The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/25431

Please be advised that this information was generated on 2019-11-03 and may be subject to change.
Chimeric coxsackie B3 virus genomes that express hybrid coxsackievirus-poliovirus 2B proteins: functional dissection of structural domains involved in RNA replication

Frank J. M. van Kuppeveld, Patrick J. J. C. van den Hurk, Walter van der Vliet, Jochem M. D. Galama and Willem J. G. Melchers

Department of Medical Microbiology, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands

The 2B proteins of coxsackievirus and poliovirus (PV) share significant structural similarity and exhibit similar biochemical activities, namely inhibition of protein secretion and modification of membrane permeability. Both proteins contain two hydrophobic domains in the carboxy-terminal two-thirds of their sequence, of which one has the potential to form a cationic amphipathic α-helix. To gain more insight into the structural requirements of enterovirus protein 2B for its functioning in viral RNA replication, a chimeric cDNA approach was used. Chimeric coxsackie B3 virus (CBV3) genomes were constructed that expressed either the entire PV 2B protein or hybrid proteins in which specific segments of CBV3 2B were substituted by their corresponding PV counterparts. In vitro synthesis and processing of the chimeric polyproteins showed no abnormalities.

CBV3 genomes carrying the entire PV 2B gene failed to replicate. A chimeric genome that expressed a hybrid 2B protein consisting of the amino-terminal one-third of PV and the remainder of CBV3 yielded viable viruses. In contrast, a 2B protein consisting of the amino-terminal one-third of CBV3 and the remainder of PV failed to drive replication. These data imply that a sequence-specific interaction with another viral protein is required to drive RNA replication and suggest that the proposed sites of contact reside in the carboxy-terminal two-thirds of 2B. Hybrid genomes in which either the amphipathic α-helix or the other hydrophobic domain was replaced failed to replicate. The potential contribution of these domains to the structure and functioning of protein 2B are discussed.

Introduction

The genus Enterovirus of the family Picornaviridae, a large group of plus-strand RNA viruses, comprises polioviruses (PV), coxsackie A viruses, coxsackie B viruses (CBV), echoviruses, and several distinct enterovirus serotypes. These enteroviruses are closely related and share marked similarities with respect to virus structure, genomic organization and replicative cycle (Wimmer et al., 1993). The main differences between these viruses are expressed in the clinical syndromes they produce in humans, growth in particular cell lines, and the illness and pathology they produce in monkeys and suckling mice (Melnick, 1996). The differences in tropism are predominantly based on the ability to bind to specific receptors for cell entry, reflecting differences in the structural capsid proteins encoded by the P1 region of the genome, and the occurrence of host-specific cis-acting translational control elements in the genomic RNA (Agol et al., 1996; Racaniello, 1990).

The enteroviruses can be divided into seven clusters, based on properties of genotype and function (Hyypiä et al., 1997). CBV serotypes 1–6 and PV serotypes 1–3 fall into different clusters. The nonstructural proteins encoded by the P2 and P3 regions of the genomes of CBV and PV share 50 to 65 % amino acid identity. Despite the differences in primary sequence, there is a high degree of conservation of important structural domains and sequence motifs, suggesting that these proteins share similar functions in virus reproduction. Studies on the functional exchangeability of these proteins have provided experimental evidence for this suggestion. Chimeric PV genomes containing the coxsackie B3 virus (CBV3) counterpart of protein 3C(pro), a proteinase that is responsible for the majority of the processing events that give rise to the production of the nonstructural proteins, demonstrated correct processing of the PV P2 and P3 region proteins (Dewalt et al.,...
1989). In addition, PV genomes carrying CBV4 protein 2A is a multifunctional protein that acts as a proteinase, a transactivator of virus translation and as a component in viral RNA (vRNA) replication, gave rise to viable viruses (Lu et al., 1995).

Enterovirus protein 2B is a small hydrophobic protein that is localized at the outer surface of the membrane vesicles on which vRNA replication takes place (Bienz activator of virus translation and as a component in viral RNA phenotypes of 2B mutants of both PV and CBV3 have implied is localized at the outer surface of the membrane vesicles on which (vRNA) replication, gave rise to viable viruses (Lu et al., 1995). In addition, PV genomes carrying CBV4 protein 2ApI°, permeability and inhibit protein secretion has been confirmed domains for the ability of CBV3 2B to increase membrane effects on cellular membranes. Expression of the 2B proteins of both PV and CBV3 in mammalian cells caused a modification in permeability of the plasma membrane and inhibition of vesicular protein transport (Doedens & Kirkegaard, 1995; van Kuppeveld et al., 1997a, b). The exact function of this protein is not yet unclear but seems to be related to its effects on cellular membranes. Expression of the 2B proteins of both PV and CBV3 in mammalian cells caused a modification in permeability of the plasma membrane and inhibition of vesicular protein transport (Doedens & Kirkegaard, 1995; van Kuppeveld et al., 1997a, b). The interaction of enterovirus protein 2B with membranes is most likely provided by the two conserved hydrophobic domains, of which one has the potential to form a cationic amphipathic α-helix (van Kuppeveld et al., 1996a) and one (which will further be referred to as ‘the second hydrophobic domain’) shows characteristics typical of multimeric transmembrane helices (van Kuppeveld et al., 1995). The relevance of these domains for the ability of CBV3 2B to increase membrane permeability and inhibit protein secretion has been confirmed by individual expression of 2B proteins carrying mutations in these regions (van Kuppeveld et al., 1997a, b).

The aim of this study was to gain more insight into the structural requirements of enterovirus protein 2B for its function in virus reproduction. To this end, we have constructed chimeric CBV3 cDNAs that contained either the entire PV 2B protein or hybrid proteins in which specific segments of CBV3 protein 2B were substituted by the corresponding PV regions. The ability of PV 2B and the hybrid 2B proteins to drive vRNA replication and virus growth was assayed by transfection of cells with copy RNA transcripts of the chimeric cDNAs. Polypeptide synthesis and processing were studied by translation of RNA transcripts in a cell-free extract. The potential contribution of the distinct domains to the structure and function of protein 2B are discussed.

Methods

Construction of unique endonuclease restriction sites in pCB3/T7. For the introduction of PV sequences into plasmid pCB3/T7 (Klump et al., 1990), which contains a cDNA of CBV3 (strain Nancy) behind a T7 RNA polymerase promoter, unique restriction sites were introduced, either alone or in combination, by site-directed mutagenesis. Mutagenesis was performed with a subgenomic pALTER phagemid clone containing the EcoRV fragment of pCB3/T7 (nucleotide (nt) 918–6177) using the Altered Sites in vitro mutagenesis system according to the manufacturer’s instructions (Promega). The nucleotide sequence of the antisense synthetic oligonucleotides (Isogen Bioscience, The Netherlands) used for the introduction of unique restriction sites (underlined) immediately upstream or downstream of the 2B-encoding sequence were: 5′ TTCCACATCTCCCTAAGGGCCTGTTCCATTCATC 3′ (Shl site at nt 3743) and 5′ TTCTTAAAGGAGCAGTGTTAATTCGGGC TTCAAGGC 3′ (HpaI site at nt 4042). Nucleotide sequences of the oligonucleotides used for the introduction of unique restriction sites at 2B amino acids (aa) 57–59 are: 5′ TAGTTGGGCACTACAGTCAT CAGGGCTGCTTCCGGAGCAAATTTAATGCT 3′ (Accll site at nt 3913) and 5′ GATCGTCTCGTTAATGACC ACCAAGTTTACCGGG 3′ (HpaI site at nt 3915). Mutant pALTER clones were identified by restriction enzyme analysis. The nucleotide sequence of the mutant clones was verified by dyelexo chain-termination sequencing of plasmid DNA using the Ampli Cycle sequencing kit according to the manufacturer’s instructions (Perkin-Elmer). The unique restriction sites were introduced in pCB3/T7 by cloning of the 8B(I) (nt 2040)–8BIII (4238) fragments in plasmids from which the corresponding fragment was deleted. In this way, plasmids pCB3/T7-Shl(3743), pCB3/T7–HpaI(4042), pCB3/T7–HpaI(3915), pCB3/T7–Stul(3743)/HpaI(4042), pCB3/T7–Stul(3743)/HpaI(3915) and pCB3/T7–Accll(3913)/HpaI(4042) were generated.

Construction of chimeric cDNAs. Chimeric cDNAs were constructed by PCR amplification and cloning of PV 2B-encoding segments into pCB3/T7 plasmids from which the corresponding segment was deleted. Plasmid pXpA (generously provided by R. Andino, University of California), which contains a cDNA of PV type 1, was used as template for PCR. A total of four forward primers (F1–F4) and five reverse primers (r1–r5) containing restriction sites at their 5′ end (underlined) were used for amplifying PV sequences. PCR was performed using SuperTag DNA polymerase (HT Biotechnology) according to the manufacturer’s instructions. The chimeric cDNAs were named according to the corresponding CBV3 amino acids that were replaced by the corresponding residues of PV. The construction of each of the chimeric plasmids is briefly summarized: 2B/PV1–99; a DNA fragment containing the coding sequence of PV aa 1–99 was generated by PCR using primers Fl (5′ ATGGAAC TGCGGATCACAATTTACATA 3′; Avill site) and r1 (5′ CCAACTA AATTGGTGCAGTGACTAGTAA 3′; SpeI site), digested with Avill and SpeI, and cloned in pCB3/T7–Stul(3743)/HpaI(4042) from which the Stul–HpaI fragment was deleted.

2B/PV1-94; a DNA fragment containing the coding sequence of PV aa 1–94 was generated by PCR using primers F1 and r2 (5′ CCAACTA AATTGGTGCAGTGACTAGTAA 3′; SpeI site), digested with Avill and SpeI, and cloned in pCB3/T7–Stul(3743)/HpaI(4042) from which the Stul–HpaI fragment was deleted.

2B/PV1-30; a DNA fragment containing the coding sequence of PV aa 1–30 was generated by PCR using primers F1 and r3 (5′ GTGACTAGTGAATTGGTCAACTCTGTTAT 3′; SpeI site), digested with Avill and SpeI, and cloned in pCB3/T7–Stul(3743)/HpaI(4042) from which the Stul–HpaI fragment was deleted.

2B/PV1-59; a DNA fragment containing the coding sequence of PV aa 1–59 was generated by PCR using primers F1 and F4 (5′ TTTCTTAAGCCAGCTGTTAACTTGGCG−5′ TTCCACATCTCCCTAAGGGCCTGTTCCATTCATC 3′; HpaI site) and r1, digested with

...
AcII and Spel, and cloned in pCB3/T7-AcII(3913)/Hpal(4042) from which the AcII–Hpal fragment was deleted.

1BVP/60-94; a DNA fragment containing the coding sequence of PV at aa 34–59 was generated by PCR using primers f2 and r2, digested with AcII and Spel, and cloned in pCB3/T7-AcII(3913)/Hpal(4042) from which the AcII–Hpal fragment was deleted.

1BVP/34-59; a DNA fragment containing the coding sequence of PV at aa 34–59 was generated by PCR using primers f3 (5' AATTGTTGCTACCTGACCTACATGAA 3', Nhel site) and r4, digested with Nhel and Stul, and cloned in pCB3/T7-Hpal(3915) from which the SpeI (3837)–Hpal fragment was deleted. Due to the occurrence of a Nhel site in the amplicon, a Nhel site (compatible ends with SpeI) was build in the 5' end of primer f3. As result of this, valine 33 is altered to alanine.

1BVP/34-99; a DNA fragment containing the coding sequence of PV at aa 34–99 was generated by PCR using primers f3 and r1, digested with Nhel and Spel, and cloned in pCB3/T7-Hpal(4042) from which the SpeI (3837)–Hpal fragment was deleted. Due to the occurrence of a Nhel site rather than a SpeI site in primer f3 (see above), valine 33 is changed to alanine.

1BVP/34-94; a DNA fragment containing the coding sequence of PV at aa 34–94 was generated by PCR using primers f3 and r2, digested with Nhel and SpeI, and cloned in pCB3/T7-Hpal(4042) from which the SpeI (3837)–Hpal fragment was deleted. Due to the occurrence of a Nhel site rather than a SpeI site in primer f3 (see above), valine 33 is changed to alanine.

1BVP/37-54; a DNA fragment containing the coding sequence of PV at aa 37–54 was generated by PCR using primers f4 (5' GAG-TTGTCACTACTGGTGCAAGACACCCTACATAAGAATGCACTTAAAG-3'; SpeI site) and r5 (5' TTCTAAGGCTGCCACAAATTACTAGGAGGATATGATCTT-3'; Stul site), digested with SpeI and Stul, and cloned in pCB3/T7-Hpal(3915) from which the SpeI (3837)–Hpal fragment was deleted. Primer r5 was designed such that the SpeI site in the cloning target PV was changed to enter the SpeI site intact.

From all mutant constructs, the entire PV segment that was introduced was confirmed by sequence analysis.

Transfection of cells with copy RNA transcripts. In vitro transcription of Soll linearized plasmids by phage T7 RNA polymerase and transfection of 75% confluent Buffalo green monkey (BGM) cell monolayers with RNA transcripts (5 ug) using the DEAE-dextran method were performed as described previously (van Kuppeveld et al., 1995). After transfection, cells were fed with minimal essential medium (MEM) containing 10% foetal bovine serum (FBS) and incubated at either 33 or 36 °C.

Virus titrations. Virus titres were determined by endpoint titration as described previously (van Kuppeveld et al., 1995) and expressed in 50% tissue culture infective doses (TCID50) according to the method of Reed & Muench (1938).

Analysis of viral protein synthesis in vivo. Confluent BGM cell monolayers grown in 25 cm2 flasks (5 x 10⁶ cells) were infected with virus at an m.o.i. of 1 TCID50 per cell for 30 min at room temperature. The cells were fed with MEM containing 3% FBS and grown at 33, 36 or 39 °C. At various times post-infection, the cells were disrupted by three cycles of freezing and thawing, and the virus titres were determined.

Results

Construction of heterologous CBV3 CDNA

To allow the construction of chimeric CBV3 genomes, unique restriction sites were introduced, either alone or in combination, at the 2A/2B and 2B/2C junctions and within the 2B coding sequence of plasmid pCB3/T7. PV sequences were amplified by PCR and cloned in these constructs. PCR primers were designed such that no additional amino acid changes outside the substituted fragment were introduced. A total of ten chimeric constructs, schematically diagrammed in Fig. 1, was generated. In construct 2B/PV1-99, the complete 2B coding region of CBV3 was replaced by that of PV. In the other constructs, the amino-terminal region (i.e. the first 30–35 amino acids), the amphipathic α-helix, or the second hydrophobic domain were replaced, either alone or in combination, by their corresponding PV counterparts. Because the borders of the amphipathic α-helix are not known exactly, two different constructs (2B/PV34-59 and 2B/PV37-54) were generated.

In vitro translation reactions. Copy RNA transcripts were synthesized and translated in a single reaction using T7 Tnt rabbit reticulocyte lysate (Promega) supplemented with 20% (v/v) HeLa cell initiation factors (kindly provided by J. Flanegan, University of Florida). The translation reactions (20 µl) contained 0.5 µg of circular plasmid DNA and 20 µCi of Tran35S-label (a mixture of [35S]methionine and [35S]cysteine; ICN) and were incubated for 3 h at 30 °C. Translation products were analysed on an SDS–12.5% polyacrylamide gel (Laemmli, 1970). Gels were fixed, fluorographed and exposed to Kodak XAR film at —80 °C.

Sequence verification of virus. RNA extraction, synthesis of cDNA, amplification of the 2B coding region by PCR using primers 5' TGTGTGATTGGCATTGACCATGCGGGG 3' (nt 3648–3677) and 5' TGGGATGGCGCGCCGCTGTCGTC 3' (nt 4231–4254), purification of the PCR products, and sequence analysis with reverse primer 5' CCATCAATGAATTTCTG 3' (nt 4117–4134) were all performed as described previously (van Kuppeveld et al., 1996a).

In vitro translation reactions. Copy RNA transcripts were synthesized and translated in a single reaction using T7 Tnt rabbit reticulocyte lysate (Promega) supplemented with 20% (v/v) HeLa cell initiation factors (kindly provided by J. Flanegan, University of Florida). The translation reactions (20 µl) contained 0.5 µg of circular plasmid DNA and 20 µCi of Tran35S-label (a mixture of [35S]methionine and [35S]cysteine; ICN) and were incubated for 3 h at 30 °C. Translation products were analysed on an SDS–12.5% polyacrylamide gel (Laemmli, 1970). Gels were fixed, fluorographed and exposed to Kodak XAR film at —80 °C.

Sequence verification of virus. RNA extraction, synthesis of cDNA, amplification of the 2B coding region by PCR using primers 5' TGTGTGATTGGCATTGACCATGCGGGG 3' (nt 3648–3677) and 5' TGGGATGGCGCGCCGCTGTCGTC 3' (nt 4231–4254), purification of the PCR products, and sequence analysis with reverse primer 5' CCATCAATGAATTTCTG 3' (nt 4117–4134) were all performed as described previously (van Kuppeveld et al., 1996a).

Virus titrations. Virus titres were determined by endpoint titration as described previously (van Kuppeveld et al., 1995) and expressed in 50% tissue culture infective doses (TCID50) according to the method of Reed & Muench (1938).

Single-cycle growth analysis. Confluent BGM cell monolayers grown in 25 cm2 flasks (5 x 10⁶ cells) were infected with virus at an m.o.i. of 1 TCID50 per cell for 30 min at room temperature. The cells were fed with MEM containing 3% FBS and grown at 33, 36 or 39 °C. At various times post-infection, the cells were disrupted by three cycles of freezing and thawing, and the virus titres were determined.

Analysis of viral protein synthesis in vivo. Confluent monolayers of BGM cells were infected with virus at an m.o.i. of 25 for 30 min at room temperature. After infection, cells were fed with MEM containing 3% FBS and grown at 36 °C. At various times post-infection, the cells were washed with PBS and incubated in methionine- and serum-free MEM (Gibco) containing 10 µCi of Tran35S-label for 30 min. Lysis of cells and analysis of the [35S]methionine-labelled proteins by SDS–PAGE were performed as previously described (van Kuppeveld et al., 1995).

To allow the construction of chimeric CBV3 genomes, unique restriction sites were introduced, either alone or in combination, at the 2A/2B and 2B/2C junctions and within the 2B coding sequence of plasmid pCB3/T7. PV sequences were amplified by PCR and cloned in these constructs. PCR primers were designed such that no additional amino acid changes outside the substituted fragment were introduced. A total of ten chimeric constructs, schematically diagrammed in Fig. 1, was generated. In construct 2B/PV1-99, the complete 2B coding region of CBV3 was replaced by that of PV. In the other constructs, the amino-terminal region (i.e. the first 30–35 amino acids), the amphipathic α-helix, or the second hydrophobic domain were replaced, either alone or in combination, by their corresponding PV counterparts. Because the borders of the amphipathic α-helix are not known exactly, two different constructs (2B/PV34-59 and 2B/PV37-54) were generated. Constructs 2B/PV1-99, 2B/PV60-99 and 2B/PV34-99 contained at the P4 position of the 2B/2C cleavage site a valine.

CBV3 genomes that express hybrid CBV3–PV 2B proteins

In vitro translation reactions. Copy RNA transcripts were synthesized and translated in a single reaction using T7 Tnt rabbit reticulocyte lysate (Promega) supplemented with 20% (v/v) HeLa cell initiation factors (kindly provided by J. Flanegan, University of Florida). The translation reactions (20 µl) contained 0.5 µg of circular plasmid DNA and 20 µCi of Tran35S-label (a mixture of [35S]methionine and [35S]cysteine; ICN) and were incubated for 3 h at 30 °C. Translation products were analysed on an SDS–12.5% polyacrylamide gel (Laemmli, 1970). Gels were fixed, fluorographed and exposed to Kodak XAR film at —80 °C.
Viability of chimeric CBV3 genomes

To examine whether PV protein 2B and the hybrid PV–CBV3 2B proteins could functionally replace the 2B protein of CBV3 in vivo, BGM cells were transfected with in vitro synthesized RNA transcripts from wild-type pCB3/T7 and the chimeric constructs. Four transfections were performed for each construct. Two transfected cell cultures were grown at 33 °C and two were grown at 36 °C. If no virus growth was observed after 5 days, the cultures were subjected to three cycles of freezing and thawing, and passed to fresh cell cultures, which were incubated for an additional 3 days.

Transfection of cells with RNA transcripts derived from the wild-type plasmid gave complete CPE within 2 days. RNA transcripts from construct 2B/PV1-30 produced CPE in all transfected cell cultures at 5 days post-transfection. Sequence analysis of the 2B coding region of this virus (vCB3-2B/PV1-30) showed that the introduced PV segment was retained and that no other mutations had occurred. No CPE was observed in any of the cell cultures that were transfected with RNA of the other chimeras. Passage of cytoplasmic extracts to fresh BGM cell monolayers also failed to reveal virus growth.

Analysis of vRNA replication

To examine whether the reduced growth of vCB3-2B/PV1-30 and the nonviability of the other chimeric genomes were
due to a defect in vRNA replication, a dot blot hybridization was performed. BGM cells were transfected with in vitro synthesized copy RNA transcripts and at various times post-transfection total cellular RNA was isolated, denatured, immobilized on nylon membranes and hybridized with a [\alpha-^{32}P]dATP-labelled CBV3 cDNA probe. Fig. 3 shows that there was no detectable vRNA synthesis in cells transfected with any of the nonviable chimeras. From the hybridization signals obtained with construct 2B/PV1-30 it is evident that vRNA synthesis is delayed.

Discussion

The construction of chimeric viral genomes is a suitable approach to dissect multiple functions of specific genetic elements. Hybrid picornavirus genomes have provided interesting information on the occurrence of independent functional domains essential for virus replication and translation in both the 5' nontranslated region (Alexander et al., 1994; Rohll et al., 1994; Xiang et al., 1995) and nonstructural protein 2Apro (Lu et al., 1995). We have employed a chimeric cDNA approach to dissect the structural requirements of enterovirus protein 2B for its functioning in vRNA replication.

Chimeric CBV3 genomes were constructed that expressed either the entire PV 2B protein, which is 50% homologous to the 2B protein of CBV3, or hybrid proteins in which specific structural elements of CBV3 2B were substituted by their PV counterparts. All hybrid polyproteins were efficiently synthesized and correctly processed. Defects in vRNA replication are therefore primarily attributable to impaired functioning of the 2B protein.

A chimeric CBV3 genome that expressed the entire PV 2B...
Fig. 4. In vitro translation of wild-type and mutant RNAs in a cell-free extract. RNA transcripts were synthesized and translated in TnT rabbit reticulocyte lysate, a coupled transcription/translation system, supplemented with HeLa cell initiation factors. Reactions were programmed with 0.5 μg of circular plasmid DNA and incubated for 3 h at 30 °C. The [35S]methionine-labelled translation products were analysed on an SDS–12.5% polyacrylamide gel. An extract from wild-type virus-infected cells, labelled with [35S]methionine at 4 h post-infection, was used as marker (lane 'vivo').

pulse labeling after (hours)

Fig. 5. Protein synthesis in wild-type virus- and vCB3-2B/PV1-30-infected cells. BGM cells were infected at a multiplicity of 25 TCID50 per cell and grown at 36 °C. At the indicated times post-infection, cells were radioactively labelled in 30 min pulses with [35S]methionine. Cellular extracts were prepared and analysed on an SDS–12.5% polyacrylamide gel.

protein failed to replicate. That PV 2B cannot functionally replace CBV3 2B is remarkable because these proteins are endowed with the same biochemical activities. Expression in mammalian cells of the 2B proteins of both PV (Doedens & Kirkegaard, 1995) and CBV3 (van Kuppeveld et al., 1997a, b) results in modification of plasma membrane permeability and inhibition of protein secretion. Modification of membrane permeability is also observed when these 2B proteins are expressed in E. coli cells (Lama & Carrasco, 1992; F. J. M. van Kuppeveld & W. J. G. Melchers, unpublished results). The
exchangeability of the 2Apro and 3CDpro proteins of PV with those of CBVs (Dewalt et al., 1989; Lu et al., 1995) and the overall similarity in structure of the nonstructural enterovirus proteins are further indicative of a conservation of the functions of these proteins. Alternative explanations for the non-exchangeability of protein 2B must therefore be considered. A possible cause for the defect in vRNA replication of this chimera may be the heterologous nature of protein 2BC, a relatively stable processing intermediate that is required for the induction of the membrane vesicles on which vRNA amplification takes place (Barco & Carrasco, 1995; Bienz et al., 1983). Impaired functioning of a heterologous precursor protein was also observed with PV chimeras that contained 3CDpro of either human rhinovirus 14 or CBV3. These 3C proteinases were able to cleave the non-structural precursor polypeptides, but the hybrid 3CDpro proteins were unable to process the PV capsid proteins (Dewalt et al., 1989). Another possible explanation for the inability of PV 2B to drive vRNA synthesis may be a failure to recognize and contact other CBV3 replication proteins. Thus, apart from its ability to modify membrane permeability and inhibit protein secretion, protein 2B may play a direct role in vRNA replication in which interactions with other viral proteins are essential. This suggestion is consistent with the existence of mutations that interfere with vRNA replication but that do not impair the ability of 2B to increase membrane permeability or inhibit protein secretion (van Kuppeveld et al., 1997a).

Only one of the hybrid 2B proteins was functional in vRNA replication. This hybrid protein (2B/PV1-30) contained the amino-terminal one-third of PV 2B, i.e. the region upstream of the hydrophobic domains, and the remainder of CBV3 2B. Remarkably, a hybrid protein that contained the amino-terminal one-third of CBV3 2B and the remainder of PV 2B (2B/PV34-99) was non-functional. The loss of activity of this protein may be due to a general disruption of the structure of either 2B or 2BC. However, this possibility seems unlikely in view of the correct functioning of protein 2B/PV1-30. The explanation that the carboxy-terminal two-thirds of the protein contains the sequence-specific determinants required for an intramolecular interaction with 2C (in precursor 2BC) or for intermolecular contacts with other viral replication proteins seems more plausible and is in agreement with the non-functioning of PV 2B in vRNA replication, as discussed above.

Hybrid genomes that contained the cationic amphipathic α-helix of PV 2B (2B/PV34-59, 2B/PV37-54, 2B/PV1-59) failed to replicate. This is in agreement with the previously described defect in vRNA replication of 2B-bomII, a chimeric CBV3 genome that produced a 2B protein in which the cationic amphipathic helix was replaced with a similar motif of the lytic peptide bombolin II (van Kuppeveld et al., 1996a). The amphipathic helix motif in CBV3 2B is a major determinant for the ability to modify membrane permeability and inhibit protein secretion (van Kuppeveld et al., 1997a, b). The occurrence of such a motif is characteristic for membrane-disrupting proteins. Two models of action have been proposed to explain the membrane-perturbing activities of these proteins (Bernheimer & Rudy, 1986; Shai, 1995). According to the first model, the amphipathic helix lies collateral to the membrane and inserts a few Ångstroms into it, thereby making the membrane phospholipids more susceptible to degradation by phospholipases. The second model suggests that the amphipathic helices form aqueous pores by spanning the membrane and forming oligomers, exposing their hydrophobic faces to the lipid bilayer and their hydrophilic faces forming the aqueous interior. The non-exchangeability of the amphipathic helix argues against an independent role (i.e. the first model) of this domain in the structure and function of 2B. The reason for the non-functioning of these hybrid 2B proteins is unknown. A possible explanation is that the amphipathic helix and the second hydrophobic domain of CBV3 2B are cooperatively involved in the formation of membrane-integral pores. Disturbances of contacts between these two domains may also account for the nonviability of the constructs that contained the amphipathic helix of CBV3 2B but the second hydrophobic domain of PV 2B (2B/PV60-99, 2B/PV60-94). Alternatively, the non-functioning of these hybrid proteins may be due to general disruption of 2B structures.

In conclusion, these studies have allowed us to separate the contribution of distinct domains to the function of protein 2B in vRNA replication. We have shown that the amino-terminal one-third of CBV3 2B, but not the middle one-third or the carboxy-terminal one-third of the protein, neither alone nor in combination, can be functionally replaced with its PV counterpart. In contrast to the carboxy-terminal two-thirds of the protein, the role of the amino-terminal region in the function of 2B protein is yet unclear. Mutations in this region caused defects in vRNA replication (Johnson & Sarnow, 1991), but did not interfere with the ability of protein 2B to inhibit protein secretion (van Kuppeveld et al., 1997a). Recently, it has been shown that deletion of the first 30 amino acids of protein 2B abolished the ability of PV protein 2BC to induce membrane proliferation and to interfere with the exocytic pathway in yeast cells (Barco & Carrasco, 1995). The importance of this region for a function of protein 2B, or 2BC, in mammalian cells awaits further investigation.

This research was partly supported by a grant from the European Community (INTAS/RFBR no. 01365196).

References

CBV3 genomes that express hybrid CBV3–PV 2B proteins

Received 30 January 1997; Accepted 30 April 1997.