Influence of Treatment Modalities on Body Weight in Acute Lymphoblastic Leukemia

J.J. Groot-Loonen, MD, B.J. Otten, MD, PhD, M.A. van’t Hof, PhD, R.J.J. Lippens, MD, PhD, and G.B.A. Stoelinga, MD, PhD

Weight for height of 92 patients (51 girls and 41 boys) treated for acute lymphoblastic leukemia (ALL) was evaluated in a longitudinal study. Fifty-four patients received cranial irradiation (CI) with a dose of 18 or 24 Gy and 38 patients did not receive CI. Seventy-seven patients were treated according to a normal-risk protocol and 15 patients received more intensive chemotherapy according to a high-risk protocol. In most of the patients the duration of follow-up was 12 years for irradiated patients and 4.5 years for the nonirradiated patients.

Thirty of 92 patients were treated according to a protocol without CI, but with a difference in the use of corticosteroids: 19 patients received dexamethasone during the remission-induction and maintenance treatment and 11 patients received prednisone. The influence of dexamethasone vs. prednisone, sex, CI and high-dose vs. low-dose chemotherapy on weight for height was evaluated. Patients who received dexamethasone showed a significant increase in weight for height immediately after the start of therapy. In patients who received CI, weight for height significantly increased after the first year of treatment. The overweight in these patients persisted during the whole follow-up period. The weight for height of patients treated with prednisone and of patients who did not receive CI was below the mean of the normal population during treatment but was not different from normal after cessation of therapy. No difference in weight gain was seen between boys and girls and between patients who were treated with high vs. normal-risk protocols.

Key words: ALL, cranial irradiation, weight for height

INTRODUCTION

During the last decade many studies have been published on linear growth of children treated for acute lymphoblastic leukemia (ALL), concluding that retardation of linear growth during treatment is a common observation [1-7]. Data about weight gain in these patients are limited. Malnutrition leading to loss of weight, as a consequence of the disease itself or the side effects of chemotherapy, might be one of the causal factors of early growth deceleration. Our clinical impression, however, is that several patients showed excessive weight gain during and after treatment. Other authors also noticed obesity in a number of children during and after treatment for ALL [8-13], but it is not clear if all the treatment modalities are associated with a higher risk for developing obesity.

In this study we evaluated weight development during and after treatment for ALL in order to answer the following questions:

1. Does the Z-score of weight for height decline during the period of treatment of children treated for ALL?
2. Is the pattern of body weight development influenced by treatment?
3. Could we identify treatment factors related to the pattern of weight development in these patients?

PATIENTS AND METHODS

Patients

Ninety-two consecutive patients with ALL treated at the Department of Paediatric Oncology of the University Hospital Nijmegen between 1972 and 1988 were included in the study. Data about age and sex are shown in Table I. Since central nervous system (CNS) involvement could cause hypothalamic dysfunction [14], patients with CNS involvement were excluded from the study. All patients had entered into first remission within 6 weeks after diagnosis. Patients with relapse of their disease were excluded from the study.

From the Departments of Pediatric Oncology (J.J.G.-L., R.J.J.L.), Pediatric Endocrinology (B.J.O., G.B.A.S.), and Medical Mathematics (M.A.v.H.), University of Nijmegen, Nijmegen, The Netherlands.

Received May 31, 1994; accepted October 3, 1995.

J.J. Groot-Loonen, M.D., Department of Pediatric Oncology, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
TABLE I. Mean Ages at Diagnosis, the Range of the Ages, and the Sexes of the Patients in Different Treatment Groups

<table>
<thead>
<tr>
<th></th>
<th>High-risk (n = 15)</th>
<th>Normal-risk (n = 77)</th>
<th>Protocol 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dexa (n = 19)</td>
<td>Pred (n = 11)</td>
<td>CI (n = 54)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boy</td>
<td>6</td>
<td>35</td>
<td>11</td>
</tr>
<tr>
<td>Girl</td>
<td>9</td>
<td>42</td>
<td>8</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>6.7</td>
<td>5.2</td>
<td>5.5</td>
</tr>
<tr>
<td>Range</td>
<td>1.1–15.9</td>
<td>0.6–15.5</td>
<td>2.3–12.3</td>
</tr>
</tbody>
</table>

Measurements and Methods

Patients’ heights and weights were measured by experienced staff. During the 2 years of treatment, patients were measured 8–12 times per year and during the years of follow-up one to four times per year. Weight for height was studied. In order to compare the patients’ groups with the general population, Z-scores were calculated for weight for height using Dutch reference values [15]. The Z-score is defined as the difference between a patient’s weight and the stature and sex appropriate mean divided by the corresponding standard deviation. Weight for height is known to be positively skewed distributed, therefore, a log-transformation after translation \(\ln(x-c) \) was applied comparable to the method developed by van ’t Hof et al. [16]. The translation \(c \) is stature and sex dependent. The translation was chosen so that a symmetric distribution with regard to the \(P_{50} \), \(P_{50} \), and \(P_{90} \) was obtained. The transformed distribution was used for the calculation of the Z-scores. Estimates of the Z-scores at regular time intervals were obtained by interpolation in the individual Z-score curves.

Statistical Analysis

Statistical comparisons were made using Student’s t-test and analysis of variance (ANOVA). Significance was accepted for \(P < 0.05 \).

RESULTS

In order to investigate the influence of different glucocorticoids on body weight development, we compared the Z-scores of weight for height of patients treated according to protocol 6 of the Dutch Leukemia Working Group with Dexa (group Ia) with the Z-scores of patients who received Pred instead of Dexa (group Ib) (Fig. 1). The chemotherapy in both groups was the same and neither of these patients received CI. At diagnosis, the Z-score of...
TABLE II. Number of Patients During Follow-Up (n = 92)*

<table>
<thead>
<tr>
<th>Duration in follow-up (years)</th>
<th>0</th>
<th>0.25</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>CI (group A)</td>
<td>45</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>54</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>47</td>
<td>45</td>
<td>42</td>
<td>41</td>
<td>33</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>No irradiation, exclusive</td>
<td>15</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>14</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Dexa patients (group B)</td>
<td></td>
</tr>
<tr>
<td>No irradiation</td>
<td></td>
</tr>
<tr>
<td>Protocol 6: Dexa (group Ia)</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>13</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol 6: Pred (group Ib)</td>
<td>8</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other protocol</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*A number of the initial values were missing. At 3 months after diagnosis all patients had entered the averages.

Fig. 1. Mean Z-scores (±SEM) of weight for height of patients treated for ALL according to protocol 6 of the Dutch Leukemia Working Group. The patients receiving Dexa (solid line), n = 19, are compared with the patients receiving Pred (broken line), n = 11. **P < 0.05, ***P < 0.005, indicating the t-test significance level.

Fig. 2. Mean Z-score (±SEM) of weight for height of patients treated for ALL with prophylactic CI (solid line), n = 54, or without prophylactic CI (broken line), n = 19. All patients received Pred as corticosteroid. *P < 0.05, **P < 0.01, indicating the ANOVA significance level.

weight for height of group Ia was -0.1 ± 1.3 (±SD) and of group Ib 0.4 ± 1.1. This difference is not significant. Three months after start of therapy, the Z-score was 0.5 ± 1.1 for group Ia and -0.8 ± 1.4 for group Ib. The difference is significant ($P = 0.01$). In order to investigate whether the baseline difference in Z-scores of $+0.3$ in the two groups influenced the significance at 3 months, and to examine whether the difference at 3 months could be an artifact due to the five and three patients that were added to each group, respectively, we calculated the change from the baseline: $Z = Z_n - Z_0$, Z_n is the Z-score at 3 months and Z_0 is the Z-score at diagnosis) of the 14 and 8 patients at 3 months. The Z of the 14 patients treated with Dexa was 0.5 ± 0.8 and of the 8 patients treated with Pred was -0.2 ± 0.8. This difference is also significant ($P = 0.04$). A significant difference between the two groups persisted during the whole follow-up period of 4.5 years.

As treatment with Dexa has a clear influence on weight for height, 19 patients treated with Dexa, all from protocol 6, were excluded from further analysis.

By means of two-way ANOVA, the influence of sex and CI on weight for height was studied. The Z-scores of weight for height of the irradiated group compared with the Z-scores of patients who did not receive CI are shown in Figure 2. No significant differences between the groups were shown during the first year of therapy. At 2 and 4 years from diagnosis, the Z-scores were, respectively, -0.2 ± 1.1 and 0.0 ± 1.2 for the non-CI group and 0.4 ± 1.1 and 0.7 ± 0.9 for the patients who received CI. These differences are significant, P values, respectively, 0.04 and 0.05.

Figure 3 shows the Z-scores of weight for height of the irradiated patients during the follow-up period of 12 years. At the end of treatment, 2 years after diagnosis, the Z-score was 0.4 ± 1.1. Two years after cessation of therapy, the Z-scores were more positive: 0.7 ± 0.9. The Z-score remained above the mean of the normal
patients with follow-up of 12 years after diagnosis was 0.4 ± 1.0. No differences in body weight development were noticed between boys and girls and between patients treated according to a normal-risk protocol vs. patients treated according to a more intensive high-risk protocol.

DISCUSSION

At diagnosis, the weight for height of patients in this study was not significantly different from the weight for height of the normal population. All patient groups, with the exception of the group of patients treated with Dexa, showed loss of weight during the first 3 months of treatment. The underweight of these patients during this phase of therapy could have attributed to the impairment of height growth, which was also demonstrated in our patients [17]. During the next 3–6 months, weight for height of the patients increased to normal, however, weight for height of the irradiated patients further increased during the second year of treatment and the first year after cessation of therapy. After this period, the weight for height of these patients stabilized but the Z-score remained above the mean of the normal population during the whole follow-up.

All studies [8–13,18] but one [19], with respect to weight, reported an increased weight velocity during or after treatment for ALL. Different factors as lack of physical exercise and poor dietary habits [9,13] have been suggested to contribute to the excess weight gain in these patients who have suffered a serious illness. In this study, however, there is clear evidence that two treatment modalities, i.e., CI and treatment with Dexa, are associated with excessive weight gain. Patients treated without CI and patients who received Pred instead of Dexa showed normal weight development during the second year of therapy and after finishing treatment. Another study [13] has also identified CI as a risk factor for developing obesity. CI is also associated with impaired height growth [13,18]. Some authors [13,18] suggested that compromised height is a major contributor of obesity and occurs when height compromise is not accompanied by parallel weight compromise. However, in the study of Schell et al. [18], patients receiving craniospinal irradiation were shown to be at increased risk for abnormally short stature but not for obesity. This finding suggests that other factors than just compromised height are responsible for obesity.

It is well known that especially endocrine disorders causing blunted growth are attended with overweight such as hypothyroidism, hypercortisolism, and growth hormone deficiency. Hypothalamic-pituitary dysfunction involving corticotropin and thyroid-stimulating hormone has not been demonstrated in children treated for ALL [20,21]. The impaired linear growth seen in children after CI has been thought to be attributed to minor abnormalities in the secretion of growth hormone [22,23]. Dacoul-Voutetakis et al. [22] showed transient alterations in growth hormone secretion early after CI in children treated for ALL. A quantitative reduction in growth hormone secretion during puberty of children treated for ALL has been shown by Crowne et al. [23], suggesting that CI causes damage to the hypothalamic-pituitary axis affecting the secretion of growth hormone. The hypothalamus seems more vulnerable to radiation damage than the anterior pituitary [24]. Hypothalamic damage per se may cause obesity, however, the reported cases of hypothalamic obesity in children with ALL have always been demonstrated in patients with leukemic infiltration of the brain [14]. Studies on growth hormone profiles of children after low-dose CI [23] or total body irradiation [25] show a disturbance of frequency modulation of growth hormone secretion. Both studies [23,25] postulate that disturbance of somatostatin secretion is the underlying mechanism for this observation. Our hypothesis is that neurosecretory dysfunction is responsible for the excessive weight gain in patients who received CI.

Excess of weight gain during and after treatment for ALL is also shown in children treated with Dexa, whereas children treated with Pred in an equivalent dose showed normal weight development. Besides the well-known peripheral effects of corticosteroids on growth and weight [26], glucocorticoids also exert an effect on the regulation of growth hormone secretion [27]. High-dose Pred (40 mg/m²/day) used in the treatment for ALL resulted in decreased growth hormone secretion during deep sleep as well as in response to arginine, insulin, and growth hormone releasing hormone administration [28]. Dexa, in a dose of 10 mg/m²/day, completely suppressed the spontaneous growth hormone secretion in patients treated...
In children treated for acute lymphoblastic leukemia with and without prophylactic cranial irradiation. Acta Paediatr 77:688–
growth in children with acute lymphoblastic leukemia treated with-
growth patterns and adult short stature in 115 long-term survivors
effects of 1800- and 2400-rad (18- and 24-Gy) cranial irradiation
on height and weight in children treated for acute lymphocytic
9. Sainsbury CPQ, Newcombe RG, Hughes IA: Weight gain and
height velocity during prolonged first remission from acute lymph-
study of growth in children with acute lymphoblastic leukemia.
T: Height, weight and growth hormone secretion in children treated
12. Tammenga RYJ, Kamps WA, Drayer NM, Humphrey GB: Longitu-
dinal anthropometric study in children with acute lymphoblastic
14. Barak Y, Liban E: Hypothalamic hyperphagia, obesity and dis-
1968.
lands third nation-wide survey. Tijdschr Soc Gezondheidszorg 63(suppl
16. van’t Hof MA, Wit JM, Roede MJ: A method to construct age
references for skewed skinfold data, using Box-Cox transforma-
GBA: Influence of treatment modalities on prepubertal growth in
children with acute lymphoblastic leukaemia. Pediatr Hematol
adult height and obesity in long-term survivors of childhood acute
19. Wells RJ, Foster MB, d’Ercole AJ, McMillan CW: The impact of
cranial irradiation on the growth of children with acute lymphoblas-
20. Swift PGE, Kearney PJ, Dalton RG, Bullimore JA, Mott MG,
Savage DCL: Growth and hormonal status of children treated for
Hypothalamic-pituitary dysfunction following DNS prophylaxis in
acute lymphoblastic leukaemia: Correlation with CT scan abnor-
22. Dacou-Voutetakis C, Xypana A, Haldaz St, Constantinides M,
Papavasiliou C, Zanos-Marilea I: Irradiation of the head. Imme-
diate effects on growth hormone secretion in children. J Clin
23. Crowne EC, Moore C, Wallace WHB, Ogilvy-Stuart AL, Addison
GM, Morris-Jones PH, Shalet SM: A novel variant of growth
hormone (GH) insufficiency following low dose cranial irradiation.
24. Constine LS, Woolf PD, Cann D, Mick G, McCormick K, Raub-
tas RF, Rubin Ph: Hypothalamic-pituitary dysfunction after radia-
25. Spoudeas HA, Davidson A, Ryalls MR, Powles RL, Treleaven