Lethal infantile mitochondrial disease with isolated complex I deficiency in fibroblasts but with combined complex I and IV deficiencies in muscle

H.A.C.M. Bentlage, MSc; U. Wendel, MD; H. Schägger, PhD; H.J. ter Laak, PhD; A.J.M. Janssen, BSc; and J.M.F. Trijbes, PhD

Article abstract—A 2-month-old boy died of a lethal infantile mitochondrial disease with severe lactic acidosis and involvement of the CNS. Histochemical analysis of skeletal muscle showed that cytochrome c oxidase staining was lacking in all muscle fibers but was present in arterioles. Ragged red fibers were not seen, but some fibers showed excessive staining for succinate dehydrogenase. Biochemical analysis revealed a combined complex I and IV deficiency in skeletal muscle but only a complex I deficiency in his fibroblasts. Two-dimensional native SDS electrophoresis confirmed these enzymatic findings at the protein level. Analysis of mitochondrial translation products in fibroblasts revealed no abnormalities, and analysis of mitochondrial DNA in muscle showed no depletion, large-scale deletions, or frequently occurring point mutations. We conclude that this disease must have been the result of either a nuclear DNA mutation in a gene controlling the expression or assembly of both complex I and the muscle-specific isoform of complex IV or, alternatively, a heteroplasmic point mutation in a mitochondrial tRNA, which codon is used more often by mtDNA encoded subunits of complex I than by mtDNA encoded subunits of complex IV. A different degree of heteroplasmy in skeletal muscle and fibroblasts would then explain the curious heterogeneous tissue expression of defects in this patient.

NEUROLOGY 1996;47:243-248

Mitochondrial encephalomyopathies are a heterogeneous group of disorders in which various tissues are affected, predominantly skeletal muscle and the CNS. The primary cause of disease is thought to be a defect in the mitochondrial energy metabolism. The five enzyme complexes (complexes I to V) of oxidative phosphorylation (OXPHOS) play a crucial role in this ATP-generating system. Each mitochondrion contains its own mitochondrial DNA (mtDNA), which is maternally inherited. The mtDNA encodes seven subunits of NADH:ubiquinone oxidoreductase (complex I), one subunit of ubiquinol:cytochrome c oxidoreductase (complex III), three subunits of cytochrome c oxidase (COX) (complex IV), two subunits of ATP synthase (complex V), two ribosomal RNAs, and 22 transfer RNAs necessary for mtDNA gene expression. The genes of complexes I, III, IV, and V are located in both the mtDNA and the nuclear DNA (nDNA). Succinate:ubiquinone oxidoreductase (complex II) contains only nDNA encoded subunits. All nDNA encoded subunits are imported into the mitochondria where they are assembled together with the mtDNA encoded subunits. Deficiencies in complex I and complex IV, either alone or combined, are found most frequently.

A growing number of mitochondrial encephalomyopathies or other neurologic disorders have been associated with deletions, depletions, or more than 30 point mutations in the mtDNA. These mutations are often found only in a proportion of the mtDNA molecules (heteroplasmy). Also, nDNA mutations affecting OXPHOS are expected to cause these diseases but have not been described so far.

We present a patient who immediately after birth had a severe lactic acidosis. Biochemical analysis revealed a combined deficiency of complex I and IV in muscle tissue but only an isolated complex I deficiency in fibroblasts.

Case report. A boy was born by normal delivery after an uncomplicated 39-week pregnancy. Birth weight was 3,680 g, length was 54.5 cm, and head circumference was 35 cm. His unrelated parents and a 4-year-old sister are in good health.

Within 18 hours after birth, the baby became tachypneic and developed an overwhelming lactic acidosis (blood pH 7.02, base excess -25.3 mmol/L, blood lactate 85 to 147 mg/dL [normal <16 mg/dL] and pyruvate 1.13 mg/dL [normal <0.59 mg/dL]). There were no signs of an infection. Plasma amino acid analysis revealed hyperalaninemia. Repeated urine analysis showed variable increased excretion of lactate, ethylmalonate, and 3-hydroxybutyrate. In CSF, lactate was elevated (42 mg/dL; normal 11 to 19 mg/dL).

From the Departments of Pediatrics (Drs. Bentlage, Wendel, Janssen, and Trijbes) and Neurology (Dr. Ter Laak), University Hospital Nijmegen, The Netherlands, and Zentrum der Biologischen Chemie (Dr. Schägger), Universitätsklinikum Frankfurt, Frankfurt am Main, Germany.

Received August 10, 1995. Accepted in final form October 4, 1995.

Address correspondence and reprint requests to Dr. Herman A.C.M. Bentlage, Department of Pediatrics, University Hospital Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.

Copyright © 1996 by the American Academy of Neurology
Despite continuous buffering, severe acidotic periods recurred. Gradually, a developmental delay, hypertonicity, and occasionally seizures occurred (signs of CNS involvement).

Because of suspicion for a mitochondrial disorder, a surgical muscle biopsy of the quadriceps was performed at age 29 days. During this time, blood lactate was 230 mg/dL and pyruvate was 3.52 mg/dL. Multivitamin therapy was started thereafter. A biopsy of the skin was taken at age 42 days. When the child was 58 days old, his condition suddenly worsened and he died from respiratory and cardiac arrest. Autopsy was not allowed.

Methods. **Histologic and electron microscopic analysis.** Light microscopy, histologic stains, and electron microscopy of the muscle biopsy were done according to standard procedures.

Biochemical analysis of muscle tissue. The oxidation rates of radiolabeled substrates (pyruvate, malate, and succinate), the ATP + creatine phosphate (CrP) production rates from pyruvate and succinate, and the mitochondrial enzyme activities were measured in 600 g supernatant of muscle homogenates as described previously. Control specimens were considered those patients, ages 4 to 56 years, in which a mitochondrial defect had been excluded by substrate oxidation rates and individual enzyme measurements comparable with persons having restorative surgery. Complex III activity was measured using decylubiquinol and horse heart cytochrome c (both Sigma) as substrates according to Zheng et al. Tween 20 (0.04% w/v) was added to the assay mixture to reduce the nonenzymic reaction. All biochemical values are expressed per ml citrate synthase (CS) to correct for mitochondrial recovery in the 600 g supernatant of muscle or in the mitochondria-enriched fraction of fibroblasts (see below).

Fibroblast studies. Human skin fibroblasts were grown in M199 (GIBCO) medium supplemented with 20% fetal calf serum. Control specimens were obtained from healthy volunteers. Enzyme activities were measured in mitochondria-enriched fractions, which were prepared as described previously with the following modifications. Approximately 20 × 10^6 cells were homogenized in 10 mM Tris·HCl (pH 7.6), thereafter adjusted to 0.25 M sucrose and subsequently differentially centrifuged (600 g and 14,000 g). The formation of lactate and pyruvate from glucose was determined in monolayer grown fibroblasts as described, except that fibroblasts were cultured in M199 medium.

Two-dimensional electrophoresis. The amounts of assembled OXPHOS enzymes in muscle homogenate (20 mg) or frozen fibroblasts (4 × 10^6 cells) were quantitated by two-dimensional polyacrylamide gel electrophoresis (PAGE) (blue native/Tricine-SDS-PAGE) and subsequent densitometric analysis of Coomassie stained gels.

Mitochondrial protein synthesis. Mitochondrial translation products of fibroblasts from the patient and two control subjects were labeled in near confluent six-well plates (diameter 1 cm) for 2 hours with [35S]methionine (0.4 mCi/mL; 1,200 Ci/mmol) in the presence of emetine, an inhibitor of cytoplasmic protein synthesis, at 100 μg/mL. After the labeling, the cells were washed twice with phosphate-buffered saline (pH 7.4) and detached by treatment with trypsin. Cells were lysed in 10 mM Tris·HCl (pH 7.4) with 0.1% (w/v) SDS. Equal amounts of cell lysates (20 μg per lane) were analyzed on 16.5% minislab gels and prepared for fluorography.

MtDNA analysis. MtDNA was isolated in total DNA from muscle as reported previously. The mtDNA content in muscle tissue was quantitated by Southern blotting analysis using probes for the total mtDNA and the nuclear 18S rDNA gene. Control specimens were obtained from patients aged 4 to 56 years.

Results. **Histochemistry and electron microscopy.** Morphologic examination of the patients' skeletal muscle revealed no ragged red fibers, but the staining for succinate dehydrogenase (SDH) showed a few large fibers with exceptionally high activity (figure 1, A and B). COX activity was absent in all muscle fibers but was present in smooth muscle cells of arterioles (figure 1, C and D). There was no glycogen or lipid accumulation. Electron microscopy revealed no structural abnormalities of the mitochondria.

Biochemical studies. Biochemical investigation in fresh skeletal muscle 600 g supernatant revealed that oxidation rates and ATP + CrP production rates with pyruvate, malate, and succinate as substrates were all significantly diminished (p < 0.05; table 1). Complex IV activity was most severely decreased (11% of the mean of control subjects; p < 0.05). The activities of NADH:Q oxidoreductase (complex I) was decreased 24% of the mean of control subjects and NADH:O2 oxidoreductase (complexes I + III + IV) were also decreased 27% of the mean of control subjects. Complex III and other enzyme activities were nearly normal (see table 1).

In the patient's fibroblasts, on the contrary, complex IV activity was in the normal range, both in whole cell homogenate and in the mitochondria enriched fraction (table 2). Here, only complex I activity was significantly decreased (39% of the mean of control subjects; p < 0.05). An increased lactate-pyruvate ratio after glucose conversion in these cells (42, normal <25) pointed also toward a respiratory chain defect.

Two-dimensional electrophoresis. Analysis of muscle homogenate of the patient showed that both complex I and IV were nearly absent (figure 2). Complex I could not be detected, even by more sensitive silver staining of the gels. Densitometric analysis of Coomassie stained gels revealed that the amount of correctly assembled complex IV was decreased (23% of the mean control subject concentration). Complex I was below the detection limit (i.e., less than 20% of the mean control subject concentration). Complex III and V were present in normal amounts, whereas the complex II amount (visible after silver staining, results not shown) was slightly increased. In fibroblasts of the patient, normal amounts of assembled complexes II, III, IV, and V were detected (results not shown). Complex I is very difficult to detect in fibroblasts, even in control subjects.

Mitochondrial protein synthesis. Metabolic labeling of the patient fibroblasts revealed that all detectable mitochondrial translation products were present in amounts equal to two control subjects (figure 3).

MtDNA analysis. Investigation of mtDNA in the patients muscle revealed no mtDNA deletion, large deletions, or point mutations, which are frequently associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS, position 3243); myoclonic epilepsy and ragged red fiber disease (position
834); and neurogenic weakness, ataxia, and retinitis pigmentosa (position 8993).7

Discussion. Our patient had a lethal infantile mitochondrial disease (LIMD)16 with lactic acidosis dominating the clinical presentation. Involvement of CNS pathology became apparent because of developmental delay, hypertonicity, an increased lactate level in CSF, and the occurrence of seizures. Other organs appeared normal.

Extensive biochemical analysis revealed the presence of a severe deficiency of both complex I and IV in skeletal muscle tissue but only of complex I in cultured skin fibroblasts. Other enzyme activities were not significantly decreased. These findings were confirmed by histochemical analysis of COX in muscle sections and by two-dimensional native SDS electrophoresis of all five OXPHOS enzymes in both muscle and fibroblasts.

Age differences between the patient (1 month at the time of muscle biopsy) and the control subjects (range 4 to 56 years, n = 28) are not relevant because the enzyme activities are normalized for CS activity.17

There are reports of two similar cases of LIMD with a combined deficiency of complex I and IV in muscle.18,19 Both patients suffered from muscular hypotonia and tachypnoea but not encephalopathy. The first patient died at 4 months old, and the combined deficiency was found in skeletal muscle, heart, and liver, but no deficiency was found in kidney and brain.18 Fibroblasts were not investigated. The authors postulated a nuclear DNA mutation in a developmental stage-specific and tissue-specific OXPHOS gene.18 The second patient died at the age of 53 days because of respiratory failure with lactic acidosis and had a combined defect in complexes I and IV in skeletal muscle mitochondria.19 We analyzed the respiratory chain enzymes in cultured fibroblasts of the latter patient and found no defect in complex I or IV (H.A.C.M.B., unpublished results). Both reported cases18,19 showed ragged red fibers in their muscle, whereas these were lacking in our patient. However, the excessive staining for SDH in some fibers could point toward the development of ragged red fibers in our patient. Thus, there are many clinical and biochemical similarities between the two reported cases and the one presented here. By contrast, the two reported cases18,19 had no apparent CNS involve-
There are recent reports on heterogeneous tissue expression of OXPHOS defects in mitochondrial encephalomyopathies. In some cases, this was associated with mtDNA depletion or the MELAS 3243 mutation. Both mutations were excluded in our patient. We examined fibroblasts of 10 other patients with combined complex I and IV defects in muscle tissue, including some previously reported, and found only in one case a complex IV defect. All other fibroblasts did not show a respiratory chain enzyme defect. We demonstrated an isolated complex I deficiency also in fibroblasts of eight other patients, most of them having LIMD. All showed only a complex I deficiency in their muscle tissue (Bentlage, unpublished results). This illustrates the uniqueness of the case presented here.

Robinson et al. reported a complex I deficiency in fibroblasts of four patients with the clinical picture of LIMD. Three patients had signs of CNS involvement such as hypotonia, seizures, and an abnormal EEG. Unfortunately, they did not mention the biochemical investigation of muscle tissue; thus, it is unclear whether these patients also had a combined complex I and IV defect in their muscle.

A unique Chinese hamster mutant lung cell line, Gal 32, also exhibits extremely low activities of both complex I and IV at moderately decreased activities of other respiratory chain complexes. Simultaneous correction of this pleiotropic phenotype in a spontaneous revertant suggested the presence of a single nDNA mutation in Gal 32. Mitochondrial protein synthesis revealed low amounts of mtDNA encoded complex I and IV subunits in this cell line, whereas the amounts of mitochondrial RNAs were increased but of correct size. Therefore, a mutation altering mitochondrial tRNA structure or base modification was assumed. However, our patient had normal biosynthesis of all mitochondrial translation products in his fibroblasts, despite the reduced complex I activity. Thus, the phenotype of our patient probably arose from a different mutation.

In humans, there are tissue-specific isoforms of subunits VIa of complex IV, a heart (H) and liver (L) form. In human heart, there are equal amounts of H- and L-forms, whereas in skeletal muscle there is mainly the H-form. The L-form is exclusively present in liver, brain, kidney, smooth muscle, and in cultured fibroblasts and myoblasts. During myogenesis and during fetal development, both subunits switch from L-type to H-type in human heart and skeletal muscle. Complex I possibly also has isoforms, but there are no data at the molecular level yet.

Table 1 Biochemical measurements in fresh skeletal muscle

<table>
<thead>
<tr>
<th>Oxidation rate (nmol/hr/mU CS)</th>
<th>Control Patients (%)* subjects† N</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1-14C]Pyruvate + malate</td>
<td>0.60 (11) 5.52 ± 0.99 14</td>
</tr>
<tr>
<td>[U-14C] Malate + pyruvate + malonate</td>
<td>1.16 (16) 7.18 ± 1.28 20</td>
</tr>
<tr>
<td>ATP + CrP production rate (nmol/hr/mU CS)</td>
<td></td>
</tr>
<tr>
<td>Pyruvate + malate</td>
<td>5.8 (9) 63.9 ± 10.1 16</td>
</tr>
<tr>
<td>Succinate + acetylcarnitine</td>
<td>5.3 (40) 13.1 ± 3.7 13</td>
</tr>
<tr>
<td>Activity (mU/mU CS)</td>
<td>NADH:Q1 oxidoreductase 0.036 (24) 0.153 ± 0.061 21</td>
</tr>
<tr>
<td></td>
<td>Succinate:cytochrome c oxidoreductase 0.41 (78) 0.56 ± 0.13 26</td>
</tr>
<tr>
<td></td>
<td>Decylubiquinol:cytochrome c oxidoreductase 2.78 (62) 4.52 ± 0.99 16</td>
</tr>
<tr>
<td></td>
<td>Cytochrome c oxidase 0.19 (11) 1.78 ± 0.61 28</td>
</tr>
<tr>
<td></td>
<td>NADH:O2 oxidoreductase 0.12 (27) 0.44 ± 0.14 20</td>
</tr>
<tr>
<td></td>
<td>Pyruvate dehydrogenase§ 0.051 (63) 0.081 ± 0.024 25</td>
</tr>
<tr>
<td></td>
<td>CS (mU/mg protein) 67 (64) 104 ± 29 28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity (mU/mU CS)</th>
<th>NADH:Q1 oxidoreductase 0.05 (39) 0.13 ± 0.03 0.10–0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Succinate:cytochrome c oxidoreductase 0.28 (94) 0.24 ± 0.04 0.20–0.31</td>
</tr>
<tr>
<td></td>
<td>Decylubiquinol:cytochrome c oxidoreductase 1.87 (98) 1.90 ± 0.31 1.56–2.61</td>
</tr>
<tr>
<td></td>
<td>Cytochrome c oxidase 0.78 (92) 0.85 ± 0.13 0.65–1.05</td>
</tr>
<tr>
<td>CS (mU/mg protein)</td>
<td>203 (90) 226 ± 23 189–257</td>
</tr>
</tbody>
</table>

* Percent of mean of controls. † Percent of mean of controls. ‡ Values are means ± SD. § In whole cell homogenate.

CS = citrate synthase.
arterioles (mainly smooth muscle) and fibroblasts (both L-form) and a deficiency in skeletal muscle (H-form). However, it does not explain the complex I defect in skeletal muscle and fibroblasts of the patient. A nuclear DNA mutation in a communal gene controlling both the expression or assembly of complex I and of the H-type isoenzyme of complex IV could explain the phenotype in our patient. Analysis of pet mutants in yeast identified several of such genes. A candidate gene could be the human homologue of the yeast gene oxaI, which is essential for COX assembly in yeast. However, there is no complex I in yeast; thus, the involvement of oxaI in complex I expression remains to be established.

Alternatively, the pleiotropic defect and tissue heterogeneity can be explained by a point mutation in a mitochondrial tRNA and a different degree of heteroplasmy in muscle and fibroblasts, similar to patients with the 3243 MELAS mutation. Thus, the mutation must be in a mitochondrial tRNA whose codon is used more often by subunits of complex I than of IV and less by subunits of complexes III and V. Fibroblasts and cybrids with near-homoplasmic point mutations at position 3260 and 3243 of the tRNA^Leu(UUR) gene (Bentlage and Attardi, unpublished results) can also exhibit a normal mitochondrial protein synthesis as is the case in our patients fibroblasts.

We are presently developing techniques to test both hypotheses in muscle tissue or fibroblasts of the presented case.

Acknowledgments

We thank Dr. B. van Oost (Department of Human Genetics) for the mtDNA analysis, Dr. W. Ruitenbeek (Department of Pediatrics) for critically reading the manuscript, Dr. F.J.M. Gabreels (Department of Child Neurology) for advice, and Hoffman-La Roche, Basel, Switzerland for the gift of ubiquinone-1.

References

July 1996 NEUROLOGY 47 247

