INITIAL HUMAN CLINICAL EXPERIENCE WITH DIODE LASER INTERSTITIAL TREATMENT OF BENIGN PROSTATIC HYPERPLASIA

ROLF MUSCHTER, JEAN J. M. C. H. DE LA ROSETTE, HUGH WHITFIELD, JEAN-PIERRE PELLERIN, STEPHAN MADERSBACHER, AND DAVID GILLATT

ABSTRACT

Objectives. To report the initial results of treatment of outlet obstruction induced by benign prostatic hyperplasia (BPH) using interstitial laser coagulation performed with the Indigo 830 nm diode laser system.

Methods. A group of 112 men with lower urinary tract symptoms caused by BPH underwent treatment with the Indigo 830 nm laser system between October 1994 and November 1995. Patients were assessed prior to treatment and at specified post-treatment intervals for symptom score, uroflow, postvoid residual, and prostate volume. Adverse events and changes in laboratory parameters were monitored at each post-treatment visit to investigate safety of the procedure.

Results. Symptom score decreased from 20.9 at initial measurement to 9.6 at 3 months after procedure and 7.9 at 6 months. Uroflow rate increased from 8.0 mL/s initially to 15.2 and 14.2 mL/s at 3 and 6 months, respectively. Residual bladder volumes decreased from 105 mL initially to 59 and 38 mL at 3 and 6 months, respectively. There were no major complications (impotence, sustained incontinence, significant blood loss). Minor complications occurred in a small number of patients but were generally associated with urinary tract infection in patients with catheters. Three patients (2.7%) required retreatment and underwent transurethral resection of the prostate.

Conclusions. Interstitial laser coagulation using an 830-nm diode laser system appears to be a promising new treatment, with substantial improvements in objective and subjective parameters of obstruction and a favorable side-effect profile.

UROLOGY 48: 223-228, 1996.

Transurethral resection of the prostate (TURP) is still the reference standard in the treatment of benign prostatic hyperplasia (BPH). The associated problems and complications of TURP, such as significant bleeding, TUR syndrome, incontinence, strictures, and sexual dysfunction are well known and have been described extensively.1-6 Despite general progress in medicine and postoperative care in recent years, the incidence of complications following TURP remains virtually unchanged. With the rapidly aging population in the developed world, these complications are becoming more significant. In addition, people today are more aware of surgical risks in general and, increasingly, are demanding alternatives.

The treatment of BPH through interstitial laser coagulation (ILC) is a possible solution to this problem. In this treatment, prostatic tissue is heated from within the prostate to the point of irreversible necrosis. Unlike modalities that heat the prostate from the urethra, such as side-firing lasers, ILC does not require destruction of the urethral epithelium. Healing occurs usually without sloughing of heated tissue because the urothelium remains intact.8-10 Initial tests using interstitial laser devices were performed in vitro in different tissues and in vivo in the canine prostate.7,8,11-13 The in vitro studies in muscle, liver, kidney, and the potato models showed that treatment volumes increased with laser power and irradiation time unless charring oc-
in the var* movement of cases, a 'run-in period' was set from 3 to 10 days. Depending on length of treatment, cases were treated once or twice per week. The treatment times can vary from 1 to 10 minutes.

Energy is delivered in programmed power settings determined by the practitioner. The machine is powerful and extremely versatile. The larger the laser power output, the better the results are in the treatment of smaller, superficial lesions.

In this study, no complications were observed in any of the 74 cases treated with the Nd:YAG laser.

FIGURE 1. Dye laser system for interstitial laser coagulation treatment of BPH (indigo 630).
The device has an automatic optical sensing system ("blackbody" sensing) that monitors temperature conditions at the diffuser tip and halts treatment in the unlikely event of incipient tissue char. It is important to prevent the occurrence of uncontrolled carbonization with subsequent cavity formation and reduced coagulation volumes, and to maintain optimal control of the procedure. An automatic fiberoptic stress monitor also detects any excess mechanical stress that signals imminent fiberoptic breakage, immediately cutting off laser power.

PATIENTS, ASSESSMENT, AND PROCEDURE

We report on a multicenter, uncontrolled registry of patients with symptomatic BPH. All patients with an American Urological Association (AUA) symptom score higher than 12, maximum flow rate less than 13 mL/s, and a residual volume of less than 300 mL were eligible for inclusion. A total of six centers provided information for this report. Patients were treated between October 1994 and November 1995.

Potential patients were screened for symptomatic BPH using the AUA symptom questionnaire. Flow rates were obtained with automated flow meters. Residual bladder volume was determined with transabdominal ultrasound, immediately after micturition. Prostate cancer was excluded on the basis of digital rectal examinations, prostate-specific antigen testing, and transrectal ultrasound, followed by biopsy if necessary. Prostatic volume was determined by transrectal ultrasound measurement. Urinary tract infections were treated with antibiotics prior to the laser surgery.

Patients received general, spinal, and local anesthesia for the interstitial treatment procedure. The local anesthesia used was a combination of an anesthetic jelly instillation and a periprostatic block injection. (The results of an extensive ongoing study evaluating the use of local anesthesia in interstitial laser treatments will be published separately.) In the present study, local anesthesia was used in two centers. In 48% of the patients treated under local anesthesia, a periprostatic block with anesthetic jelly was sufficient. In 50% of the patients.
patients, jelly, a periprostatic block, and intravenous (IV) an-
algescs provided sufficient anesthesia. In 2% of the patients,
local anesthesia failed. The choice of anesthesia was made by
the patient, the anesthetist, and the treating physician.

Cystoscopy was performed using standard equipment with
diameter of 17 to 21.5F with a working channel of at least
6F. The diffusor tip was inserted into the prostatic tissue un-
der direct visual guidance up to its depth marker. There was
no need for auxiliary instruments to insert the fiber. In gen-
eral, the sites of fiber placement were chosen to coagulate the
bulk of hyperplastic tissue. Thus the total number of fiber
placements varied depending on the size and configuration of
the prostate. Individual fiber placements were spaced by about
0.5 to 1 cm and/or performed at different angles beginning
at the apex at the level of the colliculus seminalis (Figs. 4 and
5). To prevent thermal damage of the dorsal capsule and ad-
jaent rectum, the lateral lobes were always punctured in the
lateral or ventrolateral direction, never in the dorsal direction.
If a median lobe was present, it was treated with one or more
punctures in the direction of the bladder. Again, dorsal-di-
rected punctures were avoided to prevent subtrigonal lesions.
Irrigation was necessary only to provide optimal vision during
punctures, not for cooling during irradiation. After each fiber
placement, the laser was activated in the power format mode
for the desired treatment time, usually 4 minutes.

After treatment, all patients were catheterized, using either
suprapubic or Foley catheters. Catheters were removed ac-
cording to the particular hospital’s practice in patients being
treated with lasers.

Symptom scores, flow rates, and postvoid residual urine
volumes were re-evaluated at 1 month, 3 months, 6 months

FIGURE 5. Schematic view of the laser delivering sys-
tem during treatment of the right lobe of the prostate.

and 1 year after the procedure. At these follow-up visits, pa-

tients were also evaluated for the occurrence of untoward
events such as impotence, incontinence, urinary tract infec-
tion, and dysuria.

RESULTS

One hundred twelve patients received treatment. To date,
results of 86 patients at 3 months and 40 patients at 6 months
after treatment are available. No 12-month follow-up was in-
cluded in the registry protocol. The average age of the patients
was 67 (±8.2) years. Patients had suffered from BPH for an average of 3.9 (±3.3) years. Before inter-
stitial laser treatment, average prostatic weight was
56 (±27) g. Twenty-five percent of all patients
received treatment to the median lobe.

Overall results are given in Figure 6. The AUA
symptom score decreased from 20.9 (±5) prior to
treatment to 9.6 (±6.2) at 3 months and 7.9
(±5.5) at 6 months after treatment. Maximum
flow rate improved from 8.0 (±2.6) pretreatment
to 15.2 (±6.5) at 3 months and 14.2 (±4.4) at 6

UROLOGY 48 (2), 1996
months after treatment. These figures reflect improvement rates of 54% and 62% for the AUA score at 3 and 6 months, respectively, and 90% and 78% for the flow rate at the same respective intervals. The post-void residual volume decreased from 105 (±75) mL prior to treatment to 59 (±85) mL and 38 (±43) mL at 3 and 6 months, reflecting improvement rates of 44% and 64% at these intervals, respectively. All improvements were statistically significant, at $P < 0.001$. The average catheterization time was 12.8 (±7.6) days, but this statistic was highly influenced by differing hospital policies. Many European hospitals have a standard policy of giving patients an outpatient appointment 14 days after their treatment to have a catheter removed regardless of the actual required catheterization time. Table I shows the percentages of patients experiencing 0% to 10%, >10% to 30%, >30% to 50%, and >50% improvement as measured by three parameters.

There were no procedural complications. Operative and postoperative bleeding was insignificant. Thirty patients (27%) developed urinary tract infections after the procedure. Twelve patients (11%) experienced transient dysuria after treatment, which in 9 cases was the result of a urinary tract infection. All patients were successfully treated with antibiotics. Retrograde ejaculation was reported in only 3 patients (2.7%). No impotence and no incontinence were reported.

There were no late complications related to the procedure. Three patients (2.7%) with unsatisfactory treatment results underwent subsequent TURP. Two of these men underwent TURP 3 to 6 months after ILC, and 1 had a TURP 7 months after the laser treatment.

COMMENT

During the recent past, several alternative treatment modalities using laser energy for BPH have been described.\(^{17-24}\) The main reason for the development and investigation of all these new techniques has been to reduce the persistent complication rate of TURP.\(^{4-6,25,26}\) In addition, some of the newer modalities were designed to treat the increasing number of high-risk patients.\(^{7,8}\) Although all procedures claim to be minimally in-

TABLE 1. Patient improvement rates in AUA score, flow, and residual volume at follow-up of 3 and 6 months

<table>
<thead>
<tr>
<th>Post-Treatment Improvement Rates (%)</th>
<th>0-10</th>
<th>>10-30</th>
<th>>30-50</th>
<th>>50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3 Months</td>
<td>6 Months</td>
<td>3 Months</td>
<td>6 Months</td>
</tr>
<tr>
<td>AUA score</td>
<td>89</td>
<td>91</td>
<td>87</td>
<td>91</td>
</tr>
<tr>
<td>Flow</td>
<td>92</td>
<td>89</td>
<td>87</td>
<td>77</td>
</tr>
<tr>
<td>Residual volume</td>
<td>70</td>
<td>70</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>
vasive, the actual degree of invasiveness varies widely. Drug treatment is close to watchful waiting, whereas contact laser vaporization \(^{21}\) and electrovaporization \(^{17,28}\) may be seen as modified TURPs that cause minimal bleeding.

Existing laser techniques for BPH treatment can be divided into three entirely different groups. Superficial vaporization can be achieved using contact or high-power noncontact techniques. \(^{1,12,29-33}\) Laser probes are used transurethrally to remove the periurethral tissue under direct vision, immediately creating a TURP-like cavity. Finally, vaporizing applicators can be used to do simple incisions. \(^{11}\) The most commonly used techniques employ sidefiring laser devices to achieve deep coagulation of the prostatic adenoma. \(^{17-19,22,24,32-34}\)

Applied transurethrally, usually under direct vision, these devices coagulate the periurethral tissue, causing necrosis. \(^{15,33}\) During the weeks that follow, the necrotized tissue sloughs off, and a TURP-like cavity is formed. \(^{17}\) In contrast, in interstitial laser coagulation the fiber is placed transurethrally under direct vision inside the tissue. This creates large coagulated volumes without affecting the urethra. After treatment the resulting necrosis is gradually resorbed, with a subsequent shrinkage of the prostatic lobes. During this process, a wide TURP-like cavity is gradually formed. \(^{9-11}\)

The treatments we have described vary greatly. Vaporizing techniques destroy the prostatic urethra completely and remove the prostatic tissue by vaporization. This results in a situation highly comparable to that produced by a TURP. Vaporization, however, reduces the occurrence of hemorrhage significantly. Sidefiring systems also destroy the entire prostatic urethra because both the prostatic urethra and the underlying tissue are coagulated. The necrotized tissue sloughs off, sometimes causing significant irritation. Interstitial techniques preserve the prostatic urethra and coagulate the tissue inside the prostatic lobes. Because the prostatic urethra is still intact, symptoms of irritation are likely to be minimal.

Laser treatments using superficial vaporization can in theory treat any size prostate. However, in prostates with a volume above 60 grams, treatment time is up to 50% longer than required for a TURP of a comparable gland. \(^{29}\) Sidefiring systems are recommended for treating prostates smaller than 60 grams. \(^{30}\) This is probably because even at high power, the laser light in these systems has limited penetration depth. \(^{33}\) The amount of tissue that can be treated is limited because only the surface of the prostatic urethra can be irradiated, and deep coagulation of the lobes is difficult to attain. Thus the percentage of coagulated prostatic tissue decreases as the size of the prostate increases. Interstitial laser systems can treat virtually all size prostates because coagulation depends completely on the fiber placements. In large prostates, more and deeper punctures will be necessary, resulting in a larger coagulated volume than that following sidefire laser treatment. Treatment time is the only limiting factor. However, the time required is not excessive, as 4 minutes per puncture results in a coagulated volume of 5 to 6 cc. \(^{13}\)

The side effects we found with interstitial laser coagulation were minimal, owing to the absence of tissue sloughing and the preservation of the prostatic urethra. The absence of retrograde ejaculation can be explained by the fact that the bladder neck was not treated unless a median lobe was present. The retreatment rate of 2.7% within 6 months is considered acceptably low.

The complication rates found thus far in this study are very gratifying in contrast to the complication rates often associated with TURP. \(^{4-6,25,26}\) In spite of significant improvements in surgical technique, TURP still carries a small but significant risk of major complications like impotence, sustained incontinence, and bleeding sufficient to require transfusions. None of those complications were observed in the present group. It must be kept in mind, however, that this group is too small to provide definitive data on the rates of those uncommon complications.

Our initial results, which represent the learning-curve treatments of six different centers, do provide substantial evidence that interstitial laser coagulation using an 830-nm diode laser system can improve both subjective complaints and objective parameters of BPH. All measured outcomes improved significantly from preprocedure to 6-month follow-up.

REFERENCES

8. Muschter R, Hessel S, Hofstetter A, Keiditsch E, Roth-
 enberger K-H, Schneede P, and Frank F: Die interstitielle Las­
 erkoagulation der benignen Prostatahyperplasie. Urologe A

9. Muschter R, and Hofstetter A: Technique and results of
 1995.

10. Muschter R, and Hofstetter A. Intertstitial laser therapy
 133, 1995.

11. Muschter R, and Perlmutter AP: The optimization of
 laser prostatectomy part II: other lasing techniques. Urology

13. Muschter R, Perlmutter AP, Anson K, Jahnen P, Varr-
 gas Stüve JC, Razvi HA, Sroka R, Hofstetter A, and Vaughan
 ED Jr: Diode lasers for interstitial laser coagulation of the
 prostate, in Anderson RR (Ed): Lasers in Surgery: Advanced
 2395, 1995, pp 77–82.

14. Boulnois JL: Photophysical processes in recent med-
 ical laser developments: a review. Lasers Med Sci 1: 47–64,
 1986.

 Stüve JC, Jahnen P, Yalavac H, Razvi HA, Vaughan FD Jr, and
 Hofstetter A: Experimentelle Untersuchungen zur Eignung
 von Halbleiterlasern für die interstitielle Laserkoagulation der
 Prostata—Erste Ergebnisse. Lasermedizin 11: 155–156,
 1996.

 U, Müller G: In vitro studies and computer simulations to
 assess the use of a diode laser (850 nm) for laser induced

17. de la Rosette JJMCH, Froeling FMJA, Alivizatos G,
 and Debruyne FMJ: Laser ablation of the prostate: experience
 with an ultrasound guided technique and a procedure under

18. Kabalin JN: Laser prostatectomy performed with a
 right angle firing neodymium:YAG laser fiber at 40 watts

 spective, double-blind, randomized study comparing laser ab-
 lation of the prostate and transurethral prostatectomy for the

20. Cummings JM, Parra RO, and Boullier JA: Laser pros-
 tatectomy: initial experience and urodynamic follow up. Uro-

22. Cowles RS, Kahalin JN, Childs S, Lepor H, Dixon C,
 Stein B, and Zaboo A: A prospective randomized comparison
 of transurethral resection to visual laser ablation of the pros-
 tate for the treatment of benign prostatic hyperplasia. Urology

23. Keoghane SR, and Cranston DW: A critical overview
 on the role of the Nd:YAG laser in the treatment of benign

25. Hvidt V, and Eldrup J: Comparison of patients under-
 going transurethral resection of the prostate in 1935–36 and

26. Neal DE: Evaluation and results of treatment for pro-

27. Kaplan SA, and Te AE: Transurethral electrovapor­
 ization of the prostate: a novel method for treating men
 with benign prostatic hyperplasia. Urology 45: 366–372,
 1995.

28. Perlmutter AP, Muschter R, and Razvi HA: Electro-
 surgical vaporisation of the prostate in the canine model.

 of prostate size on the outcome of transurethral laser evapo-
 ration of the prostate for benign prostatic hyperplasia. Uro-

30. Gottfried HW, Frohneberg D, de la Rosette JJMCH,
 Lawrence W, and Hautmann RE: Transurethral laser ablation
 of prostate (TULAP). Experience of a European multicenter

31. Childs SJ: Ablation of prostate tissue at high power
 density, in Watson GM, Steiner RW, and Johnson DE (Eds):

32. Shanberg AM, Lee IS, Tansey LA, and Sawyer DE:
 Extensive neodymium-YAG photoradiation of the prostate
 in men with obstructive prostatism. Urology 43: 528–530,
 1994.

33. Perlmutter AP, and Muschter R: The optimization of
 laser prostatectomy part I: free beam side fire coagulation.

34. Cammack JT, Motamedi M, Torres JH, Orihuela E,
 Cowan D, and Warren MM: Endoscopic Nd:YAG laser coag-
 ulation of the prostate: comparison of lower power versus