Reply to "Comment on 'Inverse Square Lévy Walks are not Optimal Search Strategies for $d \ge 2$ " The central result of our Letter [1] is that (i) the capture rate η of Levy walks with Poisson distributed targets goes linearly with the target density ρ for all values of the Levy exponent α in space dimension $d \ge 2$. This contradicts results in [2] and has important consequences: (ii) the optimal gain η_{max}/η achieved by varying α is bounded in the limit $\rho \to 0$ so that tuning α yields a marginal gain; (iii) the optimum is realized for a range of α and is controlled by the model-dependent parameters a (detection radius), l_c (restarting distance), and s (scale parameter) (Fig. 1).

First, and most importantly, [3] states that our main result (i) is correct, thereby acknowledging that the determination of η in [2] is wrong.

Second, [3] proposes that claim (iii) is not new because earlier publications reported that optimal Levy strategies can be realized for $\alpha \neq 1$. We did acknowledge such observations in [1], where we in fact show that they result from the linear scaling of η with ρ for $d \geq 2$; this is novel.

Last, [3] disputes claim (ii). Technically, claim (ii) is correct and by no means compromised by [3]. It states that for *fixed* values of s, l_c , the optimal gain η_{max}/η is bounded when $\rho \to 0$. This comes from the linear scaling of η with ρ (Eq. (5) in [1], whose validity is acknowledged by [3]) and is *independent* of any determination of $K_d(\alpha, s, l_c)$. In [1], Eq. (3) is used only to derive the scaling of η with ρ ; we make no prediction regarding $K_d(\alpha, s, l_c)$. Attempting to deduce $K_d(\alpha, s, l_c)$ from Eq. (3) is the initiative of [3], not ours. In fact, we agree that Eq. (3) is unsuitable to study $l_c \to a$, which falls out of the validity regime given in [4]. This is certainly not a problem in [1], as argued by [3], simply because we nowhere aimed at determining $K_d(\alpha, s, l_c)$.

Finally, the only aspect in (ii) that [3] disputes is rethorical: our qualification of the optimum as marginal. The comment is based only on the analysis of the singular limit $s \to 0$ and $l_c \to a$, which can indeed lead to arbitrarily large values of $\eta_{\rm max}/\eta$ for $\alpha \to 1$. This is actually a mere 1d limit (Fig. 1), as noted in [1]; it is thus expected, and consistent with our findings, to recover the 1d optimum. This by no means contradicts claim (ii) of boundedness when $\rho \to 0$ for fixed s, l_c . Last, we summarize the conditions of optimality (CO) of inverse square Levy walks for $d \ge 2$:

- —Upon each capture event, a spherical target reappears infinitely fast at the same position.
- —The searcher starts the new search infinitely close to the target boundary $(l_c a \ll a)$.

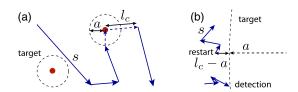


FIG. 1. (a) The Lévy walk search model in the generic 2d case. (b) Inverse square Levy walks are optimal only in the singular 1d limit $l_c - a \ll a$ and $s \ll a$.

—The typical scale of its displacements is infinitely smaller than the target ($s \ll a$). If any of these conditions is not met, $\alpha=1$ is not optimal. Given that s and l_c are system-dependent parameters with arbitrary values, the CO are generically not met, and our conclusion that inverse square Levy walks are not optimal is justified. Additionally, if l_c , s are allowed to vary, as done in [3], the obvious optimal strategy is $l_c=a$, leading to immediate recapture of the same target. The limit $l_c \to a^+$ in the CO is thus artificial.

To our knowledge, the CO have never been stated explicitly nor verified in any experimental system. Given that the CO are a mere 1d limit of the problem, the claim that [3] restores the optimality of $\alpha = 1$ for $d \ge 2$ is unfounded, and given that [3] acknowledges that the scaling of η with ρ is wrong in [2], stating that [3] restores the validity of [2] is also unfounded.

Nicolas Levernier, ¹ Johannes Textor, ² Olivier Bénichou ¹ and Raphaël Voituriez ¹

¹Laboratoire de Physique Théorique de la Matière Condensée CNRS/UPMC, 4 Place Jussieu, 75255 Paris, France

²Institute for Computing and Information Sciences Radboud University

6525 Nijmegen, The Netherlands

Received 13 November 2020; accepted 4 January 2021; published 28 January 2021

DOI: 10.1103/PhysRevLett.126.048902

- N. Levernier, J. Textor, O. Bénichou, and R. Voituriez, Phys. Rev. Lett. 124, 080601 (2020).
- [2] G. M. Viswanathan, S. V. Buldyrev, S. Havlin, M. G. E. da Luz, E. P. Raposo, and H. E. Stanley, Nature (London) 401, 911 (1999).
- [3] S. V. Buldyrev, E. P. Raposo, F. Bartumeus, S. Havlin, F. R. Rusch, M. G. E. da Luz, and G. M. Viswanathan, preceding comment, Phys. Rev. Lett. **126**, 048901 (2021).
- [4] N. Levernier, O. Bénichou, T. Guérin, and R. Voituriez, Phys. Rev. E **98**, 022125 (2018).