
 

Reply to “Comment on ‘Inverse Square LévyWalks are
not Optimal Search Strategies for d ≥ 2”’ The central
result of our Letter [1] is that (i) the capture rate η of Levy
walks with Poisson distributed targets goes linearly with
the target density ρ for all values of the Levy exponent α in
space dimension d ≥ 2. This contradicts results in [2] and
has important consequences: (ii) the optimal gain ηmax=η
achieved by varying α is bounded in the limit ρ → 0 so that
tuning α yields a marginal gain; (iii) the optimum is
realized for a range of α and is controlled by the model-
dependent parameters a (detection radius), lc (restarting
distance), and s (scale parameter) (Fig. 1).
First, and most importantly, [3] states that our main result

(i) is correct, thereby acknowledging that the determination
of η in [2] is wrong.
Second, [3] proposes that claim (iii) is not new because

earlier publications reported that optimal Levy strategies
can be realized for α ≠ 1. We did acknowledge such
observations in [1], where we in fact show that they
result from the linear scaling of η with ρ for d ≥ 2; this
is novel.
Last, [3] disputes claim (ii). Technically, claim (ii) is

correct and by no means compromised by [3]. It states that
for fixed values of s; lc, the optimal gain ηmax=η is bounded
when ρ → 0. This comes from the linear scaling of η with ρ
(Eq. (5) in [1], whose validity is acknowledged by [3]) and
is independent of any determination of Kdðα; s; lcÞ. In [1],
Eq. (3) is used only to derive the scaling of η with ρ; we
make no prediction regarding Kdðα; s; lcÞ. Attempting to
deduce Kdðα; s; lcÞ from Eq. (3) is the initiative of [3], not
ours. In fact, we agree that Eq. (3) is unsuitable to study
lc → a, which falls out of the validity regime given in [4].
This is certainly not a problem in [1], as argued by [3],
simply because we nowhere aimed at determining
Kdðα; s; lcÞ.
Finally, the only aspect in (ii) that [3] disputes is

rethorical: our qualification of the optimum as marginal.
The comment is based only on the analysis of the singular
limit s → 0 and lc → a, which can indeed lead to arbitrarily
large values of ηmax=η for α → 1. This is actually a mere 1d
limit (Fig. 1), as noted in [1]; it is thus expected, and
consistent with our findings, to recover the 1d optimum.
This by no means contradicts claim (ii) of boundedness
when ρ → 0 for fixed s; lc. Last, we summarize the
conditions of optimality (CO) of inverse square Levy walks
for d ≥ 2:
—Upon each capture event, a spherical target reappears

infinitely fast at the same position.
—The searcher starts the new search infinitely close to

the target boundary (lc − a ≪ a).

—The typical scale of its displacements is infinitely
smaller than the target (s ≪ a). If any of these conditions is
not met, α ¼ 1 is not optimal. Given that s and lc are
system-dependent parameters with arbitrary values, the CO
are generically not met, and our conclusion that inverse
square Levy walks are not optimal is justified. Additionally,
if lc; s are allowed to vary, as done in [3], the obvious
optimal strategy is lc ¼ a, leading to immediate recapture
of the same target. The limit lc → aþ in the CO is thus
artificial.
To our knowledge, the CO have never been stated

explicitly nor verified in any experimental system. Given
that the CO are a mere 1d limit of the problem, the claim
that [3] restores the optimality of α ¼ 1 for d ≥ 2 is
unfounded, and given that [3] acknowledges that the
scaling of η with ρ is wrong in [2], stating that [3] restores
the validity of [2] is also unfounded.
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FIG. 1. (a) The Lévy walk search model in the generic 2d case.
(b) Inverse square Levy walks are optimal only in the singular 1d
limit lc − a ≪ a and s ≪ a.
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