed by random selection of tracks from different events in a track pool [5]. The multiplicity of a mixed event is taken to be a Poissonian random variable, thereby ensuring that no extra correlations are introduced. The mixed events are treated in the same way as real events. A correction factor is applied for the difference in average multiplicity of the Poissonian and the experimental distribution.

4. The results

In Fig. 1, the data for \(\ln F_q \) are plotted as a function of \(-\ln \theta \) for all charges combined and, separately, for positive, negative and unlike-charge particle combinations. Factorial moments are plotted for order \(q = 2-5 \) in the four sub-figures, respectively. On the double logarithmic plot used, the increase should be linear if (2) was strictly applicable. For our data, this holds at most in limited \(\theta \) regions. Nevertheless, as a rough indication for the \(\theta \) dependence, intermittency indices \(\phi_q \) are given in column 4 of Table 1, as obtained from a fit by

\[
\ln F_q = a - \phi_q \ln \theta
\]

in the \(\theta \) range given in column 2 and indicated by arrows in Fig. 1.

From Fig. 1 and Table 1 it can be seen that:

(i) for all-negative particle combinations, the \(\ln F_q \) (for all orders) rise for all values of \(-\ln \theta \);

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\(q \) & \(\theta \) range & Data & FRITIOF & FRITIOF + BE \\
\hline
2 & \(4^\circ < \theta < 47^\circ \) & + + & 0.024 ± 0.004 & -0.033 ± 0.003 & 0.038 ± 0.003 \\
 & & + - & 0.002 ± 0.003 & -0.035 ± 0.003 & -0.067 ± 0.003 \\
 & & - - & 0.048 ± 0.006 & -0.035 ± 0.004 & 0.067 ± 0.004 \\
 & & cc & 0.018 ± 0.003 & -0.044 ± 0.002 & -0.011 ± 0.002 \\
3 & \(7^\circ < \theta < 51^\circ \) & + + + & 0.08 ± 0.02 & -0.18 ± 0.02 & 0.34 ± 0.03 \\
 & & + + - & -0.07 ± 0.01 & -0.22 ± 0.01 & -0.10 ± 0.01 \\
 & & + - - & -0.06 ± 0.02 & -0.16 ± 0.01 & -0.07 ± 0.01 \\
 & & - - - & 0.33 ± 0.03 & -0.17 ± 0.03 & 0.40 ± 0.03 \\
 & & ccc & -0.01 ± 0.01 & -0.19 ± 0.01 & 0.02 ± 0.01 \\
4 & \(18^\circ < \theta < 51^\circ \) & + + + + & 0.32 ± 0.10 & -0.44 ± 0.11 & 1.81 ± 0.16 \\
 & & + + + - & -0.02 ± 0.06 & -0.35 ± 0.05 & 0.00 ± 0.05 \\
 & & + + - - & -0.26 ± 0.06 & -0.31 ± 0.04 & -0.06 ± 0.04 \\
 & & + - - - & 0.02 ± 0.08 & -0.26 ± 0.07 & -0.01 ± 0.07 \\
 & & - - - - & 0.95 ± 0.18 & -0.68 ± 0.21 & 1.36 ± 0.19 \\
 & & cccc & -0.05 ± 0.05 & -0.31 ± 0.04 & 0.22 ± 0.05 \\
5 & \(27^\circ < \theta < 51^\circ \) & + + + + + & 0.6 ± 0.4 & 0.0 ± 0.6 & 4.4 ± 0.6 \\
 & & + + + + - & -0.2 ± 0.2 & -0.3 ± 0.3 & 0.6 ± 0.3 \\
 & & + + + - - & -0.5 ± 0.2 & -0.5 ± 0.2 & 0.2 ± 0.2 \\
 & & + + - - - & -0.4 ± 0.2 & -0.3 ± 0.2 & 0.2 ± 0.2 \\
 & & + - - - - & 0.6 ± 0.4 & -1.0 ± 0.4 & 0.9 ± 0.5 \\
 & & - - - - - & 1.8 ± 0.6 & -1.9 ± 2.0 & 3.4 ± 0.7 \\
 & & cccccc & 0.6 ± 0.4 & -0.4 ± 0.2 & 0.8 ± 0.2 \\
\hline
\end{tabular}
\caption{Intermittency indices \(\phi_q \) according to (6) for the various charge combinations.}
\end{table}
(ii) for all-positive particle combinations, the F_2 first
decrease when $-\ln \theta$ increases, have a minimum and
then increase for high $-\ln \theta$ values;
(iii) for mixed-charge combinations F_2 increases at
high $-\ln \theta$, but no strong θ dependence is observed in
the higher orders.

As in our previous analyses [4,5], we conclude that
the rise of the factorial moments at small phase-space
distances is caused by like-charge combinations, not
only for $q=2$, but also for orders up to 5. The increase
of F_2 at small distances for the $(+--)$ combination is
difficult to interpret because of contamination from
Dalitz decay, γ conversions and η or η' decays.

A comparison of the data has been performed with
the FRITIOF Monte Carlo model versions 2.0 [14]
and 7.0 [15]. Events generated with these models are
subject, to the same selection criteria as the real data.
Since version 2.0 is better tuned to our data [5] and
the results obtained from both versions are very similar,
we show the comparison for version 2.0. To include
BE correlations, we use the algorithm developed for
JETSET 7.3 [16] with exponential parametrization in Q and measured parameters r and λ [5].

Fig. 2 and Fig. 3 show, respectively, the FRITIOF 2.0 predictions without and with BE correlations. The intermittency indices are given in columns 5 and 6 of Table 1.

FRITIOF without BE correlations (Fig. 2) strongly deviates from the data. FRITIOF with BE correlations (Fig. 3) can reproduce the rise of F_n but, as already noted in [16], the effect is overestimated, particularly for high-order factorial moments.

In a more differential analysis, we study the angular dependence of factorial moments in intervals of the CMS production angle Θ_θ defined as

$$\Theta_\theta = \arccos\left(\frac{p \cdot p_{beam}}{|p||p_{beam}|}\right) .$$

(Fig. 4) shows a strong Θ_θ-dependence of the intermittency indices ϕ_2 and ϕ_3 with the largest values obtained in Θ_θ intervals close to 90°. For this Θ_θ region, the effect is even stronger in θ than in Q^2 (not shown).

1 FRITIOF 2.0 with BE describes the shape of the Q^2 dependence of the second order factorial moment, but overestimates the increase with increasing $-\ln Q^2$ of the third order factorial moment [5].
For like-charge combinations, FRITIOF without BE correlations does not reproduce the data (dashed lines in Figs. 4a, 4b). Including BE effects in the model leads to reasonable agreement with the data (full lines in Fig. 4a, 4b).

5. Conclusions

In this paper we present the first results on the opening-angle dependence of factorial multiplicity moments \(F_q \) for various charge combinations. For like-charge particle combinations, the \(F_q \) rise with decreasing cms opening angle \(\theta \) between particles, for \(q = 2 - 5 \). Only a weak dependence is observed for unlike-charge combinations. The intermittency indices \(\phi_q \) depend strongly on the production angle \(\theta_0 \) of the particles. For the region close to \(\theta_0 = 90^\circ \), the dependence of factorial moments is even stronger in \(\theta \) than in \(Q^2 \). The standard version of the Monte Carlo program FRITIOF is unable to reproduce the data. When Bose-Einstein correlations are included, the model reproduces the rise of the factorial moments, but the effect is overestimated in particular for higher orders. Because of its relevance in a perturbative-QCD treatment of intermittency, the angular variable would be particularly well suited for an analysis of \(e^+ e^- \) data at LEP. A comparison to the present (soft) NA22 results might help in clarifying the importance of perturbative and non-perturbative contributions to hadron production in \(e^+ e^- \) annihilation at high energies.

6. Acknowledgement

It is a pleasure to thank the EHS coordinator L. Montanet and the operating crews and staffs of the EHS, SPS and H2 beam, as well as the scanning and processing teams of our laboratories of their invaluable help with this experiment. We are grateful to the III. Physikalisches Institut B, RWTH Aachen, Germany, the DESY-Institut für Hoch-energiephysik, Berlin-Zeuthen, Germany, the Department of High Energy Physics, Helsinki University, Finland, and the University of Warsaw and Institute of Nuclear Problems, Poland for early contributions to this experiment. We, furthermore, would like to thank R. Peschanski and J.-
L. Meunier for clarifying discussions.

This work is part of the research programme of the "Stichting voor Fundamenteel Onderzoek der Materie (FOM)", which is financially supported by the "Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)".

We further thank NWO for support of this project within the program for subsistence to the former Soviet Union (07-13-038).

References