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A 10-hour within-participant 
magnetoencephalography 
narrative dataset to test models of 
language comprehension
Kristijan Armeni  , Umut Güçlü  , Marcel van Gerven & Jan-Mathijs Schoffelen ✉

Recently, cognitive neuroscientists have increasingly studied the brain responses to narratives. At the 
same time, we are witnessing exciting developments in natural language processing where large-scale 
neural network models can be used to instantiate cognitive hypotheses in narrative processing. Yet, 
they learn from text alone and we lack ways of incorporating biological constraints during training. 
To mitigate this gap, we provide a narrative comprehension magnetoencephalography (MEG) data 
resource that can be used to train neural network models directly on brain data. We recorded from 
3 participants, 10 separate recording hour-long sessions each, while they listened to audiobooks 
in English. After story listening, participants answered short questions about their experience. To 
minimize head movement, the participants wore MEG-compatible head casts, which immobilized 
their head position during recording. We report a basic evoked-response analysis showing that the 
responses accurately localize to primary auditory areas. The responses are robust and conserved across 
10 sessions for every participant. We also provide usage notes and briefly outline possible future uses of 
the resource.

Background & Summary
Conveying and understanding the world through narratives is a pervasive and fundamental aspect of the human 
culture1. The storytelling and sense-seeking propensity of the brain allows us to relate the temporally varying and 
fleeting nature of the world into a stable and meaningful chain of events, entities and their relations2,3. In recent 
years, cognitive neuroscientists of language have seen an increased interest in studying the brain responses when 
humans read or listen to narratives4–10. Narratives afford the study of brain responses to language input which 
is highly contextualized and contains the rich variety of temporal dynamics and representations (e.g. phone-
mic, lexical, phrasal, morphemic, sentential)11. Given this inherent richness of neuronal dynamics, model-based 
investigations — where cognitive hypotheses on multiple levels are operationalized and tested simultaneously12 
— are particularly suitable in narrative neuroscience.

It is not a coincidence then that narrative cognitive neuroscience has been encouraged by the simultaneous 
development and availability of novel modeling techniques in the fields of natural language processing (NLP) 
and computational linguistics6,13. Echoing the recent revival of research in artificial neural networks (ANNs) 
and deep learning14,15, NLP has seen considerable progress in research applications using ANN architectures16. 
Earlier breakthroughs were achieved by the development of the so-called neural language models, that is, ANNs 
optimized to solve the next-word prediction task17,18. This development was further underscored by the finding 
that the numeric vector word representations, derived by using such architectures, develop human-interpretable 
structure. For example, it is well-established that the numeric word vectors can reflect lexical similarity of the 
encoded words19,20. Most recently, NLP has witnessed a trend towards pretraining generic large-scale neural lan-
guage models on unprecedented amounts of raw text and successfully using the pretrained models for improved 
performance on downstream language tasks21–23.

The availability of language models that can process connected text has increased the scope of cognitive neu-
roscientists’ toolkit for probing the relationship between computational language representations and the neural 
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signals. Mirroring the successes in computer vision24 and the subsequent modeling of neural processing in visual 
perceptual hierarchies25–27, computational linguists are beginning to interpret how language models achieve their 
task performance28–30 and what is the correspondence between such pretrained model representations and neural 
responses recorded when participants engage in similar language tasks31–37. On the one hand, task-optimized 
ANNs therefore serve as a tool and a framework that allow us to operationalize and identify which computational 
primitives serve as the candidate hypotheses for explaining neural data38–41. On the other hand, data from neuro-
science can provide important biological constraints for the ANN-based processing architectures42–44.

Yet, in order to incorporate neurophysiological constraints in the training of brain-based ANNs, we need 
sufficiently large and high-quality language-brain datasets and resources that allow direct training and testing 
of such complex models43. Neural networks are known to be ‘data-hungry’. That is, because the number of opti-
mized parameters is typically very large, the models need to be constrained by sufficient amounts of data points 
in order to reduce the error variance during training45. In studies where the cognitive hypothesis of interest is 
embodied in the experimental design, the nature of well-controlled hand-crafted stimuli typically puts a limit 
to the number of available train-test samples within each participant. For example, the dataset from the land-
mark study by31 contains fMRI data for a total of 60 nouns. Since then, the availability of model-based analyses 
approaches13 has led to increased curation and sharing of dedicated language neuroimaging datasets that lever-
age larger amount of data points across large numbers of participants46,47 It is known that the increasing amount 
of training repetitions within each participant improves predictive performance of models. This was shown, for 
example, in predicting visually-evoked MEG responses48 and in speech/text synthesis on the basis of intracranial 
electrophysiology recordings49,50. Given the recent interest in the interpretability of ANN language models28 and 
the development of ANN models of brain function51, care must be taken to ensure that the to-be investigated 
models trained on neural data of individual participants are reliably estimated to begin with52.

Here we describe a narrative comprehension magnetoencephalography (MEG) data resource recorded while 
three participants listened nearly 10 hours of audiobooks each (see Fig. 1). MEG is a non-invasive technique 
for measuring magnetic fields induced by synaptic and transmembrane electric currents in large populations 
(∼10,000–50,000 cells) of nearby neurons in the neocortex53,54. Due to the rapid nature of electrophysiological 
responses and the millisecond sampling rate of the MEG hardware55,56, it is frequently the method of choice 
for studying the neural basis of cognitive processes related to language comprehension. The target applications 
of this dataset are studies aiming to build and test novel encoding or decoding models57 of spoken narrative 
comprehension (for English), to evaluate theories of narrative comprehension at various timescales (e.g. words, 
sentences, story), and to test current natural language processing models against brain data.

Methods
This report follows the established conventions for reporting MEG data58,59.

participants. A total of 3 (1 female) aged 35, 30, and 28 years were included in the study. All three partici-
pants were native English speakers (UK, US and South African English). All participants were right-handed and 
had normal or corrected-to-normal vision. The participants reported no history of neurological, developmental 
or language deficits. In the written informed consent procedure, they explicitly consented for the anonymized 
collected data to be used for research purposes by other researchers. The study was approved by the local ethics 
committee (CMO — the local “Committee on Research Involving Human Subjects” in the Arnhem-Nijmegen 
region) and followed guidelines of the Helsinki declaration.

Our participants were speakers of three distinct English dialects (UK, US and South African English). While 
this could be a potential source of inter-participant variability in neural responses, the nature of out-group 
accent effects in M/EEG remains debated60. Importantly, we speculate that accent-driven variability is less of an 
issue for the current dataset where two participants listened to an out-group dialect (British English) where the 
lack of exposure, we reason, was likely not critical.

Finally, it is worth pointing out, given the emphasis on the number of data points within each participant, that 
this design decision introduces a trade-off in terms of what kind of conclusions and inference can be achieved. 
Specifically, given the small number of participants, the current dataset is not well suited for group-level inference. 
In other words, if the goal of a potential analysis is to generalize a phenomenon across participants, the current data 
resource should best be complemented by another resource that permits group-level inference. However, there is 
opportunity even for studies that primarily aim to achieve group-level generalization — namely, the large number 
of recordings within the same participant minimize the sources of variability which makes this resource a valuable 
starting point for exploratory analyses. Such data-driven, exploratory analyses can lead to concrete hypotheses 
which can then be tested in a confirmatory study, for example, on a dataset with a larger number of participants.

Stimulus materials. We used The Adventures of Sherlock Holmes by Arthur Conan Doyle as read by David 
Clarke and distributed through the LibriVox public library (https://librivox.org). The primary considerations in 
the selection of these stimulus materials were: a) the expectation of a relatively restricted or controlled vocabulary 
limited to real-life story contents (as opposed to in, for example, highly innovative styles of writing or fantasy 
literature where the dimensionality of semantic spaces can be expected to be higher), which made it reasonable to 
expect that models would be able to meaningfully capture the text statistics, b) sufficient number of books which 
are available as plain text, and c) the availability of corresponding audiobooks (the plain text of The Adventures of 
Sherlock Holmes was obtained from https://sherlock-holm.es/stories/plain-text/advs.txt, accessed on September 
11, 2018)

Each individual story was further divided into subsections. The subsections were determined by us after 
reading through the stories. We made sure that the breaks occurred in meaningful text locations, for example, 
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that prominent narrative events are not split across two runs. Stimuli and materials are available in the ‘/stimuli’ 
folder in the top-level directory. The full specification of stimuus materials is available in Table 1 of the supple-
mentary materials.

Word timing information. To determine word onsets and offsets in every auditory story we performed auto-
matic forced alignment of the audio recordings and the text obtained from Project Gutenberg. We used the Penn 
Forced Aligner toolkit61 with pretrained acoustic models for English. Tokenization of the story text was performed 
with the tokenizer module in the Spacy natural language processing library (https://spacy.io/api/tokenizer).

Some of the tokenization rules will result in tokens that do not lend themselves well as a unit of analysis for 
the corresponding acoustic forms. Notably, the tokenizer by default will split contractions: (“don’t” –> “do” 
“not”). To be able to use contracted forms as inputs to the forced alignment algorithm, we post-edited the split 
contractions back to the original form. Word tokens not included in the precompiled model dictionary were 
added manually upon inspection of the forced alignment log files (e.g. proper names, see the “dict.local” file for 
the full list). The arpabet pronunciation codes for missed tokens were generated using the web interface of the 
CMU LOGIOS Lexicon Tool (http://www.speech.cs.cmu.edu/tools/lextool.html). Symbols for stress in pronun-
ciations were added manually to the generated arpabet pronunciation codes.

Task and experimental design. Each of the 3 participants listened to the 10 stories from the Adventures 
of Sherlock Holmes. A separate MEG session consisted of listening to a single story from the collection. Each 
recording session took place on a separate day. A single run (i.e. an uninterrupted period of continuous data 
acquisition) consisted of participants listening to a subsection of a story (see Fig. 2). The order of story and run 
presentation were kept the same for all participants (see Table 1, supplementary information). Participants were 
instructed to listen attentively for comprehension. After each run, the participants answered comprehension 
questionnaires and reported their literary experience and were able to take short breaks. The experimenter was 
available for clarification prior to the beginning of the recording.

Each story was presented binaurally via a sound pressure transducer through two plastic tubes terminating 
in plastic insert earpieces. A black screen with a fixation cross was maintained while participants listened to the 
stories. Presentation of the auditory stories was controlled with Presentation software (version v 16.4., build 
06.07.13, NeuroBehavioral Systems Inc.).

comprehension check. Comprehension check was used after each run to make sure participants were fol-
lowing the story contents. Each comprehension check consisted of 1 multiple choice question per run with 3 
possible answers. The questions were designed by us and should have been possible to answer correctly for people 
who had read the stories with normal attention (example question: ‘What is being investigated in the story?’). 
The participants indicated their response by means of a button box and had no time limit to do so. For the full 
questionnaire with answers see ‘questions_tabular.txt’.

participant comparison sub-001 sub-002 sub-003
ccawithin vs. ccaacross 0.37 0.11 0.77
cca’within vs. cca’across 0.36 0.19 0.94

ccawithin vs. cca’
within < 0.001 0.001 < 0.001

ccaacross vs. cca’across < 0.001 0.0018 < 0.001

Table 1. P-values for comparisons in the canonical correlation analysis (CCA) of repeated segments (cca) and 
randomly selected segments (cca′). The ‘within’ and ‘across’ subscripts denote CCA performed on paired runs 
selected within the same recording session and runs selected across different recording sessions, respectively.

session 1

session 5

session 10

participant 1

participant 3

participant 2

Dataset overview

The

MEG

eye-tracking

audio

annotation,
behaviour

adventures of Sherlock Holmes

Fig. 1 The structure of the dataset. We recorded the MEG from 3 participants, 10 separate recording sessions 
each. In each session, we recorded MEG data (275-channel axial gradiometer CTF system) while participants 
listened to audiobooks (The Adventures of Sherlock Holmes) in English. Along with the MEG data, we also 
tracked eye-movements and pupil dilations. After story listening in each session, participants answered short 
behavioral questionnaires about their narrative comprehension experience. We also provide the timings of word 
onsets for every story in the dataset that can be used to relate pretrained models (or other linguistic features) to 
the MEG data. The icons in the figures from https://www.flaticon.com/authors/freepik.

https://doi.org/10.1038/s41597-022-01382-7
https://spacy.io/api/tokenizer
http://www.speech.cs.cmu.edu/tools/lextool.html
https://www.flaticon.com/authors/freepik


4Scientific Data |           (2022) 9:278  | https://doi.org/10.1038/s41597-022-01382-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

information density and absorption questions. After each run, the participants reported their per-
ceived informativeness of the heard story subsection (by answering the question: ‘How informative do you think 
this section was for the story development?’) and indicated their level of absorption (i.e. level of agreement with 
the statement: ‘I found this section very captivating’). They indicated their perceived information density by rat-
ing their response on a visual scale from 1 (‘Not at all informative’) to 7 (‘Very informative’). They indicated their 
level of absorption by rating their response on a visual scale from 1 (‘Disagree’) to 7 (‘Agree’).

Literary appreciation. At the end of each recording session, the participants were asked to report appre-
ciation of the heard story. The appreciation questionnaire was the one used by62 who adapted the version by63. 
The questionnaire consisted of a general score of story liking (I thought this was a good story.), thirteen state-
ments with adjectives that indicated their impression of the story (e.g. I thought this story was... {Beautiful... 
Entertaining, Ominous}). Finally, they rated their agreement to 6 statements regarding their enjoyment of the 
story (adapted from64; e.g. I was constantly curious about how the story would end). Participants rated their story 
liking (statements with adjectives), and the statements regarding their enjoyment on a 7-point scale ranging from 
1 (‘Disagree’) to 7 (‘Agree’). For the full questionnaire see Table 6.

A) kidnapping
B) murder
C) theft

How informative was this secion 
for story development?

not at all informative very informative

I found this section very captivating

agree disagree

story listening

comprehension check

information density question

absorption question

repeated stimulus

repeated stimulus

What is being investigated 
in the story?

Run structure

Fig. 2 Trial structure. In each session, the participants listened to one story from the collection ‘The Adventures 
of Sherlock Holmes’. Each story was further split into subsections which correspond to experimental runs. 
The structure of one run is depicted here. After listening to the subsection, the participants answered a simple 
multiple choice comprehension question and rated the information density and absorption levels of the heard 
subsection. After the responses, each participants listened to a short story snippet repeated twice. For the 
repeated section, the same stimulus (taken from Sherlock Holmes story not used in the main set) was used after 
each run. The speaker icon created by Pixel Perfect (https://www.flaticon.com/authors/pixel-perfect).

Variable name Description

date date when the session recording took place

time date and time when the session recording took place

story nr. session number, an integer representing the story index that was listened to in that recording session

session nr. run number, an integer representing the run index in that session

response recorded response (button box) to the multiple choice question (possible values: A, B or C)

correct the correct response to the multiple choice question (possible values: A, B or C)

ishit whether or not the given response matches the true response (can be 1 or 0)

absorption_score the response to the absorption question (possible values: 1 through 7)

density_score the response to the information density question (possible values: 1 through 7)

Table 2. Description of variables in *beh.txt files.
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MEG data acquisition. We recorded MEG data (275-channel axial gradiometer CTF system) while partic-
ipants listened to audiobooks in English in a magnetically shielded room. The MEG signals were digitized at a 
sampling rate of 1200 Hz (the cutoff frequency of the analog anti-aliasing low pass filter was 300 Hz). Throughout 
the recording, the participants wore an MEG-compatible headcast65 (see Fig. 3). Per convention, three head local-
izer coils were attached to the inner side of the headcast at the nasion, left pre-auricular, and right pre-auricular 
sites. Head position was monitored during the recording using a custom build monitoring tool66.

Empty room recordings. Immediately before or after each recording session (depending on lab availability), we 
performed empty room recordings. These recordings lasted for approximately 5 minutes. Empty room record-
ings are located in a separate .ds folder in the respective session folder (see Fig. 4, panel b).

Repeated stimulus recordings. In between runs, we recorded MEG responses to a short (half minute) excerpt 
from The Adventures of Sherlock Holmes which was not used during the main task (‘noise_ceiling.wav’). The 
stimulus was repeated twice between runs. The MEG and Presentation trigger codes marking the onset and 
offset of the repeated stimuli have the values 100 and 150, respectively.

a) Headcast placement b) Fiducial coil positioning

c) Head and source model coregistration

nasionleft temporal right temporal

MEG sensors

head model (         ) + source model (       )

participant 1 participant 2 participant 3

Fig. 3 (a) Example of headcast placement on a participants’ head. (b) Example of the geometrical model of the 
head and fiducial coil positioning. This headshape model was used for head cast production. (c) The outcome of 
the coregistration procedure, shown are head and source models relative to MEG sensors.

trigger value Presentation type CTF trigger type description

%d0 Sound UPPT001 story onset, the start of.wav file playback

%d5 Picture UPPT001 story offset, marked by the onset of screen indicating end of story/run

%d7 Picture UPPT001 presentation of screen showing comprehension check

%d8 Picture UPPT001 presentation of screen showing information density question

%d9 Picture UPPT001 presentation of screen showing absorption question

100 Sound UPPT001 repeated stimulus onset, the start of.wav file playback

150 Picture UPPT001 repeated stimulus offset, marked by the onset of screen indicating end of the 
repetition stimulus

Table 3. Mapping between events in the experimentally relevant code in the Presentation log files and the CTF 
trigger channel. The trigger values are two-digit codes where the first digit codes the run index. The second digit 
codes the identity of the event (i.e. story onset, offset etc.).

https://doi.org/10.1038/s41597-022-01382-7
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onset duration sample type value

0 37.774454 NaN 45330.344827 wav_onset 10

1 37.786092 1.077551 45344.310813 word_onset_01 sp

2 37.786092 1.077551 45344.310813 phoneme_onset_01 sp

3 38.863643 0.129705 46637.372038 word_onset_01 THE

4 38.863643 0.059864 46637.372038 phoneme_onset_01 DH

5 38.923507 0.069841 46709.208773 phoneme_onset_01 IY0

6 38.993349 0.678458 46793.018296 word_onset_01 ADVENTURES

7 38.993349 0.029932 46793.018296 phoneme_onset_01 AH0

8 39.023281 0.049887 46828.936664 phoneme_onset_01 D

9 39.073167 0.059864 46888.800609 phoneme_onset_01 V

10 39.133031 0.069841 46960.637344 phoneme_onset_01 EH1

11 39.202872 0.099773 47044.446868 phoneme_onset_01 N

12 39.302646 0.129705 47164.174759 phoneme_onset_01 CH

13 39.432351 0.069841 47319.821017 phoneme_onset_01 ER0

14 39.502192 0.169615 47403.630541 phoneme_onset_01 Z

6124 568.528583 NaN 682235.300153 wav_onset 100

6125 604.108805 NaN 724931.566321 wav_onset 100

6126 775.129892 NaN 930156.870608 wav_onset 20

6127 775.141530 0.957823 930170.836595 word_onset_02 sp

6128 775.141530 0.957823 930170.836595 phoneme_onset_02 sp

6129 776.099354 0.059864 931320.224350 word_onset_02 THE

6130 776.099354 0.029932 931320.224350 phoneme_onset_02 DH

6131 776.129286 0.029932 931356.142717 phoneme_onset_02 AH0

6132 776.159218 0.319274 931392.061085 word_onset_02 NOTE

6133 776.159218 0.139683 931392.061085 phoneme_onset_02 N

6134 776.298900 0.099773 931559.680132 phoneme_onset_02 OW1

6135 776.398673 0.079819 931679.408023 phoneme_onset_02 T

6136 776.478492 0.169615 931775.190336 word_onset_02 WAS

6137 776.478492 0.059864 931775.190336 phoneme_onset_02 W

6138 776.538356 0.029932 931847.027071 phoneme_onset_02 AH0

6139 776.568288 0.079819 931882.945438 phoneme_onset_02 Z

6140 776.648106 0.698413 931978.727751 word_onset_02 UNDATED

Table 4. A sample of an ‘*events.tsv’ file. Each row logs one event relative to the MEG recording session onset. 
Time values are in seconds. For this example, we only show the first few events from session 1 and session 2 
(hence, the discontinuity in row indices).

./root
|-- code
|-- derivatives
|-- sourcedata
|-- stimuli
|-- sub-001
|-- ses-001
|   |   |-- eyelink
|   |   |-- meg
|   |   |-- anat
|   |   `-- sub-001_ses-001_scans.tsv
...
|   |
|   `-- ses-010
|       |-- eyelink
|       |-- meg
|       `-- sub-001_ses-010_scans.tsv
|-- sub-002
|   |-- ses-001
|   |   |-- eyelink
|   |   |-- meg
|   |   |-- anat
|   |   `-- sub-002_ses-001_scans.tsv
...

a) Top-level directory structure

./sub-001
|-- ses-001
|   |-- eyelink
|   |   `-- sub-001_ses-001_eye.asc
|   |-- meg
|   |   |-- sub-001_ses-001_coordsystem.json
|   |   |-- sub-001_ses-001_task-compr_channels.tsv
|   |   |-- sub-001_ses-001_task-compr_events.tsv
|   |   |-- sub-001_ses-001_task-compr_meg.ds
|   |   |-- sub-001_ses-001_task-compr_meg.json
|   |   |-- sub-001_ses-001_task-emptyroom_channels.tsv
|   |   |-- sub-001_ses-001_task-emptyroom_events.tsv
|   |   |-- sub-001_ses-001_task-emptyroom_meg.ds
|   |   `-- sub-001_ses-001_task-emptyroom_meg.json
|   `-- anat
|   |   |-- sub-001_T1w.json
|   |   |-- sub-001_T1w.nii.gz
|   |   |-- sub-001_space-CTF_T1w.json
|   |   `-- sub-001_space-CTF_T1w.nii.gz
|-- ses-002
|   |-- eyelink
|   |   `-- sub-001_ses-002_eye.asc
|   |-- meg
...

b) Participant-specific directory structure

Fig. 4 Data records overview.

https://doi.org/10.1038/s41597-022-01382-7


7Scientific Data |           (2022) 9:278  | https://doi.org/10.1038/s41597-022-01382-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

MRi data acquisition. To produce the headcast, we needed to obtain accurate images of the participants’ 
scalp surface. To this end, we obtained structural MRI scans with a 3T MAGNETOM Skyra MR scanner (Siemens 
AG) at the Donders Centre for Cognitive Neuroimaging in Nijmegen, the Netherlands. During the scanning 
procedure, the participants lay in the supine position with a vitamin E capsule attached to their right ear as a 
marker for image orientation. We used a fast low angle shot (FAST) sequence with the following image acquisition 
parameters: slice thickness of 1 mm; field-of-view of 256 × 256 × 208 mm along the phase, read, and partition 
directions respectively; echo time of 1.59 msec; time to repeat (TR) was set to 4.5 msec. The readout bandwidth 
was 510 Hz per pixel. The acquisition time was 2 min 23 sec.

MRi-MEG coregistration. To co-register the structural MRI images to the MEG coordinate space, we first 
transformed the individual participant’s MRI images from the voxel coordinate system to the ACPC head coor-
dinate system by placing the origin of the head coordinate system to the anterior commissure as interactively 
identified on the structural brain images (see http://www.fieldtriptoolbox.org/faq/anterior_commissure/). We 
then used the mesh describing the participants’ head shape (see Fig. 3, panel b) and extracted from it the meshes 
corresponding to the nasion, left pre-auricular, and right pre-auricular fiducial coils. Once the meshes describing 
the coil geometry were extracted from the head shape mesh, we localized the center points of the each of the 
three coils. These center points of the coils were taken to represent the locations where the fiducial coils were 
placed during the recordings (as the coils were actually placed in the empty slots at the positions in the geometric 
model). These extracted coordinate points were then manually inspected and appropriately defined as the nasion, 
the left pre-auricular and right pre-auricular points based on the signs and values of their x, y, and z coordinates. 
The above procedure allowed us to coregister the MRI image to the MEG coordinate space. The outcome of the 
coregistration for each participant is shown in Fig. 3.

Eye-tracking data acquisition. Concurrently with the MEG, we recorded participants’ eye-movements. 
We used the Eyelink 1000 Eyetracker (SR Research ©) at a sampling rate of 1000 Hz. The 9-point scheme was 
used for calibration after positioning the participant within the MEG dewar and prior to starting the MEG data 
acquisition. The participant’s left eye was tracked in all cases.

Data Records
The dataset can be accessed at the data repository of the Donders Institute for Brain, Cognition and Behaviour67. 
The dataset is shared under the Data use agreement for identifiable human data (version RU-DI-HD−1.0, 
https://data.donders.ru.nl/doc/dua/RU-DI-HD-1.0.html?3), developed by the Donders Institute and Radboud 
University, which specifies the conditions and restrictions under which the data is shared. The dataset organi-
zation follows a BIDS-like specification for storing and sharing the MEG data68. The organization of the dataset 
directory is presented in Fig. 4. The three folders at the highest level (Fig. 4a) contain the data for three partic-
ipants (sub-001, sub-002, and sub-003). Each participant directory contains data folders for respective sessions 
(ses-001, ses-002 etc.) with subfolder for each respective data modality (eyelink for eye-tracking data, meg for 
MEG data etc.). The organization of session-specific directories is displayed in panel B of Fig. 4. The contents of 
the individual folders in the dataset directory are briefly described below.

code (‘/code’). The code folder contains source MATLAB code for the analyses presented in this report and 
additional wrapper scripts that – together with shared preprocessing data – represent minimal working examples 
of the present analysis pipeline. The code base relies heavily on the routines of the FieldTrip toolbox69.

channel label description

UADC003 analog input channel with audio signal

UADC004 analog input channel with audio signal

UADC005 eye-tracker, x-position

UADC006 eye-tracker, y-position

UADC007 eye-tracker, pupil diameter

Table 5. Additional recording channels in the MEG datasets.

Fig. 5 Session-initial head displacement per participant in all 10 sessions.

https://doi.org/10.1038/s41597-022-01382-7
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The high level ‘/code’ folder contains two subfolders. The ‘/pipeline’ subfolder contains the MATLAB scripts and 
functions that were used in preprocessing and the main analyses. The code is further grouped into ‘audio’, ‘meg’, 
‘models’, and ‘utilities’ folders each containing scripts and functions for the respective parts of preprocessing steps. The 
‘/plots’ folder contains the two scripts that were use to plot the figures for technical validation below. Further infor-
mation about the code usage is provided in the ‘README.txt’ files in ‘code/pipeline/meg’ and ‘code/plots’ folders.

Stimulus folder (‘/stimuli’). The ‘/stimuli’ folder contains the .wav audio files used in the recordings and 
the corresponding text files (see Stimulus Materials). The naming of the files follows the ‘%02d_%d’ format where 
the first digit (with a front-padded zero digit) marks the session and the second digit (not zero padded) codes 
the run number in that session (see Table 1 in Supplementary materials). In addition, the ‘/stimuli’ folder also 
contains the input (‘tokens.txt’) and the output (‘pfa.txt’) of the forced alignment (see Section ‘Word Timing 
Information’) providing word onset timings for all the words in the input tokens lists. The timing information 

Fig. 6 Comparison of head movement for five sessions in a dataset without headcast (left) and the current 
dataset (right).

Question

I thought this was a good story

I thought this story was... Beautiful

I thought this story was... Boring

I thought this story was... Deeply moving

I thought this story was... Entertaining

I thought this story was... Funny

I thought this story was... Interesting

I thought this story was... Ominous

I thought this story was... Sad

I thought this story was... Suspenseful

I thought this story was... Tragic

I thought this story was... Witty

I thought this story was... Captivating

I thought this story was... Special

I was constantly curious about how the story would end

I thought it was fun to read this story

I want to read the story again sometimes

I thought the story was written well

I rather did not want the story to end

I would recommend this story to somebody else

Table 6. Literary appreciation questionnaire.

https://doi.org/10.1038/s41597-022-01382-7
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in the ‘pfa.txt’ files follows the TextGrid object syntax of the Praat software (http://www.fon.hum.uva.nl/praat/
manual/TextGrid.html).

presentation log files and responses (‘/sourcedata/responses’). The ‘/sourcedata’ folder contains 
two subdirectories. The ‘logfiles’ subdirectory contains the log files generated by the Presentation scripts (‘*ĺog’). 

Fig. 7 Head movement per session and per participant.

Fig. 8 Analysis of evoked responses for one session in the dataset. Right. Line plots show the averaged source 
time courses (ERFs) for all brain parcels (each line represents a brain parcel). Time point 0 on the time axis 
indicates the word onset. Left. The source topographies show the distribution of activations designated by 
the orange dashed line in the ERF time courses on the right. We selected the time points that approximately 
correspond to the peak activation of the earliest component post word-onset.

https://doi.org/10.1038/s41597-022-01382-7
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The ‘responses’ subdirectory contains the participants’ responses to the comprehension check, their absorption 
scores and density scores after each run (‘*_beh.txt’). It also contains the responses to the appreciation question-
naire (‘*_appreciation.txt’) at the end of the session.

Fig. 9 Analysis of evoked responses for participant 1, sessions 2 through 10. Right. Line plots show the 
averaged source time courses (ERFs) for all brain parcels (each line represents a brain parcel). Time point 0 on 
the time axis indicates the word onset. Left. The source topographies show the distribution of average activation 
within the interval designated by the orange dashed line in the ERF time courses on the right. We selected the 
time points that approximately correspond to the peak activation of the earliest component post word-onset.

https://doi.org/10.1038/s41597-022-01382-7
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Derivatives folder (‘/derivatives’). The ‘/derivatives’ folder contains the outputs of specific preprocessing 
steps related to anatomical and MEG data used in the technical validation presently and that can be potentially of 
use in further analysis pipelines.

Fig. 10 Analysis of evoked responses for participant 2, sessions 2 through 10. Right. Line plots show the 
averaged source time courses (ERFs) for all brain parcels (each line represents a brain parcel). Time point 0 on 
the time axis indicates the word onset. Left. The source topographies show the distribution of average activation 
within the interval designated by the orange dashed line in the ERF time courses on the right. We selected the 
time points that approximately correspond to the peak activation of the earliest component post word-onset.

https://doi.org/10.1038/s41597-022-01382-7
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Anatomical atlas (‘./atlas‘). The ‘atlas’ subfolder contains the anatomical parcellation of cortical source points 
into brain areas or parcels (see Section ‘Beamformer’ below for further details). The FieldTrip MATLAB stuc-
ture (see https://github.com/fieldtrip/fieldtrip/blob/release/utilities/ft_datatype_parcellation.m) defining 
the surface-based descriptions is provided in the corresponding ‘*.mat’ files. Files containing the anatom-
ical labels are shared in the GIFTI file format (‘*label.gii’, see https://www.humanconnectome.org/software/

Fig. 11 Analysis of evoked responses for participant 3, sessions 2 through 10. Right. Line plots show the 
averaged source time courses (ERFs) for all brain parcels (each line represents a brain parcel). Time point 0 on 
the time axis indicates a word onset. Left. The source topographies show the distribution of average activation 
within the interval designated by the orange dashed line in the ERF time courses on the right. We selected the 
time points that approximately correspond to the peak activation of the earliest component post word-onset.

https://doi.org/10.1038/s41597-022-01382-7
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workbench-command/-gifti-help). The cortical parcellations are provided at 3 different resolutions (32k, 8k,and 
4k source points per hemisphere). The analyses in this report are based on the 8k resolution parcellation scheme. 
Finally, we provide two inflated cortical surface descriptions that were used for visualization purposes presently 
(‘cortex_inflated.mat’ and ‘cortex_inflated_shifted.mat’).

Anatomical preprocessing (‘./fieldtrip-anatomy’). The ‘./fieldtrip-anatomy’ folder contains, for each participant, 
the data used in source reconstruction (see Section ‘Beamformer’ in ‘Technical validation’ below). That is, it 
contains the volume conduction model (‘*_headmodel.mat’), the forward projection matrices (‘*_leadfield.
mat’), and the description of source locations (‘*_sourcemodel.mat’). It additionally contains the transformation 
matrices that can be used to transform geometrical objects between the MNI, the ACPC, and the CTF coordi-
nate systems (‘*_transform_*.mat’, for more information on coordinate systems see https://www.fieldtriptool-
box.org/faq/coordsys/.

Preprocessing (‘./fieldtrip-preprocessing’). The ‘./fieldtrip-preprocessing’ folder contains MATLAB data struc-
tures containing information from various stages of pre-processing. Specifically, for each participant and each 
recording session, it provides the channel selection (‘chansel.mat’), trial definition – that is, story onset and off-
sets expressed in sample points – (‘trl.mat’), squid and muscle artifact definitions (‘*_squid.mat’ and ‘*_muscle.
mat’, respectively), the component mixing and unimixing matrices (‘comp.mat’), the selected components for 
eye-blink component removals (‘selcomp.mat’), and the audio delay between the audio recording onset in each 
session and the MEG system trigger sending (‘audiodelay.mat’). These data structures are computed separately 
for the story-listening runs and the repeated stimulus runs (see Section Repeated stimulus recordings).

Cortical surfaces (‘./workbench-anatomy’). The ‘./workbench-anatomy’ folder contains the surface-registered 
cortical surface models in the GIFTI file format (‘**.gii’), as generated from the Freesurfer output by the 
hcp-workbench tool (see ‘Cortical sheet reconstruction’ below for more information).

Raw MEG data folder (‘/sub-00X/ses-00Y/meg’). The ‘/meg’ folder contains two raw MEG ‘.ds’ data-
sets; the task-based narrative comprehension (with the infix ‘task-compr’) and the session-specific empty room 
recording (‘task-empty’). In addition, the folder contains several BIDS sidecar files with meta information about 
the datasets: a ‘.json’ file with MEG acquisition parameters (‘*_meg.json’), tab-separated table with MEG channel 
information description (‘*_channels.tsv’), and a table containing detailed timing information about relevant 
events that occurred during the measurements (‘*_events.tsv’), specifically word and phoneme onset times as 
obtained from the forced alignment procedure (see Table 4).

Eye-tracking data (‘/sub-00X/ses-00Y/eyelink’). The folder contains Eyelink 1000 Eyetracker data con-
verted into the ‘ascii’ (‘*.asc’) format. Note that the eye-tracking information (eye movements and pupil dilation) 
was also saved as separate data channels in the MEG datasets (see Table 5).

MRi data (‘sub-00X/ses-001/anat’). The folder contains anonymized structural MRI images (nifti file 
format). The ‘/anat’ folder is only present in the first session folder (‘ses-001’) of every participant.

Technical Validation
All participants were monitored during data acquisition to ensure task compliance and general data quality. As a 
technical validation, we perform the analysis of the amount of head movement for each of the three participants 
and compare it to the dataset recorded without headcasts. We also perform a basic auditory evoked-response 
analysis and source localization for every participant and every session.

Head movement. In a previous study, Meyer et al.65 have shown that it was possible to reposition the abso-
lute head position to 0.6 SD across 10 repositionings of the participant wearing a headcast. Here, we report the 
displacement in the x (left-right), y (left-right), and z (up-down) directions of the circumference of the nasion and 
the left and right coils. We extracted the head coil localization (‘HLC*’) channels and epoched the session-specific 
dataset into trials of 1 minute length. We first computed the mean absolute displacement in x, y, and z directions 
across each 1-minute trial. We then computed the circumcenter of the nasion and the left and right coils in the x, 
y, and z dimensions per trial. This resulted in a measure of head position and orientation in x, y and z coordinates 
per trial. Finally, we centered the obtained head position values across the trial dimension by subtracting the 
mean head position in the specific direction.

In Fig. 5, we report the average head position displacement across the first minute of recording. The figure 
shows that head positioning at the onset of a new session was achieved within 1 millimeter accuracy and for the 
most part within 0.5 millimeters which is in line with previous reports65.

In Fig. 6, we show head movement data in a previously published dataset without headcast70 and the current 
dataset. The dataset without headcast shows clear movement displacement in all directions within the reported 
limits of 5 mm. In the current dataset, the head movement was maintained below 1 millimeter throughout the 
recordings. This holds across all three participants (Fig. 7).

Evoked responses. To provide an impression of the MEG data in the dataset, we perform a basic analysis of 
auditory evoked responses71 per participant and every session in the dataset.

https://doi.org/10.1038/s41597-022-01382-7
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Preprocessing. Prior to preprocessing, we first demeaned the raw data. Next, we applied a band-pass filter 
(hamming-windowed sync FIR filter via fast fourier transform: cutoff (−6 dB) 1 Hz and 40 Hz, transition width 
2.0 Hz, stopband 0–0.0 Hz, passband 2.0–39.0 Hz, stopband 41.0–600 Hz, max. passband deviation 0.0022 
(0.22%), stopband attenuation −53 dB). We then applied notch filtering (Butterworh IIR) at the bandwidth of 
49–51, 99–101, and 149–151 Hz to remove the potential line noise artifacts. Artifacts related to muscle contrac-
tion and squidjumps were identified and removed using a semi-automatic artifact rejection procedure (http://
www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection). The data were then downsampled to 150 Hz. 
MEG components reflecting eye-blinks were estimated using the FastICA algorithm (https://research.ics.aalto.
fi/ica/fastica/) as implemented in Fieldtrip functionalities). ICA was performed separately per each run (‘story 
subsection’) in every recording session. Relevant components were identified based on their topography and 
time-courses and removed from the data.

Source reconstruction. Cortical sheet reconstruction. To localize fiducial coils (the nasion, left and right ear) 
on participants’ MRI images in the MNI coordinate space, we used the position information of where the dig-
itized fiducials were placed on the headcasts in the CTF space (see Section ‘MRI-MEG coregistration’). After 
co-registration, we used the Brain Extraction Tool72 from the FSL command-line library (v5.0.9.)73 to delete the 
non-brain tissue (skull striping) from the whole head. To obtain a description of individual participant’s cortical 
sheet, we performed cortical surface reconstruction with the Freesurfer image analysis suite, which is docu-
mented and freely available for download online (http://surfer.nmr.mgh.harvard.edu/), using the surface-based 
stream implemented in the ‘recon_all’ command-line tool. The post-processing of the reconstructed cortical 
surfaces was performed using the Connectome Workbench ‘wb_command’ command-line tools (v1.1.1; https://
www.humanconnectome.org/software/workbench-command).

Beamformer. The cortical sheet reconstruction procedure described above resulted in a description of individ-
ual participant’s locations of potential neural sources along the cortical sheet (source model) with 7,842 source 
locations per hemisphere. We used a single-shell spherical volume conduction model based on a realistic shaped 
surface of the inside of the skull74 to compute the forward projection matrices (leadfields). We used a common 
leadfield for estimating session-specific beamformer weights. To estimate MEG source time series, we used 
linearly constrained minimum variance (LCMV) spatial filtering75 deployed with ‘ft_sourceanalysis’ routine. 
Source reconstruction was performed separately per each recording session. Data of all runs in a session were 
used to compute the data covariance matrix for beamformer computation. Source parcels (grouping of source 
points into brain areas or parcels) were created using a refined version of the Conte69 atlas (brainvis.wustl.edu/
wiki/index.php//Caret:Atlases/Conte69?_Atlas), which provides a parcellation of the neocortical surface based 
on Brodmann’s cytoarchitectonic atlas. The original atlas, consisting of 41 labeled parcels per hemisphere, was 
further refined to obtain 187 equisized parcels, observing the parcel boundaries of the original atlas.

Event-related fields. The outcome of the preprocessing and source-reconstruction steps are MEG time series for 
370 brain parcels in the left and right hemispheres. To obtain the average event-related field (ERF) for each source 
parcel, we first concatenated all runs within each session. We then epoched the MEG time-series in time windows 
starting from 100 ms prior to word-onset and extending to 500 msec post word-onset. We then compute the average 
across the epochs. This results, for each participant and each recording session, in an average representation of the 
word-onset evoked signal for every source parcel. The results for session 1 of each participant are displayed in Fig. 8.

For all three participants, the ERFs show the expected temporal profile with early peaks at approximately 
50 msec post word-onsets (Fig. 8, right). The inspection of source topographies at selected latencies (orange 
dashed lines in the right-hand side panels) shows clear focal topographies with peak activations localized in the 
primary auditory cortex in the superior temporal gyrus. The patterns are right-lateralized for participants 1 and 
2 whereas they show a more bilateral pattern in participant 3. Such inter-individual variability in brain activation 
patterns in auditory language comprehension has been reported in MEG previously76. The ERFs show a broader 
range of frequencies over time than is perhaps typically shown in an ERP/ERF analysis. It should be noted that 
we use a rather broad bandpass filter (0.5-40 Hz) compared to other reports (e.g. Broderick et al.77 filter at 1-8 
Hz). Finally and importantly, the results are robust and consistent across all ten sessions in each participant. The 
results for other sessions for all participants are shown in Figs. 9–11.

Repeat reliability. After each run, we recorded two short 30 seconds long snippets repeated one after another 
(see Fig. 2). This repeated design across runs, sessions and participants allows for estimation of signal reliability 
that can inform main analyses of story runs. To do a basic quality analysis, we performed a canonical correlation 
analysis (CCA) where we train a linear model fk on a pair of repeated runs, Y Y Y[ , ]train

r r
1 2= . The runs in the pair 

r are taken either from the same session (withing session condition) or from two different sessions (across session 
condition). The model fr trained on a pair of repeats r learns a set of linear weights �Wr that maximize the correla-
tion between the two repeats in the pair. We then evaluate the model fr on a pair of held out repeats ≠p p r;  not 
used in the training step. Specifically, model performance is quantified by computing the correlation between the 
data segments in the pair p after the model is applied: corr f fY Y( ( ), ( ))r p r p

2 1 . The rationale behind this evaluation 
procedure is that the presence of any shared brain features uncovered by the CCA model fk would lead to non-zero 
correlation when applied to unseen data. We compare the model trained on repeats fk against a baseline CCA 
model trained on pairs of 30-second snippets selected at random from the story runs (i.e. each 30-second snippet 
was recorded to different inputs). Put differently, the brain signal in the repeated segments condition (more pre-
cisely, the canonical variates) is predominantly expected to be driven by the shared components due to input rep-
etition, whereas it is expect to contain less of the shared components across randomly selected paired segments.
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We show (see Table 1) that there was a main effect of ‘segment type’, that is, canonical variates obtained from 
repeated segments were significantly different from canonical variates obtained from randomly sampled segments 
(sampled either within or across sessions). However, there was no effect of ‘session’, that is, comparing canonical 
variates based on segments sampled from within or across sessions were not significantly different (regard-
less of whether these were randomly selected story segments or repeated segments). This confirms that neural 
responses to repeated segments have a larger degree of shared signal component due to input repetition and, 
importantly, that this is consistent across sessions in all three participants.

Usage Notes
interpretation of behavioral log files (‘_beh.txt’). Each row in the tab-separated value file corresponds 
to a run in the session and contains responses to the behavioral questions that were answered after each run. 
Description of each variable is given in Table 2.

interpretation of the ‘events.tsv’ file. The ‘events.tsv’ file logs the events read from the MEG header files. 
In addition, the ‘events.tsv’ file also contains the aligned events from the ‘.log’ log files which contain a record of 
events generated by the Presentation experimental scripts. The event onsets are adjusted for the estimated delays 
between the Presentation trigger sending and their recording in the CTF acquisition system. Not all triggers from 
the Presentation script were sent to the CTF trigger channel. For completeness, we provide the mapping between 
the experimentally-relevant codes in the Presentation log files and the CTF trigger channel in Table 3. An illustra-
tive (edited) example of the ‘events.tsv’ file is shown in Table 4.

Additional recording channels. In Table 5 we provide the information about the additional channels 
recorded along with the MEG data.

Known Exceptions and issues
Bad channels. The following channels in this dataset show unstable behavior due to technical issues in the 
lab at the time of recording for sub-003, ses-004: MRC23, MLO22, MRP5, MLC23. Researchers are advised to 
remove the above channels during preprocessing.

Repeated run. Due to technical issues, the experimental script crashed during run 3 for sub-003, ses-008. We 
restarted the experiment at run 3. This means parts of run 3 before the experiment stopped were listened to twice 
and only the second iteration of run 3 is complete.

Low-frequency artifacts. We noticed short-lived (approximately a couple of seconds in duration), but 
high-amplitude, slow-drift artifacts in the following runs:

•	 sub-002, ses-009, run 1
•	 sub-003, ses-004, run 4
•	 sub-003, ses-005, run 1
•	 sub-003, ses-006, run 6
•	 sub-003, ses-008, run 4

Depending on the research question and preprocessing steps (e.g. the use of a narrow-band filter), the pres-
ence of artifacts might not be detrimental. Otherwise, high-pass filtering with a low cut-off (e.g. 0.5 Hz) might 
be required to suppress these artifacts.

Spike-like artifact in two channels (sub-003, ses-003). In sub-003, ses-003, channel MRP57 shows 
an uncharacteristic regular (approximately every 10 seconds or longer), but short-lived impulse-like events. We 
could not determine the origin of this artifact. In our experience, the artifact can be detected using established 
blind-source estimation techniques (e.g. independent component analysis) and removed from the data. Given 
its sparse temporal nature, we estimate it being unlikely that this artifact can significantly affect the quality of the 
dataset, but warrants consideration nevertheless.

Exceptions in appreciation measurements. For sub-001, ses-001, part of appreciation questionnaires 
were corrected offline. This corrected behavioral response documented in the behavioral log file with the suf-
fix ‘_offline’. The reasons for these exceptions were due to inadvertent wrong button press and were reported to 
the responsible researcher immediately after the session ended. The file containing the entry with the correct 
response was created in order to keep the old and new response logged explicitly.

The appreciation measurements for sub-003, ses-008 are recorded in two files (ses-008A and ses-00B) due to 
the experimental script crashing (see Section ‘Repeated Run’).

code availability
The code is available as part of the data collection at the data repository of the Donders Institute for Brain, 
Cognition and Behaviour.

Received: 12 October 2021; Accepted: 10 May 2022;
Published: xx xx xxxx

https://doi.org/10.1038/s41597-022-01382-7


1 6Scientific Data |           (2022) 9:278  | https://doi.org/10.1038/s41597-022-01382-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

References
 1. Puchner, M. The written world: the power of stories to shape people, history, civilization first edition edn (Random House, New York, 2017).
 2. Bruner, J. The narrative construction of reality. Critical Inquiry 18, 1–21 (1991). Publisher: The University of Chicago Press.
 3. White, H. The value of narrativity in the representation of reality. Critical Inquiry 7, 5–27, https://doi.org/10.1086/448086 (1980).
 4. Hasson, U. & Honey, C. J. Future trends in neuroimaging: neural processes as expressed within real-life contexts. NeuroImage 62, 

1272–1278, https://doi.org/10.1016/j.neuroimage.2012.02.004 (2012). Tex.mendeley-tags: cognitive neuroscience,fMRI.
 5. Willems, R. M. (ed.) Cognitive neuroscience of natural language use (Cambridge University Press, Cambridge, United Kingdom, 2015).
 6. Brennan, J. R. Naturalistic sentence comprehension in the brain: naturalistic comprehension. Language and Linguistics Compass 10, 

299–313, https://doi.org/10.1111/lnc3.12198 (2016).
 7. Matusz, P. J., Dikker, S., Huth, A. G. & Perrodin, C. Are we ready for real-world neuroscience? Journal of Cognitive Neuroscience 31, 

327–338, https://doi.org/10.1162/jocn_e_01276 (2018).
 8. Kandylaki, K. D. & Bornkessel-Schlesewsky, I. From story comprehension to the neurobiology of language. Language, Cognition and 

Neuroscience 34, 405–410, https://doi.org/10.1080/23273798.2019.1584679 (2019).
 9. Hamilton, L. S. & Huth, A. G. The revolution will not be controlled: natural stimuli in speech neuroscience. Language, Cognition and 

Neuroscience 0, 1–10, https://doi.org/10.1080/23273798.2018.1499946 (2018).
 10. Nastase, S. A., Goldstein, A. & Hasson, U. Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. 

NeuroImage 222, 117254, https://doi.org/10.1016/j.neuroimage.2020.117254 (2020).
 11. Willems, R. M., Nastase, S. A. & Milivojevic, B. Narratives for neuroscience. Trends in Neurosciences 43, 271–273, https://doi.

org/10.1016/j.tins.2020.03.003 (2020).
 12. Wehbe, L. et al. Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses. PLoS ONE 

9, e112575, https://doi.org/10.1371/journal.pone.0112575 (2014).
 13. Armeni, K., Willems, R. M. & Frank, S. L. Probabilistic language models in cognitive neuroscience: Promises and pitfalls. 

Neuroscience & Biobehavioral Reviews 83, 579–588, https://doi.org/10.1016/j.neubiorev.2017.09.001 (2017).
 14. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444, https://doi.org/10.1038/nature14539 (2015).
 15. Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial intelligence. Proceedings of the National Academy of 

Sciences 201907373, https://doi.org/10.1073/pnas.1907373117 (2020).
 16. Goldberg, Y. Neural network methods for natural language processing. No. 37 in Synthesis lectures on human language technologies 

(Morgan & Claypool Publishers, San Rafael, 2017). OCLC: 990794614.
 17. Bengio, Y., Ducharme, R., Vincent, P. & Jauvin, C. A neural probabilistic language model. Journal of Machine Learning Research 3, 

1137–1155 (2003).
 18. Mikolov, T., Karafiát, M., Burget, L., Cernocký, J. & Khudanpur, S. Recurrent neural network based language model. In 

INTERSPEECH 2010, 11th Annual Conference of the International Speech Communication Association, Makuhari, Chiba, Japan, 
September 26-30, 2010, 1045–1048 (2010).

 19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. & Dean, J. Distributed representations of words and phrases and their 
compositionality. In Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2, NIPS’13, 
3111–3119 (Curran Associates Inc., Red Hook, NY, USA, 2013). Event-place: Lake Tahoe, Nevada.

 20. Pennington, J., Socher, R. & Manning, C. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference on 
Empirical Methods in Natural Language Processing (EMNLP), 1532–1543, https://doi.org/10.3115/v1/D14-1162 (Association for 
Computational Linguistics, Doha, Qatar, 2014).

 21. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. 
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human 
Language Technologies, Volume 1 (Long and Short Papers), 4171–4186, https://doi.org/10.18653/v1/N19-1423 (Association for 
Computational Linguistics, Minneapolis, Minnesota, 2019).

 22. Radford, A. et al. Language models are unsupervised multitask learners (2019).
 23. Brown, T. et al. Language models are few-shot learners. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F. & Lin, H. (eds.) 

Advances in Neural Information Processing Systems, vol. 33, 1877–1901 (Curran Associates, Inc., 2020).
 24. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. In Pereira, F., Burges, 

C. J. C., Bottou, L. & Weinberger, K. Q. (eds.) Advances in Neural Information Processing Systems 25, 1097–1105 (Curran Associates, 
Inc., 2012). Krizhevsky_imagenet_2012.

 25. Kriegeskorte, N. Deep neural networks: A new framework for modeling biological vision and brain information processing. Annual 
Review of Vision Science 1, 417–446, https://doi.org/10.1146/annurev-vision-082114-035447 (2015).

 26. Güçlü, U. & Gerven, M. A. J. V. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral 
stream. Journal of Neuroscience 35, 10005–10014, https://doi.org/10.1523/JNEUROSCI.5023-14.2015 (2015).

 27. Yamins, D. L. & DiCarlo, J. J. Using goal-driven deep learning models to understand sensory cortex. Nature Neuroscience 19, 
356–365, https://doi.org/10.1038/nn.4244 (2016).

 28. Alishahi, A., Chrupała, G. & Linzen, T. Analyzing and interpreting neural networks for NLP: A report on the first BlackboxNLP 
workshop. Natural Language Engineering 25, 543–557, https://doi.org/10.1017/S135132491900024X (2019).

 29. Giulianelli, M., Harding, J., Mohnert, F., Hupkes, D. & Zuidema, W. Under the hood: Using diagnostic classifiers to investigate and 
improve how language models track agreement information. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing 
and Interpreting Neural Networks for NLP, 240–248, https://doi.org/10.18653/v1/W18-5426 (Association for Computational 
Linguistics, Brussels, Belgium, 2018).

 30. Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U. & Levy, O. Emergent linguistic structure in artificial neural networks trained 
by self-supervision. Proceedings of the National Academy of Sciences https://doi.org/10.1073/pnas.1907367117 (2020). Publisher: 
National Academy of Sciences Section: Physical Sciences.

 31. Mitchell, T. M. et al. Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195, https://doi.
org/10.1126/science.1152876 (2008).

 32. Pereira, F. et al. Toward a universal decoder of linguistic meaning from brain activation. Nature Communications 9, 963, https://doi.
org/10.1038/s41467-018-03068-4 (2018).

 33. Gauthier, J. & Levy, R. Linking artificial and human neural representations of language. In Proceedings of the 2019 Conference on 
Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), 529–539, https://doi.org/10.18653/v1/D19-1050 (Association for Computational Linguistics, Hong Kong, China, 2019).

 34. Wehbe, L., Vaswani, A., Knight, K. & Mitchell, T. M. Aligning context-based statistical models of language with brain activity during 
reading. In EMNLP, 233–243 (ACL, 2014).

 35. Huth, A. G., Heer, W. A. D., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L. Natural speech reveals the semantic maps that tile 
human cerebral cortex. Nature 532, 453, https://doi.org/10.1038/nature17637 (2016).

 36. Berezutskaya, J., Freudenburg, Z. V., Güçlü, U., Gerven, M. A. J. V. & Ramsey, N. F. Neural tuning to low-level features of speech 
throughout the perisylvian cortex. Journal of Neuroscience 37, 7906–7920, https://doi.org/10.1523/JNEUROSCI.0238-17.2017 (2017).

 37. Caucheteux, C. & King, J.-R. Language processing in brains and deep neural networks: computational convergence and its limits. bioRxiv 
2020.07.03.186288, https://doi.org/10.1101/2020.07.03.186288, Publisher: Cold Spring Harbor Laboratory Section: New Results (2020).

 38. Cichy, R. M. & Kaiser, D. Deep neural networks as scientific models. Trends in Cognitive Sciences 23, 305–317, https://doi.
org/10.1016/j.tics.2019.01.009 (2019).

https://doi.org/10.1038/s41597-022-01382-7
https://doi.org/10.1086/448086
https://doi.org/10.1016/j.neuroimage.2012.02.004
https://doi.org/10.1111/lnc3.12198
https://doi.org/10.1162/jocn_e_01276
https://doi.org/10.1080/23273798.2019.1584679
https://doi.org/10.1080/23273798.2018.1499946
https://doi.org/10.1016/j.neuroimage.2020.117254
https://doi.org/10.1016/j.tins.2020.03.003
https://doi.org/10.1016/j.tins.2020.03.003
https://doi.org/10.1371/journal.pone.0112575
https://doi.org/10.1016/j.neubiorev.2017.09.001
https://doi.org/10.1038/nature14539
https://doi.org/10.1073/pnas.1907373117
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1146/annurev-vision-082114-035447
https://doi.org/10.1523/JNEUROSCI.5023-14.2015
https://doi.org/10.1038/nn.4244
https://doi.org/10.1017/S135132491900024X
https://doi.org/10.18653/v1/W18-5426
https://doi.org/10.1073/pnas.1907367117
https://doi.org/10.1126/science.1152876
https://doi.org/10.1126/science.1152876
https://doi.org/10.1038/s41467-018-03068-4
https://doi.org/10.1038/s41467-018-03068-4
https://doi.org/10.18653/v1/D19-1050
https://doi.org/10.1038/nature17637
https://doi.org/10.1523/JNEUROSCI.0238-17.2017
https://doi.org/10.1101/2020.07.03.186288
https://doi.org/10.1016/j.tics.2019.01.009
https://doi.org/10.1016/j.tics.2019.01.009


17Scientific Data |           (2022) 9:278  | https://doi.org/10.1038/s41597-022-01382-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

 39. Kriegeskorte, N. & Golan, T. Neural network models and deep learning. Current Biology 29, R231–R236, https://doi.org/10.1016/j.
cub.2019.02.034 (2019).

 40. Marblestone, A. H., Wayne, G. & Kording, K. P. Toward an integration of deep learning and neuroscience. Frontiers in Computational 
Neuroscience 10, https://doi.org/10.3389/fncom.2016.00094 (2016).

 41. Richards, B. A. et al. A deep learning framework for neuroscience. Nature Neuroscience 22, 1761–1770, https://doi.org/10.1038/
s41593-019-0520-2 (2019).

 42. Fong, R. C., Scheirer, W. J. & Cox, D. D. Using human brain activity to guide machine learning. Scientific Reports 8, 5397, https://doi.
org/10.1038/s41598-018-23618-6 (2018).

 43. Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M. & Tolias, A. S. Engineering a less artificial intelligence. Neuron 103, 967–979, https://
doi.org/10.1016/j.neuron.2019.08.034 (2019).

 44. Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. Neuroscience-inspired artificial intelligence. Neuron 95, 245–258, 
https://doi.org/10.1016/j.neuron.2017.06.011 (2017).

 45. Geman, S., Bienenstock, E. & Doursat, R. Neural networks and the bias/variance dilemma. Neural Computation 4, 1–58, https://doi.
org/10.1162/neco.1992.4.1.1 (1992).

 46. Schoffelen, J.-M. et al. A 204-subject multimodal neuroimaging dataset to study language processing. Scientific Data 6, 17, https://doi.
org/10.1038/s41597-019-0020-y (2019). Bandiera_abtest: a Cc_license_type: cc_publicdomain Cg_type: Nature Research Journals 
Number: 1 Primary_atype: Research Publisher: Nature Publishing Group Subject_term: Electrophysiology;Functional magnetic resonance 
imaging;Language;Psychology Subject_term_id: electrophysiology;functional-magnetic-resonance-imaging;language;psychology.

 47. Nastase, S. A. et al. The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data 8, 
250, https://doi.org/10.1038/s41597-021-01033-3 (2021).

 48. Seeliger, K. et al. Convolutional neural network-based encoding and decoding of visual object recognition in space and time. 
NeuroImage https://doi.org/10.1016/j.neuroimage.2017.07.018 (2017).

 49. Anumanchipalli, G. K., Chartier, J. & Chang, E. F. Speech synthesis from neural decoding of spoken sentences. Nature 568, 493–498, 
https://doi.org/10.1038/s41586-019-1119-1 (2019).

 50. Makin, J. G., Moses, D. A. & Chang, E. F. Machine translation of cortical activity to text with an encoder–decoder framework. Nature 
Neuroscience 23, 575–582, https://doi.org/10.1038/s41593-020-0608-8 (2020).

 51. Güçlü, U. & van Gerven, M. A. J. Modeling the dynamics of human brain activity with recurrent neural networks. Frontiers in 
Computational Neuroscience 11, https://doi.org/10.3389/fncom.2017.00007 (2017).

 52. Smith, P. L. & Little, D. R. Small is beautiful: In defense of the small-N design. Psychonomic Bulletin & Review 1–19, https://doi.
org/10.3758/s13423-018-1451-8 (2018).

 53. Baillet, S., Mosher, J. C. & Leahy, R. M. Electromagnetic brain mapping. IEEE Signal Processing Magazine 18, 14–30 (2001).
 54. Lopes da Silva, F. EEG and MEG: Relevance to neuroscience. Neuron 80, 1112–1128, https://doi.org/10.1016/j.neuron.2013.10.017 (2013).
 55. Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J. & Lounasmaa, O. V. Magnetoencephalography—theory, instrumentation, 

and applications to noninvasive studies of the working human brain. Reviews of Modern Physics 65, 413–497, https://doi.
org/10.1103/RevModPhys.65.413 (1993).

 56. Baillet, S. Magnetoencephalography for brain electrophysiology and imaging. Nature Neuroscience 20, 327–339, https://doi.
org/10.1038/nn.4504 (2017). Number: 3 Publisher: Nature Publishing Group.

 57. Holdgraf, C. R. et al. Encoding and decoding models in cognitive electrophysiology. Frontiers in Systems Neuroscience 11, https://
doi.org/10.3389/fnsys.2017.00061 (2017).

 58. Gross, J. et al. Good practice for conducting and reporting MEG research. NeuroImage 65, 349–363, https://doi.org/10.1016/j.
neuroimage.2012.10.001 (2013).

 59. Pernet, C. R. et al. Best practices in data analysis and sharing in neuroimaging using MEEG. preprint, Open Science Framework 
https://doi.org/10.31219/osf.io/a8dhx (2018).

 60. Strauber, C. B., Ali, L. R., Fujioka, T., Thille, C. & McCandliss, B. D. Replicability of neural responses to speech accent is driven by study 
design and analytical parameters. Scientific Reports 11, 4777, https://doi.org/10.1038/s41598-021-82782-4 (2021). Bandiera_abtest: a Cc_
license_type: cc_by Cg_type: Nature Research Journals Number: 1 Primary_atype: Research Publisher: Nature Publishing Group Subject_
term: Language;Perception Subject_term_id: language;perception.

 61. Yuan, J. & Liberman, M. Speaker identification on the SCOTUS corpus. The Journal of the Acoustical Society of America 123, 
3878–3878, https://doi.org/10.1121/1.2935783 (2008).

 62. Mak, M. & Willems, R. M. Mental simulation during literary reading: Individual differences revealed with eye-tracking. Language, 
Cognition and Neuroscience 34, 511–535, https://doi.org/10.1080/23273798.2018.1552007 (2019).

 63. Knoop, C. A., Wagner, V., Jacobsen, T. & Menninghaus, W. Mapping the aesthetic space of literature “from below”. Poetics 56, 35–49, 
https://doi.org/10.1016/j.poetic.2016.02.001 (2016).

 64. Kuijpers, M. M., Hakemulder, F., Tan, E. S. & Doicaru, M. M. Exploring absorbing reading experiences: Developing and validating a 
self-report scale to measure story world absorption. Scientific Study of Literature 4, 89–122, https://doi.org/10.1075/ssol.4.1.05kui (2014).

 65. Meyer, S. S. et al. Flexible head-casts for high spatial precision MEG. Journal of Neuroscience Methods 276, 38–45, https://doi.
org/10.1016/j.jneumeth.2016.11.009 (2017).

 66. Stolk, A., Todorovic, A., Schoffelen, J.-M. & Oostenveld, R. Online and offline tools for head movement compensation in MEG. 
NeuroImage 68, 39–48, https://doi.org/10.1016/j.neuroimage.2012.11.047 (2013).

 67. Armeni, K., Güçlü, U., van Gerven, M. & Schoffelen, J.-M. A 10-hour within-participant magnetoencephalography narrative dataset 
to test models of naturalistic language comprehension. Donders Data Repository https://doi.org/10.34973/5rpw-rn92 (2022).

 68. Niso, G. et al. MEG-BIDS, the brain imaging data structure extended to magnetoencephalography. Scientific Data 5, https://doi.
org/10.1038/sdata.2018.110 (2018).

 69. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and 
Invasive Electrophysiological Data. Computational Intelligence and Neuroscience https://doi.org/10.1155/2011/156869 (2011).

 70. Armeni, K., Willems, R. M., van den Bosch, A. & Schoffelen, J.-M. Frequency-specific brain dynamics related to prediction during 
language comprehension. NeuroImage https://doi.org/10.1016/j.neuroimage.2019.04.083 (2019).

 71. Luck, S. J. An introduction to the event-related potential technique (The MIT Press, Cambridge, Massachusetts, 2014), second edn.
 72. Smith, S. M. Fast robust automated brain extraction. Human Brain Mapping 17, 143–155, https://doi.org/10.1002/hbm.10062 (2002).
 73. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W. & Smith, S. M. FSL. NeuroImage 62, 782–790, https://doi.

org/10.1016/j.neuroimage.2011.09.015 (2012).
 74. Nolte, G. The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward 

calculation in realistic volume conductors. Physics in Medicine and Biology 48, 3637–3652, https://doi.org/10.1088/0031-
9155/48/22/002 (2003).

 75. Veen, B. D. V., Drongelen, W. V., Yuchtman, M. & Suzuki, A. Localization of brain electrical activity via linearly constrained minimum 
variance spatial filtering. IEEE Transactions on Biomedical Engineering 44, 867–880, https://doi.org/10.1109/10.623056 (1997).

 76. Lam, N. H. L., Hultén, A., Hagoort, P. & Schoffelen, J.-M. Robust neuronal oscillatory entrainment to speech displays individual 
variation in lateralisation. Language, Cognition and Neuroscience 0, 1–12, https://doi.org/10.1080/23273798.2018.1437456 (2018).

 77. Broderick, M. P., Anderson, A. J., Liberto, G. M. D., Crosse, M. J. & Lalor, E. C. Electrophysiological correlates of semantic dissimilarity 
reflect the comprehension of natural, narrative speech. Current Biology 0, https://doi.org/10.1016/j.cub.2018.01.080 (2018).

https://doi.org/10.1038/s41597-022-01382-7
https://doi.org/10.1016/j.cub.2019.02.034
https://doi.org/10.1016/j.cub.2019.02.034
https://doi.org/10.3389/fncom.2016.00094
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41593-019-0520-2
https://doi.org/10.1038/s41598-018-23618-6
https://doi.org/10.1038/s41598-018-23618-6
https://doi.org/10.1016/j.neuron.2019.08.034
https://doi.org/10.1016/j.neuron.2019.08.034
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1038/s41597-019-0020-y
https://doi.org/10.1038/s41597-019-0020-y
https://doi.org/10.1038/s41597-021-01033-3
https://doi.org/10.1016/j.neuroimage.2017.07.018
https://doi.org/10.1038/s41586-019-1119-1
https://doi.org/10.1038/s41593-020-0608-8
https://doi.org/10.3389/fncom.2017.00007
https://doi.org/10.3758/s13423-018-1451-8
https://doi.org/10.3758/s13423-018-1451-8
https://doi.org/10.1016/j.neuron.2013.10.017
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1103/RevModPhys.65.413
https://doi.org/10.1038/nn.4504
https://doi.org/10.1038/nn.4504
https://doi.org/10.3389/fnsys.2017.00061
https://doi.org/10.3389/fnsys.2017.00061
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.1016/j.neuroimage.2012.10.001
https://doi.org/10.31219/osf.io/a8dhx
https://doi.org/10.1038/s41598-021-82782-4
https://doi.org/10.1121/1.2935783
https://doi.org/10.1080/23273798.2018.1552007
https://doi.org/10.1016/j.poetic.2016.02.001
https://doi.org/10.1075/ssol.4.1.05kui
https://doi.org/10.1016/j.jneumeth.2016.11.009
https://doi.org/10.1016/j.jneumeth.2016.11.009
https://doi.org/10.1016/j.neuroimage.2012.11.047
https://doi.org/10.34973/5rpw-rn92
https://doi.org/10.1038/sdata.2018.110
https://doi.org/10.1038/sdata.2018.110
https://doi.org/10.1155/2011/156869
https://doi.org/10.1016/j.neuroimage.2019.04.083
https://doi.org/10.1002/hbm.10062
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1088/0031-9155/48/22/002
https://doi.org/10.1088/0031-9155/48/22/002
https://doi.org/10.1109/10.623056
https://doi.org/10.1080/23273798.2018.1437456
https://doi.org/10.1016/j.cub.2018.01.080


1 8Scientific Data |           (2022) 9:278  | https://doi.org/10.1038/s41597-022-01382-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.
org/10.1038/s41597-022-01382-7.
Correspondence and requests for materials should be addressed to J.-M.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2022

https://doi.org/10.1038/s41597-022-01382-7
https://doi.org/10.1038/s41597-022-01382-7
https://doi.org/10.1038/s41597-022-01382-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A 10-hour within-participant magnetoencephalography narrative dataset to test models of language comprehension
	Background & Summary
	Methods
	Participants. 
	Stimulus materials. 
	Word timing information. 
	Task and experimental design. 
	Comprehension check. 
	Information density and absorption questions. 
	Literary appreciation. 
	MEG data acquisition. 
	Empty room recordings. 
	Repeated stimulus recordings. 

	MRI data acquisition. 
	MRI-MEG coregistration. 
	Eye-tracking data acquisition. 

	Data Records
	Code (‘/code’). 
	Stimulus folder (‘/stimuli’). 
	Presentation log files and responses (‘/sourcedata/responses’). 
	Derivatives folder (‘/derivatives’). 
	Anatomical atlas (‘./atlas‘). 
	Anatomical preprocessing (‘./fieldtrip-anatomy’). 
	Preprocessing (‘./fieldtrip-preprocessing’). 
	Cortical surfaces (‘./workbench-anatomy’). 

	Raw MEG data folder (‘/sub-00X/ses-00Y/meg’). 
	Eye-tracking data (‘/sub-00X/ses-00Y/eyelink’). 
	MRI data (‘sub-00X/ses-001/anat’). 

	Technical Validation
	Head movement. 
	Evoked responses. 
	Preprocessing. 
	Source reconstruction. 
	Event-related fields. 

	Repeat reliability. 

	Usage Notes
	Interpretation of behavioral log files (‘_beh.txt’). 
	Interpretation of the ‘events.tsv’ file. 
	Additional recording channels. 

	Known Exceptions and Issues
	Bad channels. 
	Repeated run. 
	Low-frequency artifacts. 
	Spike-like artifact in two channels (sub-003, ses-003). 
	Exceptions in appreciation measurements. 

	Fig. 1 The structure of the dataset.
	Fig. 2 Trial structure.
	Fig. 3 (a) Example of headcast placement on a participants’ head.
	Fig. 4 Data records overview.
	Fig. 5 Session-initial head displacement per participant in all 10 sessions.
	Fig. 6 Comparison of head movement for five sessions in a dataset without headcast (left) and the current dataset (right).
	Fig. 7 Head movement per session and per participant.
	Fig. 8 Analysis of evoked responses for one session in the dataset.
	Fig. 9 Analysis of evoked responses for participant 1, sessions 2 through 10.
	Fig. 10 Analysis of evoked responses for participant 2, sessions 2 through 10.
	Fig. 11 Analysis of evoked responses for participant 3, sessions 2 through 10.
	Table 1 P-values for comparisons in the canonical correlation analysis (CCA) of repeated segments (cca) and randomly selected segments (cca′).
	Table 2 Description of variables in *beh.
	Table 3 Mapping between events in the experimentally relevant code in the Presentation log files and the CTF trigger channel.
	Table 4 A sample of an ‘*events.
	Table 5 Additional recording channels in the MEG datasets.
	Table 6 Literary appreciation questionnaire.




