Recently, a new isoform of the type II transforming growth factor beta receptor (TGF-βRII) was identified. This isoform (TGF-βRII₂) contains an insertion of 25 amino acids in the extracellular domain of the receptor. Using RT-PCR the authors demonstrated that both TGF-βRII and TGF-βRII₂ are expressed by chondrocytes in murine and human articular cartilage. Bovine articular chondrocytes expressed TGF-βRII mRNA but did not express detectable levels of TGF-βRII₂ mRNA, suggesting that the new isoform does not play an important role in normal bovine cartilage physiology. Because TGF-β responses seem to be age related and differential TGF-β responses have been described between normal cartilage and cartilage undergoing repair the authors studied if the relative mRNA expression between these isoforms is altered during cartilage repair and aging. No differences in the relative mRNA expression of the two isoforms of the type II TGF-β receptor could be demonstrated in murine cartilage during aging or during the repair phase after mild PG depletion indicating that it is unlikely that age-related TGF-β responses and differential TGF-β responses between normal cartilage and cartilage undergoing repair are the result of differences in the relative expression of the two TGF-βRII isoforms.
Because TGF-β effects on articular cartilage seem to be age related and differential TGF-β responses have been described between normal cartilage and cartilage undergoing repair, the authors also studied if the relative expression of TGF-βRII1 and TGF-βRII2 is altered during aging or during matrix repair after PG depletion.

RESULTS

TGF-βRII1 and TGF-βRII2 mRNA expression in normal cartilage

RT-PCR on isolated RNA from human and murine articular cartilage using TGF-βRII specific primers resulted in two PCR products. The sizes of the PCR products corresponded to the expected size of amplified TGF-βRII1 mRNA (525 bp) and TGF-βRII2 mRNA (601 bp) demonstrating that both TGF-βRII1 and TGF-βRII2 mRNA are expressed in normal articular cartilage. However, there were striking differences in the relative expression of the two isoforms between species. Murine articular chondrocytes expressed almost equal amounts of TGF-βRII1 and TGF-βRII2 mRNA, while human articular chondrocytes expressed about three times more TGF-βRII1 mRNA than TGF-βRII2 mRNA. When RNA from bovine articular chondrocytes was used only TGF-βRII1 mRNA was detected demonstrating that the expression of the TGF-βRII2 isoform is very low or absent (Fig. 1).

TGF-βRII1 and TGF-βRII2 mRNA expression in cartilage of different age

It has been reported that TGF-β has different effects on old cartilage compared to young cartilage. To investigate if these age-related TGF-β responses are the result of differences in the relative expression of the two isoforms of the TGF-β type II receptor the authors determined the relative mRNA expression of TGF-βRII1 and TGF-βRII2 in murine articular cartilage of different ages. RNA was isolated from patellar cartilage 3, 6, 12, 18 and 24 months of age, and RT-PCR was performed. As shown in Fig. 2, articular cartilage from mice of all ages express both TGF-βRII1 and TGF-βRII2 mRNA. No differences could be demonstrated in the relative expression of TGF-βRII1 and TGF-βRII2 mRNA between 3 months old (young adult) cartilage and cartilage up to 24 months of age (very old).

TGF-βRII1 and TGF-βRII2 mRNA expression in cartilage during a repair phase

Because differential TGF-β responses have also been described between normal cartilage and cartilage

---

Figure 1. Expression of TGF-βRII1 and TGF-βRII2 mRNA in normal bovine (B), murine (M) and human (H) articular cartilage.

Total RNA was isolated from normal articular cartilage and RT-PCR was performed. PCR products are separated on a 1.6% agarose gel. Each lane shows the products of RT-PCR using RNA from different donors. RNA from human and bovine cartilage was isolated from individual donors while RNA of murine cartilage was isolated from pooled patellar cartilage of five mice.

Figure 2. Expression of TGF-βRII1 and TGF-βRII2 mRNA in murine articular cartilage between 3 and 24 months of age.

RT-PCR was performed using RNA isolated from patellar articular cartilage of different age. RNA was isolated from pooled patellar cartilage of five mice. Shown is a representative experiment of three.
Expression of type II TGF-β receptor isoforms

Effect of type II TGF-β receptor isoforms on the expression of glycosaminoglycans in normal and injured cartilage. The results are expressed as percentage of [35S]sulfate incorporation of patellar cartilage from joints which were intra-articularly injected with saline. Shown is a representative experiment of three.

DISCUSSION

Recently a new isoform of the type II TGF-β receptor was identified.19,20 This new isoform (TGF-βRII) contains an insertion of 25 amino acids in the extracellular domain of the receptor. An important role of this isoform is suggested by the high conservation of this insertion between species. Since the original type II receptor (TGF-βRII) has a low affinity for TGF-β2,21,22 it was investigated whether the new isoform was a TGF-β2-specific receptor. However, binding studies using transfected cells showed that TGF-βRII also had a much higher affinity for TGF-β1 than for TGF-β2.21,22 These results indicate that the new isoform is not a TGF-β2-specific receptor. Transfection studies using a TGF-β resistant cell line which lacks endogenous TGF-βRI demonstrated that TGF-βRII and TGF-βRII were indistinguishable in their biological functions.23 However, these studies are non-physiological and limited to only a few specific TGF-β responses.

Using RT-PCR it has been demonstrated for the first time that both TGF-βRII and TGF-βRII mRNA are expressed in normal human and murine articular cartilage. The authors were not able to detect TGF-βRII mRNA in bovine articular chondrocytes. Although murine primers were used in these studies we can exclude the possibility that the inability to detect TGF-βRII mRNA in bovine articular chondrocytes is an artefact due to differences in the primer-annealing sequences. Both TGF-βRII and TGF-βRII mRNA were amplified in the same tube, using the same primers and under the same conditions so the isoforms are internal controls for each other. Since TGF-βRII mRNA could be detected in bovine chondrocytes it can be concluded that bovine articular chondrocytes do not express TGF-βRII mRNA or express this isoform at a very low level. This implicates that it is unlikely that TGF-βRII plays an essential role in the metabolism of normal bovine articular cartilage.

TGF-β responses on articular chondrocytes are shown to be age related.24-27 For example, articular

undergoing repair after cartilage injury11,28,29 whether the relative expression of TGF-βRII and TGF-βRII mRNA is altered during the repair phase after mild PG depletion was investigated. A murine cartilage repair model was used in which 0.5% papain was injected in the murine knee joint. Intra-articular injection of papain results in PG depletion21 and an inhibition of the PG synthesis up to 50% at one day after injection (Fig. 3). The PG synthesis is normalized between three and four days after injection whereafter the PG synthesis is supranormal up to 14 days with a maximal stimulation at 7 days after injection. The relative TGF-βRII and TGF-βRII mRNA expression in cartilage was determined by RT-PCR at different points of time after injection of papain. No differences in the relative mRNA expression of the two isoforms could be demonstrated between normal articular cartilage and cartilage after papain treatment on any point of time (Fig. 4).

Figure 3. Effect of intra-articular injection of 0.5% papain on the PG synthesis of patellar cartilage.

Glycosaminoglycan synthesis was measured ex vivo by [35S]sulfate incorporation using five patellae at each point of time. The results are expressed as percentage of [35S]sulfate incorporation of patellar cartilage from joints which were intra-articularly injected with saline. Shown is a representative experiment of three.

Figure 4. Expression of TGF-βRII and TGF-βRII mRNA in patellar cartilage after PG depletion.

Murine patellae were dissected at several points of time after intra-articular injection of 0.5% papain (P) or saline (C). RNA was isolated from pooled patellar cartilage of five mice. RT-PCR was performed and the PCR products are separated on a 1.6% agarose gel. Shown is a representative experiment of three.
cartilage from old adult pigs is more sensitive to TGF-β induced elaboration of extracellular inorganic pyrophosphate (ePPI) than cartilage from juvenile and young adult pigs. Young murine articular cartilage appears to be more sensitive to TGF-β-induced stimulation of PG synthesis than old murine articular cartilage. Because various TGF-β responses are age related, the authors investigated if one of the isoforms is selectively upregulated during aging. However, it was demonstrated that the ratio between TGF-βRII1 and TGF-βRII2 mRNA does not differ in murine articular cartilage between 3 months and 24 months of age. These results suggest that the described differential TGF-β responses between old and young articular cartilage are not mediated by differences in the relative expression of the two isoforms of TGF-βRII.

It has also been demonstrated that TGF-β has different effects on normal articular cartilage and cartilage during a repair phase. For example, TGF-β stimulated PG synthesis of human osteoarthritic cartilage while under the same conditions TGF-β did not have a significant effect on the PG synthesis of normal human cartilage. In addition, TGF-β enhanced the PG synthesis of interleukin 1 (IL-1)-treated cartilage but the effects of TGF-β on normal cartilage PG synthesis were minimal. The relative expression of TGF-βRII1 and TGF-βRII2 mRNA in the repair phase after mild PG depletion was investigated. Mild PG depletion in murine articular cartilage was induced by injection of 0.5% papain in the murine knee joint. No differences in the relative expression of TGF-βRII1 and TGF-βRII2 mRNA could be demonstrated between normal cartilage and cartilage undergoing repair after mild PG depletion. This indicates that the supranormal PG synthesis after PG depletion by papain is not mediated by selective upregulation of mRNA of one of the two isoforms. This also suggests that the described differential TGF-β responses between normal cartilage and cartilage undergoing repair are not the result of differences in the relative expression of TGF-βRII1 and TGF-βRII2 mRNA.

In summary, this study demonstrates that the newly identified isoform of the type II TGF-β receptor (TGF-βRII2) is expressed in normal human and murine articular cartilage. TGF-βRII1 mRNA was not detectable in bovine articular cartilage indicating that it is unlikely that TGF-βRII1 plays an important role in the physiology of normal bovine articular cartilage. No differences in the relative mRNA expression of the two isoforms of the type II TGF-β receptor could be demonstrated in murine cartilage during aging or during the repair phase after mild PG depletion indicating that it is unlikely that age related TGF-β responses and differential TGF-β responses between normal cartilage and cartilage undergoing repair are the result of differences in the relative expression of the two TGF-βRII isoforms.

MATERIALS AND METHODS

Animals

Male C57Bl/10 mice were used to study age-related differences. Male C57Bl/6 mice were used in experiments in which cartilage depletion was induced. Mice were kept in cages with a wood chip bedding in a room kept at constant temperature. They were fed a standard diet and tap water ad libitum.

Isolation of cartilage

Murine articular cartilage was isolated from patellae. Patellae were decalcified in 3.5% EDTA for 4 h at 4°C, when the whole cartilage layer was stripped off. Because old cartilage is more calcified, decalcification of patellae of old mice (>3 month) was performed overnight at 4°C. In control experiments it was demonstrated that decalcification by EDTA does not affect efficiency of RNA isolation or RT-PCR (data not shown). Bovine cartilage was isolated from metacarpophalangeal joints within 8 h after death of the animals. Human cartilage was isolated from femoral condyles within 18 h after death of the donor. Only cartilage samples which were histologically defined as normal were used. Isolated human and bovine articular cartilage was immediately frozen in liquid nitrogen.

RNA isolation and RT-PCR

Total RNA was isolated using TRIzol Reagent (Life Technologies). Human and bovine articular cartilage was ground to powder in a freeze mill and defrosted in TRIzol. Murine articular cartilage was directly after isolation extracted with TRIsol. Before reverse transcription total RNA was treated with DNase (Life Technologies). Reverse transcription was performed with M-MLV Reverse Transcriptase (Life Technologies) using the 3' PCR primer. Taq DNA Polymerase (Life Technologies) was used in the PCR reaction. cDNA was cycled 35 times at 92°C for 1 min, 55°C for 1 min and 72°C for 1 min. The amplified products were separated on an 1.6% agarose gel and visualized by chemiluminescence using the Digoxigenin (DIG) System (Boehringer Mannheim). The PCR primers used for amplification of TGF-βRII1 and TGF-βRII2 mRNA are described by Suzuki et al. Since these primers are located on both sides of the insertion, the PCR products of TGF-βRII1 or TGF-βRII2 differ in size (525 bp and 601 bp, respectively) and show different mobility on an 1.6% agarose gel.

Induction of mild proteoglycan depletion

Mild PG depletion was induced in 10-week-old male C57Bl/6 mice by intra-articular injection of papain as described by van der Kraan et al. In short, the right knee-joints of the mice were injected once with 6 µl 0.5% papain (Type IV, 15 U/mg, Sigma in 0.03 M l-cysteine.HCl, Sigma). The left control knees were injected with saline. At several points of time after the injection patellae were isolated and used for determination of patellar PG synthesis and RNA extraction for RT-PCR.
Determination of patellar cartilage proteoglycan synthesis

Proteoglycan synthesis was measured ex vivo. Whole patellae, with a standard amount of surrounding tissue, were dissected from the knee joints. Patellae were pulse-labelled (2 h, 37°C) with [35S]sulfate (1.1 MBq/ml). After labelling the patellae were washed, fixed, decalcified, punched out of the surrounding tissue, dissolved and counted by liquid scintillation counting as described previously.24

REFERENCES