The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/25123

Please be advised that this information was generated on 2020-04-01 and may be subject to change.
Antiperinuclear factors are present in polyarthritis before ACR criteria for rheumatoid arthritis are fulfilled

We were interested in the study by Berthelot and colleagues, in which they studied the predictive value of the antiperinuclear factor (APF) for rheumatoid arthritis. The authors concluded that APFs are useful in the diagnosis of early rheumatoid arthritis. They mentioned that recognition of the true value of APF has long been hindered by methodological errors. Serum samples were only diluted 1:5 or 1:10, even though the APF titre can reach 1:20 000 in rheumatoid arthritis serum samples and is usually above 1:200.

We would like to make some comments especially concerning the method they used. The method used differs not only in the dilution of the serum samples, for screening 1:100 and if positive they were further diluted 1:1000, 1:5000, to determine the 200 point titre, but it differs also in the way of regarding the positivity of the tests. They refer to their study published in 1990, in which a dilution of 1:80 is used. In 1990 Westgeest et al described for the first time the influence of serum dilution on findings of the APF prevalence in rheumatoid arthritis (RA). So authors of the study on an interlaboratory variability test for RA (1993) from the representing laboratories in Amsterdam, Brest, Gent, and Nijmegen came together to discuss their different methods for the APF determination and to reach a standard protocol. This protocol was used for a quantitative assessment of the method, using the WHO standard rheumatoid arthritis serum as a reference serum. The results of coded serum samples from five separate laboratories were blindly tested in the five laboratories. The methods used were not harmonised. Four laboratories defined the titre of a serum by the highest dilution, which gave a clearly positive result, while the laboratory in Brest, to which Berthelot and colleagues also refer, also considered the percentage of cells that were stained. The results of the five laboratories showed only small interlaboratory variations. The interlaboratory variations were again reduced by comparison with the results with the WHO standard rheumatoid arthritis serum and thereby expressing the results in IU instead of litres, this study is not mentioned in Dr Berthelot's study. So linked to the uniformity of the results, we think that the value of the APF is not hindered by the method. In our longitudinal evaluation during methotrexate and azathioprine treatment for RA, the highest APF titre was 1:640. In the study by Berthelot et al the APF titre can reach 1:20 000 in rheumatoid arthritis serum samples.

Did Berthelot and colleagues use another method than that they used in the interlaboratory study?
LETTER

rhG-CSF resistant neutropenia in SLE

Suppression of the haematopoietic system, especially of the myeloid lineage, is a severe complication of systemic lupus erythematosus (SLE). In a recent report Euler et al suggested rhG-CSF as an effective treatment of neutropenia during SLE, especially during infection resistant to antibiotic treatment. We present a case of a girl with SLE whose neutropenia did not respond to rhG-CSF and who subsequently succumbed to unreatable fungal sepsis.

A previously healthy 9.5 year old girl developed SLE presenting with six of 11 criteria of the American College of Rheumatology including butterfly rash, oral ulcers, arthritis, and serositis. Laboratory investigations demonstrated ANA+, anti-dsDNA+, hypocomplementaemia, but normal white blood cell count. Eight months after initial remission she had a relapse, presenting with neutropenia (660 neutrophils/μl, 800 lymphocytes/μl) and signs of nephritis. Bone marrow biopsy examination showed a general suppression of all myeloid lineages including megakaryocytes but showed a relative increase of the red blood cell lineage. Over the next months neutropenia was resistant to several pulses of intravenous methylprednisolone therapy (250 mg/day), to cyclophosphamide intravenous pulse treatment (500 mg/m²), and to intravenous IgG therapy (2 g/kg). Because of the prolonged increase in serum transaminase activities the cyclophosphamide pulse therapy was interrupted and the immunosuppression was changed to a combination of oral prednisone, azathioprine, and cyclosporine A, which slightly diminished disease activity but had no influence on neutropenia. A second bone marrow biopsy examination gave a similar result as described above. After two months the girl was admitted to hospital presenting with signs of sepsis and went into a coma and developed a progressive respiratory insufficiency. Thoracic and cranial computed tomography and nuclear magnetic resonance showed several abscess-like infiltrates in both lungs and brain. Antibiotic treatment, including amphotericin-B, was ineffective despite detection of aspergillus fumigatus infection by blood cultures. On the assumption that neutropenia (740 μl) is an important factor in the pathogenesis of infection resistant to therapy, we started treatment with rhG-CSF in a dose of 7.5 μg/kg/day over 10 days. Before starting rhG-CSF therapy the bone marrow aspirate showed a hypopcellularity but no maturation arrest of the myeloid series. The application of rhG-CSF had no effect on the number of peripheral neutrophils (about 600 cells/μl). Subsequently the condition of the girl worsened and the patient died in terminal respiratory insufficiency.

There are two reports demonstrating successful rhG-CSF treatment of neutropenia during SLE. In a 56 year old woman suffering from SLB and sepsis white blood cell count rose from 400/μl to 17 200/μl after treatment with 100 μg/day rhG-CSF over five days. The second report showed an increase of neutrophil count in three women (23–36 years) with neutropenia during SLE after application of four cycles of 5 μg/kg/day rhG-CSF from a mean of 1060 to 14 300 cells/μl within 48 hours. Fever of unknown origin subsided in all three cases, in addition, in one case a gluteal abscess healed after this treatment. In contrast with our case all of these previously published case reports showed normal or increased granulopoiesis in bone marrow aspirates. The patients reported by Euler et al did not receive methylprednisolone, cyclophosphamide or IgG pulse therapy, which may have influenced rhG-CSF stimulation on bone marrow cells in our patient by cytotoxic effects. However, neutropenia was present before immunosuppressive therapy and bone marrow analysis did not change significantly during the course of disease. There are at least two possibilities that could explain the failure of rhG-CSF treatment in this case. (1) The block of myeloid cell production may have been located before rhG-CSF action on bone marrow cells. (2) Autoantibodies against rhG-CSF may inhibit the effects of this factor as described earlier for treatment with erythropoietin. Lack of maturation arrest in bone marrow analysis and the fact that this was the first contact of our patient with rhG-CSF do not support these theories. Thus, the pathophysiological mechanisms leading to response or non-response of rhG-CSF treatment in SLE associated neutropenia are still not clear.

In our opinion this case shows that rhG-CSF application is not generally an effective treatment of SLE associated neutropenia. Hypocellularity of bone marrow aspirates and lack of prompt response seem to be a prognostic unfavourable factor regarding the beneficial effect of rhG-CSF treatment.

MICHAEL FROSCH
JOHANNES ROTH
EBIK HARMS
Department of Paediatrics, University of Münster, Albert-Schweitzer-Str 33, 48149 Münster, Germany

Correspondence to: Dr J Roth.