Wooden Sticks as the Source of a Pseudoepidemic of Infection with Rhizopus microsporus var. rhizopodiformis among Immunocompromised Patients

PAUL E. VERWEIJ,1,* ANDREAS VOSS,1 J. PETER DONNELLY,2 BEN E. DE PAUW,2 AND JACQUES F. G. M. MEIS1

Department of Medical Microbiology1 and Division of Hematology2, University Hospital Nijmegen, Nijmegen, The Netherlands

Received 17 March 1997/Returned for modification 23 April 1997/Accepted 30 May 1997

Wooden sticks used to suspend feces obtained for surveillance cultures were found to be the source of Rhizopus microsporus var. rhizopodiformis causing a pseudo-outbreak among 17 immunocompromised patients cared for in three different wards. Nonsterile wooden products should therefore not be used for collecting, handling, and processing specimens for microbiological examination.

Nosocomial infections caused by Rhizopus microsporus are infrequently reported (6, 7), and among the four varieties known, only R. microsporus var. microsporus and R. microsporus var. rhizopodiformis have been reported to cause infections in humans. A recently reported outbreak of cutaneous infection by R. microsporus among four preterm infants has drawn attention to the risks of using wooden devices infested with fungal spores in clinical practice (5). The source of that infection by R. microsporus var. microsporus has been traced to wooden tongue depressors which were used as splints for intravenous and arterial cannulation sites. We report here a pseudo-outbreak of intestinal colonization with R. microsporus var. rhizopodiformis among immunocompromised patients which was shown to have been due to laboratory contamination only by full identification of the fungus to species level and variety.

Description of the outbreak. Between July and November 1996, R. microsporus var. rhizopodiformis was cultured from the fecal samples that had been obtained for surveillance from 17 immunocompromised patients (Table 1). The first patient had been nursed in hematology unit I, where he had received cytotoxic treatment for non-Hodgkin lymphoma. The organism was cultured from a single fecal specimen after bone marrow recovery. The fungus was then cultured from the feces of a patient in the pediatric oncology ward and from another unopened packet (Fig. 1). The sticks were therefore immediately withdrawn from use, and since then, there have been no further positive fecal samples.

Culture techniques and mycology. Fecal samples were obtained for routine surveillance twice weekly from all patients expected to become neutropenic after receiving cytotoxic chemotherapy for hematological malignancy. A loopful of fecal material was suspended in 5 ml of sterile saline and allowed to settle for 10 min. Specimens of various foodstuffs, including bread, biscuits, preserves, and condiments, were obtained from the wards and homogenized in sterile saline. Ten microliters of the suspension (1 mg/kg of body weight per day) was started empirically. Invasive zygomycosis due to R. microsporus was seriously considered after the fungus was cultured a second time from this patient’s feces. After the third case (Table 1, patient 4) had been identified in the hematology unit I within 15 days of the first positive culture, a thorough review of the cases was undertaken, but no explanation for the apparent outbreak was found. The outbreak seemed to subside in August, as only one additional case was identified in hematology unit I. However, in October and November, R. microsporus was recovered once more from the feces of a further four patients in hematology unit I (Table 1, patients 9 to 12), four patients in the pediatric oncology ward (patients 13 to 16), and one patient in hematology ward II (patient 17). Sporadic cases had also been observed in these departments previously (patients 2, 6, and 8, respectively). R. microsporus var. rhizopodiformis was cultured from a single fecal sample in all but two cases (Table 1) but not from any other clinical material. Nor was there any evidence of a defined fungal infection. Furthermore, all the specimens were processed in the same section of the laboratory, suggesting that this was, in fact, a pseudo-outbreak caused by laboratory contamination.

An extensive investigation of laboratory procedures was therefore undertaken, and suspicion fell upon the wooden sticks used to suspend fecal material in sterile saline before plating out for culture. This suspicion was confirmed when R. microsporus var. rhizopodiformis was cultured from sawdust collected from the packet that had been used during the pseudo-outbreak as well as directly from a sample of wooden sticks from another unopened packet (Fig. 1). The sticks were therefore immediately withdrawn from use, and since then, there have been no further positive fecal samples.

Culture techniques and mycology. Fecal samples were obtained for routine surveillance twice weekly from all patients expected to become neutropenic after receiving cytotoxic chemotherapy for hematological malignancy. A loopful of fecal material was suspended in 5 ml of sterile saline and allowed to settle for 10 min. Specimens of various foodstuffs, including bread, biscuits, preserves, and condiments, were obtained from the wards and homogenized in sterile saline. Ten microliters of the suspension (1 mg/kg of body weight per day) was started empirically. Invasive zygomycosis due to R. microsporus was seriously considered after the fungus was cultured a second time from this patient’s feces. After the third case (Table 1, patient 4) had been identified in the hematology unit I within 15 days of the first positive culture, a thorough review of the cases was undertaken, but no explanation for the apparent outbreak was found. The outbreak seemed to subside in August, as only one additional case was identified in hematology unit I. However, in October and November, R. microsporus was recovered once more from the feces of a further four patients in hematology unit I (Table 1, patients 9 to 12), four patients in the pediatric oncology ward (patients 13 to 16), and one patient in hematology ward II (patient 17). Sporadic cases had also been observed in these departments previously (patients 2, 6, and 8, respectively). R. microsporus var. rhizopodiformis was cultured from a single fecal sample in all but two cases (Table 1) but not from any other clinical material. Nor was there any evidence of a defined fungal infection. Furthermore, all the specimens were processed in the same section of the laboratory, suggesting that this was, in fact, a pseudo-outbreak caused by laboratory contamination.

An extensive investigation of laboratory procedures was therefore undertaken, and suspicion fell upon the wooden sticks used to suspend fecal material in sterile saline before plating out for culture. This suspicion was confirmed when R. microsporus var. rhizopodiformis was cultured from sawdust collected from the packet that had been used during the pseudo-outbreak as well as directly from a sample of wooden sticks from another unopened packet (Fig. 1). The sticks were therefore immediately withdrawn from use, and since then, there have been no further positive fecal samples.

Culture techniques and mycology. Fecal samples were obtained for routine surveillance twice weekly from all patients expected to become neutropenic after receiving cytotoxic chemotherapy for hematological malignancy. A loopful of fecal material was suspended in 5 ml of sterile saline and allowed to settle for 10 min. Specimens of various foodstuffs, including bread, biscuits, preserves, and condiments, were obtained from the wards and homogenized in sterile saline. Ten microliters of the suspension (1 mg/kg of body weight per day) was started empirically. Invasive zygomycosis due to R. microsporus was seriously considered after the fungus was cultured a second time from this patient’s feces. After the third case (Table 1, patient 4) had been identified in the hematology unit I within 15 days of the first positive culture, a thorough review of the cases was undertaken, but no explanation for the apparent outbreak was found. The outbreak seemed to subside in August, as only one additional case was identified in hematology unit I. However, in October and November, R. microsporus was recovered once more from the feces of a further four patients in hematology unit I (Table 1, patients 9 to 12), four patients in the pediatric oncology ward (patients 13 to 16), and one patient in hematology ward II (patient 17). Sporadic cases had also been observed in these departments previously (patients 2, 6, and 8, respectively). R. microsporus var. rhizopodiformis was cultured from a single fecal sample in all but two cases (Table 1) but not from any other clinical material. Nor was there any evidence of a defined fungal infection. Furthermore, all the specimens were processed in the same section of the laboratory, suggesting that this was, in fact, a pseudo-outbreak caused by laboratory contamination.

An extensive investigation of laboratory procedures was therefore undertaken, and suspicion fell upon the wooden sticks used to suspend fecal material in sterile saline before plating out for culture. This suspicion was confirmed when R. microsporus var. rhizopodiformis was cultured from sawdust collected from the packet that had been used during the pseudo-outbreak as well as directly from a sample of wooden sticks from another unopened packet (Fig. 1). The sticks were therefore immediately withdrawn from use, and since then, there have been no further positive fecal samples.
sporangiophores bore elongated collemulate, brown, spherical sporangia filled with sporangiophores, consistent with *Rhizopus microsporus var. rhizopodiformis*. The fungus also grew at 50°C, which differentiates it from *R. microsporus var. microsporus*.

We were initially afraid that we might have been experiencing an outbreak among some of our most vulnerable patients, particularly as a single strain that probably originated from a single source was involved. However, the temporal clustering of *Rhizopus* cultures and the distribution of positive specimens among three different departments located in two separate buildings were the most important clues that we were dealing with a pseudoepidemic. Moreover, the fungus was found only in fecal material, and although *Rhizopus* species are known to cause fatal gastrointestinal infection, the presence of the fungus in stools is more likely to reflect ingestion of spores or contamination rather than invasive disease (4, 8). Also, although one patient received antifungal treatment following the isolation of the fungus, there was no reason to suspect fungal infection in the other cases.

Rhizopus species have also been cultured from elastoplast bandages (7) and a cotton stockinette with a pseudoepidemic. Moreover, the fungus was found only from a single source was involved. However, the temporal clustering of *Rhizopus* cultures and the distribution of positive specimens among three different departments located in two separate buildings were the most important clues that we were dealing with a pseudoepidemic. Moreover, the fungus was found only in fecal material, and although *Rhizopus* species are known to cause fatal gastrointestinal infection, the presence of the fungus in stools is more likely to reflect ingestion of spores or contamination rather than invasive disease (4, 8). Also, although one patient received antifungal treatment following the isolation of the fungus, there was no reason to suspect fungal infection in the other cases. *Rhizopus* species have also been cultured from elastoplast bandages (7) and a cotton stockinette (2) which had been in direct contact with the skin and had caused invasive cutaneous infections. This fungus therefore may be ubiquitous on materials originating from plants. The wooden sticks that we used were imported originally from China, where conditions favorable for growth of this organism are present.

Pseudoepidemics involving molds are rare (1, 9), but one such outbreak also involving *Rhizopus* species was traced to wooden tongue depressors used for collecting fecal specimens (1). In our case, suspensions of feces almost certainly became contaminated during processing in the laboratory as a result of using contaminated wooden sticks. Thus, the use of wooden products of any type should also be avoided when processing specimens for culture in the laboratory, especially as the microbiological quality of wood is difficult to control and sterilization by autoclaving may fail (3). Only sterilized or near-sterile alternatives such as plastic should be used, especially when dealing with clinical material from patients with compromised host defenses.

We thank Antonius J. M. M. Rijks and Ilse Breuker for excellent technical assistance.

REFERENCES

