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Abstract

W Hierarchical structure and compositionality imbue human
language with unparalleled expressive power and set it apart from
other perception—action systems. However, neither formal nor
neurobiological models account for how these defining computa-
tional properties might arise in a physiological system. I attempt to
reconcile hierarchy and compositionality with principles from cell
assembly computation in neuroscience; the result is an emerging
theory of how the brain could convert distributed perceptual
representations into hierarchical structures across multiple time-
scales while representing interpretable incremental stages of (de)
compositional meaning. The model’s architecture—a multidimen-
sional coordinate system based on neurophysiological models of
sensory processing—proposes that a manifold of neural trajecto-
ries encodes sensory, motor, and abstract linguistic states. Gain

INTRODUCTION

Natural language enables us to produce and understand
words and sentences that we have never encountered be-
fore, as long as we (and the words and sentences) play by
the rules. This fact is particularly startling if you consider
that human language is processed and generated by a
biological organ whose general remit is to be driven by sta-
tistical regularities in its environment. The human brain
manifests a paradox’ when it comes to language: Despite
the clear importance of statistical knowledge and distri-
butional information during language use and language
acquisition, our everyday language behaviors exemplify
an ability to break free from the very (statistical) vice that
bootstrapped us up into the realm of natural language
users in the first place.

For example, although we have specific expectations
about what a given word should sound or look like, we
do not require an exact physical copy, as a machine might,
nor do we fail to recognize a word if a person previously
unknown to us produced it. Furthermore, although we
might learn a word in a phrase or sentence context, or
might tend to experience that word more often in one
context than in another, we are by no means limited to
recognizing or using that word “only” in that context, or
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modulation, including inhibition, tunes the path in the manifold
in accordance with behavior and is how latent structure is inferred.
As a consequence, predictive information about upcoming sensory
input during production and comprehension is available without a
separate operation. The proposed processing mechanism is syn-
thesized from current models of neural entrainment to speech,
concepts from systems neuroscience and category theory, and a
symbolic-connectionist computational model that uses time and
rhythm to structure information. I build on evidence from cog-
nitive neuroscience and computational modeling that suggests a
formal and mechanistic alignment between structure building
and neural oscillations, and moves toward unifying basic insights
from linguistics and psycholinguistics with the currency of neural
computation. [l

only in related contexts, or only in the contexts that we
have ever experienced it in. As such, a marvelous expressive
capacity is extended to us—the ability to understand and
produce sentences we have never encountered before, to
generate and express formal structures that lead to contex-
tually specific compositional meanings. Although this ca-
pacity may seem pedestrian to us, it sets language apart
from other perception—action systems and makes language
behavior vexingly difficult to account for from a neuroscien-
tist’s and computationalist’s point of view. One of the sys-
tem properties that underlies this capacity in language is
compositionality, whereby units or structures compose
(and decompose) into meanings that are determined by
the constituent parts and the rules used to combine them
(Partee, 1975).

The study of language spans a 3000-year tradition in phi-
losophy (e.g., the Rigveda [O’Flaherty, 1981]; Aristotle,
Plato, De Saussure [Robins, 2013]) up to the recent formal-
izations of the last 60 years in linguistics (e.g., Kratzer &
Heim, 1998; Hornstein, 1984; Partee, 1975; Chomsky &
Halle, 1968; Lenneberg, 1967; Halle, 1962; Chomsky,
1957) and has revealed the pantheon of linguistic forms
that the systematicity of mind can take (Phillips, 2020;
Phillips & Wilson, 2010; Fodor & Pylyshyn, 1988). The last
century has also seen astonishing progress in neuroscience
(e.g., Buzsdki, 2006, 2019; Ballard, 2015; Marder, 2012;
Gallistel, 1990; Hebb, 1949; Ramon y Cajal, 1928) and in ar-
tificial intelligence (e.g., Hinton, Osindero, & Teh, 20006;
Rumelhart, McClelland, & PDP Research Group, 1987),
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yielding powerful, complex models (e.g., Tenenbaum,
Kemp, Griffiths, & Goodman, 2011; Doumas, Hummel, &
Sandhofer, 2008). But all this remarkable progress has yet
to offer a satisfying explanation as to how the defining
features of human language arise within the constraints of
a neurophysiological system (for discussion, see Brennan
& Martin, 2020; Martin & Doumas, 2017, 2019a, 2019b;
Baggio, 2018; Martin, 2016; Embick & Poeppel, 2015;
Hagoort, 2003, 2013; Friederici, 2002, 2011). Without an ex-
planatory neurophysiological and computational account
(Kaplan, 2011; Kaplan & Craver, 2011; Piccinini, 2007) of
the quintessential properties of human language—of hier-
archical structure and domain, of function application and
scope, and, most definitely, of compositionality—our theo-
ries of language and the human mind and brain seem
startlingly incomplete.

In this paper, I attempt to simultaneously consider the
basic constraints of network computation in a neurophys-
iological system, the core formal properties of language,
and the psycholinguistics of language processing. These
topics are traditionally treated as individual subjects for
theories and models, which, as a result, leads to necessar-
ily independent theories and models. However, the
capacity that these theories wish to explain and the prob-
lems that these theories and models face are often tacitly
common to all domains. Thus, in my view, the topic is
best served by an integrated solution, however difficult
it may be to achieve. A comprehensive view of language
in the mind and brain requires consideration of (and obe-
dience to) the hard constraints on each domain, because
in the limit it is these constraints that shape any viable
solution. Unless we as a field are interested in psychol-
ogical models that cannot be implemented in neural
systems or in neurophysiological models that have no
meaning in linguistics or psychology, our only choice is
to develop theories under the constraints of multiple
levels of analysis. I advocate the view that we must build
models that pay heed to the constraints on computation
(see van Rooij, Blokpoel, Kwisthout, & Wareham, 2019;
Blokpoel, 2018; van Rooij, 2008), and in this particular
case, we must obey the constraints that physiological sys-
tems impose while also capturing the formal properties of
language we set out to account for. In an attempt to deter-
mine how linguistic representations could be expressed in
the brain, I apply concepts from neurophysiology and dy-
namical systems neuroscience, broadly construed (e.g., neu-
ral oscillations, cell assemblies, gain modulation [including
inhibition], sensory recoding or coordinate transformation,
neural trajectories, and manifolds®), to psycholinguistics.
Then, I try to face the formal facts by considering how
basic compositionality could be achieved within existing
neurophysiological models of sensory coding for systems
that also guide action (e.g., vision — pointing, grasping). I
propose that linguistic structure building is a form of
perceptual inference—the ability to infer the presence
of a stimulus, often from incomplete or partial sensory
information. Perceptual inference is based on information
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stored in neural representations that were acquired
through experience (Aggelopoulos, 2015) and that are
generated internally in response to stimulation (Martin,
2016). I posit a processing mechanism for perceptual in-
ference via the neural transformation of sensory codes to
structured representations. The mechanism operates
over a manifold of neural trajectories or the activity of a
neural population projected into a space whose dimen-
sions represent unit activation in time. Increasingly ab-
stract structures during language comprehension are
inferred via gain modulation, the way in which neurons
combine information from two or more sources (Salinas &
Sejnowski, 2001). Inhibition, or the interruption, blockade,
or restraint of neural activity in time and space (Jonas &
Buzsdki, 2007) is a form of gain modulation, and plays a
key role in combining and separating information during
language processing.

In the first section, I argue that (de)compositionality
implies that the neural state space of linguistic represen-
tation is inherently multidimensional and thus is best
described as dimensions in a manifold of neural trajecto-
ries. The neuroscientific and linguistic ways in which
these dimensions relate can be described mathematically
as transformations that stand in particular relations or
morphisms to one another across multiple coordinate
systems in cortical time. Coordinates of each dimension
range from sensory-registered values (e.g., topographic,
retinal, or head-centered values, outside language) to ab-
stractions that correspond to the units of linguistic anal-
ysis at hand (e.g., phonetic features, semantic features,
possible syntactic relations in a grammar). Abstract struc-
tures are built from sensory codes via coordinate transform;
a given dimension in the manifold can be weighted accord-
ing to the demands of behavior, with the resulting activa-
tion being a form of neural gain modulation on relevant
dimensions, which in turn controls state transitions and fur-
ther coordinate transforms. In psycholinguistic terms this
can be referred to as structure building. States are gener-
ated, in line with contemporary and emerging thought in
neuroscience (e.g., Buzsaki, 2019; Ballard, 2015; i.e., per-
ceived as higher level structures during comprehension
via inductive inference or during speaking or signing, de-
duced from knowledge of language and its functor with
both conceptual and sensory knowledge).

The second section describes a possible implementa-
tion of the architectural principles from the first section.
It also focuses on a neurophysiological mechanism for
how linguistic structures could be generated from sen-
sory input via a gain modulation-based mechanism,
which (a) accounts for the unbounded combinatorial na-
ture of language, (b) can encode hierarchy in a sequence
and vice versa, and (¢) makes predictions about energy
expenditure in cortical networks that can be tested em-
pirically. The proposals in the first and second sections
synthesize psycholinguistics with the cognitive neurosci-
ence of language via computational principles that have
relevance across the cognitive and brain sciences.
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I. A NEURAL ARCHITECTURE FOR LINGUISTIC
REPRESENTATION AS PERCEPTUAL INFERENCE

Language comprehension can be characterized as a percep-
tual detection task wherein the percept to be detected is ab-
stract structure, meaning, and intention of the speaker.
Percepts or latent structures beyond sensation (see Table 1
for cartoon illustrations of various formal accounts of the
representations at stake) must be inferred from noisy and
often incomplete sensory representations of physical sig-
nals, using existing implicit grammatical, semantic, con-
textual, and procedural knowledge to make an inference
about what the latent structure of the stimulus is likely to
be given sensory evidence (Martin, 2016; Marslen-Wilson
& Tyler, 1980). Helmholtz (1867) famously characterized
perception as an inferential process®—one based on sen-
sory input but exceeding that input by using the products
of past experience (see also Olshausen, 2014; Yuille &
Kersten, 2006; Ernst & Biilthoff, 2004). Thus, the language
comprehension system, in contrast with the production
system, is inferential and probabilistic, a characterization
that perceptual systems in modern neuroscience receive
despite internal tensions regarding precise mathematical
expression (e.g., Gershman & Niv, 2010; Beck et al., 2008;
Ma, Beck, Latham, & Pouget, 2006). To comprehend is to
take an exogenous signal or set of sensory cues and
combine them with linguistic knowledge—endogenous
signals—the representations that sensory cues elicited
from memory (Martin, 2016). On this view, language

comprehension is a form of “analysis-by-synthesis”
(Poeppel & Monahan 2011; Bever & Poeppel, 2010;
Marslen-Wilson & Welsh, 1978; Halle & Stevens, 1962),
whereby cues in the speech signal activate or trigger infer-
ence about higher level representations as projected by
grammatical knowledge in the comprehender (for a pro-
cess model, see Martin, 2016, and for theoretical frame-
works of a similar spirit, see Marslen-Wilson & Tyler,
1980; Marslen-Wilson & Welsh, 1978). Comprehension cast
this way has a strong probabilistic component, which is in line
with dominant theories of word recognition and sentence
comprehension over the last several decades (e.g.,
MacDonald, Pearlmutter, & Seidenberg, 1994; Dell, 1986).
But the characterization that I advocate here contrasts strong-
ly with purely statistical, frequentist, or associationist accounts
because it embraces the symbolic nature of language and,
indeed, capitalizes upon it to perform inference over
noisy and variable input. Note that embedding probabilis-
tic activation functions within an analysis-by-synthesis
model does not mean that abstract symbolic representa-
tions of language are no longer necessary—in fact, such
an account claims that symbols are the perceptual targets
to be inferred during comprehension and are what is
“counted” or induced during statistical learning and during
language acquisition (cf. Martin & Doumas, 2017, 2019a,
2019b; Doumas & Martin, 2018; Doumas, Puebla, &
Martin, 2017; Martin, 2016; Holland, Holyoak, Nisbett, &
Thagard, 1986). Perceptual inference asserts that sensory
cues activate latent representations in the neural system that

Table 1. Cartoon Examples of Some of the Representational Systems in Linguistics. Neural Systems Must Implement Functionally
Adequate Expressions of These Representations if They are to Remain Faithful to Formal Principles that Shape Language and Behavior

Time flies like an arrow.

/taim flaiz laik an "@row/

Dependency parse Syntactic tree Role-filler binding calculus The lambda calculus
(ROOT L L Time flies like an arrow (S)
,D'g/ /'\ flies like(time, an arrow) FLIES LIKE(t, )
® Tl
) o N v flies (time) like(an arrow)
(NP (NNP Times)) Tme V. AdvP Time (NP) Flies like an arrow (VP)
i fles AV t Ax FLIES LlKE(X, a)
(VP (VBZ flies) - B
' | A
(PP (IN like) I
Flies like (V) An arrow (NP)
(NP (DT an) (NN arrow)))) Ax Ay. FLIES LIKE (x, ) a
FLIES LIKE (a two-place predicate)

(..))

e foed adr SOBAO

Syntax code: [IP [DP{D/[D]|[NP [N Time]|] (I'[1)[VF [V* [V flies] [AdvPLAdY [Ady like][*DP am arrow]])

t TIME (simplifying, a constant)
a: AN ARROW (smplifying, another constant)
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have been learned through experience.” In line with this
idea, there is ever-accumulating evidence that “lower level”
cues like speech rate and phoneme perception (e.g.,
Kaufeld, Ravenschlag, Meyer, Martin, & Bosker, 2020;
Kaufeld, Naumann, Meyer, Bosker, & Martin, 2019; Heftner,
Dilley, McAuley, & Pitt, 2013; Dilley & Pitt, 2010), morphology
(e.g., Gwilliams, Linzen, Poeppel, & Marantz, 2018; Martin,
Monahan, & Samuel, 2017), foveal and parafoveally processed
orthography (e.g., Cutter, Martin, & Sturt, 2020; Veldre &
Andrews, 2018; Schotter, Angele, & Rayner, 2012), as well
as “higher level” sentential (e.g., Martin, 2018; Martin &
McElree, 2008, 2009, 2011, 2018; Kutas & Federmeier,
2011; Ferreira & Clifton, 1986; van Alphen & McQueen,
2006) and discourse representations (e.g., Nieuwland &
Martin, 2012; Nieuwland, Otten, & Van Berkum, 2007,
Nieuwland & van Berkum, 2006; Sturt, 2003) can interact to
bias perception in constraining ways.

Linguistic Representation in Neural Terms:
N-dimensional Manifolds of Neural Trajectories

The notion that linguistic structure is a product of per-
ceptual inference implies that there are multiple repre-
sentations at stake—for our purposes, neural states that
are associated with a given sensory input or given concep-
tual unit to be expressed. Minimally then, we must enter a
space where sensory representations can be transformed
into nonsensory and increasingly abstract representations,
and vice versa. This neural state space, described by an
n-dimensional manifold, has dimensions that have coordi-
nate systems (see Glossary). The map or relation between
coordinate systems and dimensions can be described by a
functor. Some dimensions might have group homomor-
phisms or relationships that preserve algebraic structure
between dimensions, for example, between syntactic struc-
ture and semantic domain or scope, whereas others do
not, for example, between minimal pairs in phonemes
and lexical semantic features. Thus, the degree of homo-
morphism between two given dimensions will shape how
activation is propagated between them and the path
through the manifold that reflects the transformation of a
sensory cue into an abstract structure. The mathematical
object n-dimensional manifold® is a useful description for
our purposes, because for each point on a surface (or di-
mension) of a manifold, there is a homeomorphic relation-
ship with points in a neighboring dimension, meaning that
there is a continuous inverse function between dimensions
we can apply to describe the transition between trajecto-
ries in the manifold. Manifolds can be used to describe
neural population activity in time (e.g., Gdmez, Mendoza,
Prado, Betancourt, & Merchant, 2019; Bressler & Kelso,
2001, 2016; Sporns & Kotter, 2004; Amari, 1991). A neural
manifold is composed of neural trajectories, in our case, of
a multiple cell assemblies’, activation in time. A neural tra-
jectory typically describes the time course of population
activity in a high-dimensional space, where each axis rep-
resents the firing rate of one neuron in the population; as
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activity unfolds over time, a trajectory is traced out in the
space (e.g., Gdmez et al., 2019). A path through the coor-
dinate systems in the manifold reflects the evolution of a
linguistic representation from sensation to abstraction
and back again. In this sense, language production and
comprehension both are forms of nonlinear dimensional-
ity reduction—when we perceive a word or phrase, we
have reduced their acoustic instantiations into an abstract
neural coding space by applying our linguistic knowledge
to the neural projection of physical stimulation; when we
produce a word or phrase, we are reducing the dimensions
of conceptual content to a particular sequence of ar-
ticulatory gestures. In summary, spatiotemporal patterns
of brain activity during language processing can be de-
scribed by a manifold of neural trajectories, and dimen-
sions of that manifold must relate in particular ways to
each other than can be described by the mathematical
concepts of morphism and the functors between them
(viz., structure-preserving functions between coordinate
systems and a map between them).

Neural Gain Modulation for Coordinate Transform

If neural representations for language are definitionally
multidimensional, then they require coordinate trans-
form to move from one dimension to another in neural
spacetime. I propose that this transform can occur via an
existing mechanism that is repeatedly used throughout
perception—action: gain modulation. As it is unlikely that
any specialized brain mechanism could have emerged
given the timescale that language appeared (Boeckx &
Benitez-Burraco, 2014), the empirical question becomes
whether existing neural coordinate transform schemes
could apply to linguistic representations and faithfully ac-
count for their formal properties.

Gain modulation is the neurophysiological way to relate
activity from one modality or representational coordinate
system to another (Buzsaki, 2019; Salinas & Abbott, 2001;
Salinas & Thier, 2000; Zipser & Andersen, 1988). It is the
way neurons combine information from two or more
sources, relating disparate information sources in space
and time, underlying the integration of information
over time. It perhaps most often described in the non-
neuroscientific context of volume control; Buzsaki
(2019) gives an accessible description of dialing up the vol-
ume on your radio. This control of output or volume re-
quires two things, an amplifier and a modulator. The
amplification aspect of gain modulation is a change in
the response amplitude of a neuron or group of neurons
(i.e., a cell assembly) as a function of selectivity, which is
assumed to be dependent upon the sensory context and
the behavior that is being performed by the organism
(Buzsdki, 2019; Haegens, Hindel, & Jensen, 2011; Jazayeri
& Movshon, 2007; Salinas & Abbott, 2001; Salinas & Thier,
2000; Andersen & Mountcastle, 1983). These changes in
activity are interpreted as reflecting the recruitment of
the representational dimension of the neural assemblies
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that has been selected by the sensory context and behav-
ioral target. Gain modulation (both amplification of a sig-
nal and inhibition are subsumed by this term, see Buzsdki,
2019) is hypothesized to underlie coordinate transform
between sensory modalities and between sensory and
motor systems; it is formalized as the product of a neuron
or cell assembly’s response function, f(x), and another’s,
2(y), vielding a new gain field from the value given by the
function, f(x)g(y) (Salinas & Abbott, 2001; Salinas & Thier,
2000). The resulting product of this computation over
receptive fields is a “gain field,” which no longer codes
for representation in a purely afferent-driven way. Gain
fields are invoked to account for the transformation of
neural representations from afferent retinal coordinates
to efferent limb-centric coordinates, and vice versa, but
also for translation invariance of an object across different
locations in the visual field (e.g., Zipser & Andersen, 1988).
In a trajectory manifold where dimensions relate to each
other through gain modulation, gain-modulated coordi-
nate transform is also referred to as “sensory recoding”
(Jazayeri, 2008). For example, in vision, low-level visual
information is processed into shape and, ultimately, into
object recognition (Olshausen, 2014; Ernst & Biilthoff,
2004). In speech perception, acoustic information must
be transduced from entry-level variables like pitch, inten-
sity, and duration, coded in the cochlea and auditory cortex
(Smith & Lewicki, 2006; Kim, Rhode, & Greenberg, 1986)
to the first abstractions of pitch accent and linguistic stress.
Coordinate transform may be a computational requirement
of any system with multiple data types or formats from mul-
tiple perceptors, effectors, and behavioral goals. In models of
sensory recoding, sensory representations can be separated
from areas that control the responses to those sensations,
allowing the system to “contemplate” or transform infor-
mation and use it in other modalities and situations
(Buzsdki, 2019; Jazayeri, 2008). It is worth noting that, al-
though gain modulation and attention are strongly asso-
ciated with one another, they are not synonymous; gain
modulation is a system-wide factor shaping neural infor-
mation processing, assembly formation, and commu-
nication (Buzsdki, 2019; Salinas & Thier, 2000). Capture of
covert and overt attention certainly lead to an increase in
gain modulation (e.g., Ling, Liu, & Carrasco, 2009), but
the role of gain modulation in the brain is likely to be much
more broad than simply as a neuronal instantiation of atten-
tion. For our purposes, the representational claims I make
in the first section rely on gain fields as filtered amplifiers,
which in this case do not so much amplify the input from
an afferent or output to an efferent, but rather propagate
aspects of the representation, which I refer to as dimen-
sions in a neural trajectory manifold. The modulator will
come into play in the second section when I describe
how inhibition that then tunes the propagation of features
to contact or activate representations in other coordinate
systems/dimensions and to enable compositional represen-
tations to emerge without violating independence (Martin
& Doumas, 2019b; Hummel, 2011). Inhibition will operate

laterally and downward in a feedback manner through the
hierarchy of state transitions. It is important to note that
there are multiple ways that gain modulation (both ampli-
fication and inhibition) can be implemented in the brain
(see Buzsdki, 2019; Kaplan, 2011). As such, my proposal
is not tied to particular neurophysiological realization of
gain modulation.

Concrete Examples of Gain Modulation for
Coordinate Transform from Sensation to Abstraction

If you unlock your office door while looking at the lock,
the visual signal available to the brain is different than if
you do the same behavior without looking. That is, the
response amplitude of a given neural population can de-
pend on the direction of gaze, as does the contribution
that activation to executing the same door-opening be-
havior. Nonetheless, you are able to unlock your office
door whether looking or not because you can transform
the visual information (either currently taken up or from
memory) into a coordinate space that motor action can
occur in. However, in contrast, locked doors will never be
opened without placing a key in the lock, so the activity
contributed by the motor system during execution should
be comparable whether you are looking at the lock or not,
perhaps with more enhancement of internal tactile propri-
oceptive signals when gaze is away from the target. Gain
modulation allows the system to enhance the contribution
of motoric codes when visual input is not informative (e.g.,
if you are looking away from the target).

We can gradually extend the example toward language
behavior; imagine you are engaged in conversation with a
friend, and you say the same word at different moments.
When you produce the word, the values along a given di-
mension of your friend’s neural response to the acoustic
energy of your word utterance will necessarily differ from
those incurred when your friend produces the word her-
self and her brain reacts to that production. This difference
can also be described as a difference in gain modulation.
In the case of language production and comprehension,
this separation is particularly useful—we do not want a
system that must involuntarily repeat what is understood,
nor one where we reprocess our own speech as if it were
another’s to be comprehended as we talk.

Now, we can take a step further and apply this concep-
tual analysis to an example that derives linguistic structure
from sensation during comprehension. Here, gain modula-
tion takes the form of selective amplification and inhibition,
which shape the sensory projection of the envelope and
spectral properties of the signal (syllables, phonetic fea-
tures) into words, phrases, and sentence structures. In
the following example, gain acts to combine aspects of rep-
resentation in one coordinate system and pass that informa-
tion forward into the dimension of another coordinate
system. For instance, the neural response to a sharp edge
detected in the speech envelope propagates activity to the
stored syllabic or phonemic codes that are consistent with
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that edge in context; once that syllable or phoneme is ac-
tive, the edge is no longer available as an edge alone. The
higher level structure of the syllable or phoneme has inhib-
ited it. The propagation of activation through coordinate
systems that are interconnected to each other is aided by
the inhibition of recently processed representations as they

are subsumed by structure. This is the mechanism that lies
at the core of the model.

What I describe here requires some suspension of
disbelief as the precise nature of the computations are
obscured by the unavoidable cartoonification of an exam-
ple. Pseudocode is available in Table 2.

Table 2. Pseudocode for the Gain-Modulation-Based Formation of Linguistic Representations From Sensory Signals during
Language Comprehension

High-level Pseudocode for “Analysis-by-synthesis” Language Comprehension
0. Project physical sensation of speech or sign into state space of neural trajectories
1. Apply gain to generate coordinate transform
1.1 Pass activation through gain-field trajectories*;
1.2 Inhibit # — 1 trajectory and laterally connected trajectories
2. Current manifold state impinges on unfolding bias of sensory signal (¢ + 1), mutual constraint;
Return to 0.

*computations must be based on summation and divisive normalization, and result in nonlinear additive gain modulation.

Specified Pseudocode to Generate a Phrase from Syllables and Words

For each [sensory input segment]++ at Z,

0 Project physical sensation of speech or sign into manifold of neural trajectories
0.1 syllable envelope, spectral contents enter Dimension 0 of manifold

0.2 Apply gain from stored linguistic representations (priors in the form of distributional and transitional probabilities) onto
coordinates in Dimension 0, creating Dimension 1

0.3 Inhibit # — 1 trajectory and laterally connected trajectories

0.4 Bias upcoming sensory signal (# + 1) through mutual constraint of Dimension 0 onto upcoming sensory input
1 Return Dimension 1 [phonetic, phonological, prosodic coordinates]

1.1 Pass activation through gain-field trajectories* and apply gain as in 0.2; creating Dimension 2

1.1 Inhibit # — 1 trajectory and laterally connected trajectories

1.2 Bias upcoming sensory signal (# + 1) through mutual constraint of Dimensions 0 and 1 onto upcoming sensory input
2 Return Dimension 2 [lexical and morphological coordinates]

2.0 Pass activation through gain-field trajectories* and apply gain as in 0.2; creating Dimension 3

2.1 Inhibit # — 1 trajectory and laterally connected trajectories

2.2 Bias upcoming sensory signal (z + 1) through mutual constraint of Dimensions 0, 1, and 2 onto upcoming sensory input
3 Return Dimension 3 [lexico-syntactic and lexico-semantic relations]

3.1 Pass activation through gain-field trajectories* and apply gain as in 0.2; creating Dimension 4

3.2 Inhibit # — 1 trajectory and laterally connected trajectories

3.3 Bias upcoming sensory signal (z + 1) through mutual constraint of Dimensions 0, 1, 2, and 3 onto upcoming sensory input
4 Return Dimension 4 [phrase-level syntactic and semantic relations]

4.1 Pass activation through gain-field trajectories* and apply gain as in 0.2; creating Dimension 5

4.2 Inhibit # — 1 trajectory and laterally connected trajectories

4.3 Bias upcoming sensory signal (z + 1) through mutual constraint of Dimensions 0, 1, 2, 3, and 4 onto upcoming sensory input

5 Return Dimension 5 [clause- and sentence-level relations]
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To comprehend the sentence from speech or sign:
Time flies like an arrow.

The first dimension in manifold trajectory space is the
neural projection of the modulation spectrum and enve-
lope of the sensory stimulus; whether this is best described
as neural representations of syllables, phonemes, or mini-
mally articulatory—phonetic features (see Anumanchipalli,
Chartier, & Chang, 2019; Cheung, Hamilton, Johnson, &
Chang, 2016) is an empirical question (see Figure 1). In
any case, this first dimension cues the invocation of ab-
stracted functionally phonemic representations in cortical
time, which we can represent, for our cartoon purposes,
in a sequence of the international phonetic alphabet:

/taim flaiz laik an 'serow/;

where in an incremental manner, this process is hap-
pening iteratively as each burst of signal-related activity
occurs. To pass to the next dimension of the manifold,
syllabically segmented representations receive gain from
internal lexical representations; this gain signal synthe-
sizes the second dimension with activation from assem-
blies that store lexical knowledge, selecting a lexical
representation directly from memory to become active
in the manifold (see Figure 2A for a static representation
and Figure 2B for a visualization of the process iterated in
time). This process essentially serves to transform the ac-
tivation pattern in the coordinate system of phonetics
and phonology into lexical coordinates. Sequences of
segmented syllables can be organized by thresholded lex-
ical uniqueness point in the stream; this characterization
will serve as our simplification of lexical access. Once the
lexical dimension of neural trajectories has been reached,
inhibition is passed down to the constituent codes on
“lower” dimensions. We can denote an unfolding lexical rep-
resentation as it emerges from syllable segmentation as

/time/ Alies/...

with each lexical and morphological dimension, in turn
delimiting the abstraction process in time. Once the lex-
ical dimension has been achieved locally (i.e., patently
not assuming that a phrase or sentential structure is
atemporal, they must be computed incrementally), syn-
thesis with morphemic dimensions yields supralexical
syntactic structure or the phrase dimension (Figure 2A
and 2B):

/time flies/...

Inhibition is likely to play a significant role in the selec-
tion of locations in each dimension that make up the trajec-
tory. For example, for minimal pairs of phonetic features or
phonemes, activation of a given unit inhibits its paired con-
trast. From the lexical and morphemic dimensions upward,
inhibition is needed not only to select targets, but to sup-
press those targets’ individuation as they are synthesized
into upper dimensions, such as from morphemes to words.
In the second section, inhibition will play a key role in mul-
tiplexing across dimensions during phrasal computation
when the system is parsing and producing sentences in
time. From the instantiation of the cascaded phrases
/fime flies/, flies like/, and /an arrow/, where the activation
state in that dimension, expressed in each dimension’s co-
ordinates with functors across the dimensions as the neural
trajectory of the sentence in the manifold progresses.

Although the path dependence applies in earlier dimen-
sions, on a mesoscopic scale we can see how it shapes the
unfolding trajectory. Path dependence is the delimitation
of the current trajectory by the past, and in other words,
by path choices at earlier stages of processing. In a system
with path dependence, information about the relation
between a given state and the state space manifold can
be recovered via path integration (Gallistel, 1990). Path de-
pendence and integration may turn out to be how percep-
tual inference evolves in the neural manifold but the role
of these concepts in linguistic structure-building trajecto-
ries must be empirically established.

Figure 1. A cartoon illustration

of the inference problem for
the brain during language

comprehension. From the Speech
speech envelope and spectral envelope
contents therein, the brain must

generate linguistic structures

and meanings that do not have

a one-to-one correlate in the

acoustic signal. Information on words
different timescales, putatively morphemes
encoded in the excitatory and phrase

inhibitory cycles of neuronal

VAR JAVN VARV VAW V.V
I\ N

N N N
TSNS NN

assemblies, must be synthesized
together into meaningful
linguistic structures to achieve
comprehension.

Comprehension

3 “Time flies like an arrow”
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Figure 2. (A) A schematic of the broad strokes representational concepts associated with each dimension in the manifold for the sentence “Time
flies like an arrow.” Illustrated here are the levels of representation also referred to in the pseudocode. I do not mean to imply that other or more
specific and articulated linguistic representations (e.g., phonetic and phonemic representations, constituency grammar representations, formal
semantic representations, and flavors of representation that far exceed the illustrations Table 1 in specificity) are not at play in the mind and brain.
I believe they are, but gloss over and simplify them for the sake of communicating the arguments I make in this paper, which are about the
neuroscientific, cognitive, and linguistic computational levels, and the beginning of an algorithmic account of how levels of representations are
transformed into each other. (B) A visualization of the coarse timestep increments for A.

The multidimensional coordinate system for language I
sketch here is inspired by theories of neural representation
in sensory processing (Ma, 2012; Jazayeri, 2008; Andersen,
Essick, & Siegel, 1985), evidence for neural coding schemes
in multisensory perception and in perception—action
models (Bressler & Kelso, 2001, 2016; Jazayeri &
Movshon, 2007; Ghazanfar & Schroeder, 2006; Andersen,
Snyder, Bradley, & Xing, 1997), and in auditory and speech
processing networks (Cheung et al., 2016; Chang et al.,
2011; Lakatos, Chen, O’Connell, Mills, & Schroeder, 2007,
Ghazanfar & Schroeder, 2006). Recent studies using elec-
trocorticography have revealed that both speech-gestural,
acoustic-phonetic, and speaker identity-related aspects of
the speech signal are coded to support multisensory inte-
gration (Cheung et al., 2016; Ghazanfar & Schroeder, 2006).
Such a coding scheme could be operated on by a gain-
modulated coordinate transform that transduces an acous-
tic signal to at least the level of syllable and the onsets of
larger linguistic structures. Namely, populations that selec-
tively respond to acoustic features also appear to infer pho-
nemes based on those features, even when the phoneme
itself is not present in the input (Fox, Sjerps, & Chang,
2017; Leonard, Baud, Sjerps, & Chang, 2016; Chang et al.,
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2011). From evidence like this, we can assert that cortical
networks encode information in a multidimensional coor-
dinate system such that, contingent upon the route of acti-
vation (i.e., behavior), activation weights in one dimension
have more gain relative to another dimension but remain
coregistered through homomorphism with one another.’
Through neural gain modulation, representations that are
more relevant (i.e., have higher likelihoods) in a given con-
text can dominate and guide behavior, giving the system
the flexibility needed to dynamically amplify aspects of
representations in relation to the sensory context and
behavioral goal (see Engel & Steinmetz, 2019, for a review).
In such a coding scheme for language, knowledge of the
lexicon, and grammatical, semantic, and contextual knowl-
edge can be “shared” across modalities and recruited
during the assembly of representations for articulation, as
well as during the perceptual inference and generation of
structures during comprehension.

Furthermore, gain modulation also offers a built-in
system for predictive coding (Friston, 2005); activation
can be passed to assemblies that represent likely up-
coming representations through multiplication of pres-
ent response functions, divisive normalization of less
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expected or less relevant dimensions (Carandini &
Heeger, 2012), and inhibition of recently perceived di-
mensions. Predictive coding would be a form of neural
gain application to future representations or representa-
tional dimensions as a function of the present stimulus.
In summary, neural systems can achieve a form of rep-
resentational efficiency by coding perceptual targets as
intersections in a multidimensional space.

Principles from neurophysiological models of sensory
coding must produce patterns of activation that abide
by the requirements of language: The representations
called upon during production and comprehension are coor-
dinate transforms across dimensions the neural trajectory
manifold of cell assemblies. One set of coordinates is based
on the sensory information of a given linguistic processing
unit and the concomitant motor program to produce that
unit within a context specified by the highest unit being
planned. Another set of coordinates relates the morphism” of
the sensory space with the abstract structural and conceptual
knowledge it is related to (likely an algebraic, not an exclu-
sively geometric space, see Phillips, 2020). In such a space,
the unit being produced or comprehended is represented
in relation to the other representations in memory that they
cue (as in Martin, 2016, a function of grammatical knowledge
modulated by referential and other aspects of the perceptual
context). Production or comprehension then becomes a be-
havioral target; coordinate systems that play a role in produc-
ing (i.e., sensorimotor, motor) are more active during that
behavior than during the opposed behavior (i.e., comprehen-
sion), but the mapping between systems persists. As in
models of attention and perception, gain modulation allows
for behavior to be guided by one coordinate dimension over
another as a function of task demands (Jazayeri & Movshon,
2007; Carrasco, Ling, & Read, 2004).

Necessary Computational Principles for
Higher-Level Linguistic Structures

To represent linguistic structures in the system described
above, it is likely that individual neurons and even neural
networks or assemblies must participate in the coding of
multiple dimensions in the manifold—coordinate trans-
formation via gain modulation is the brain’s way of read-
ing out or translating information represented in one
assembly in the context of, or combined with, information
represented by another (Buzsdki, 2010, 2019). To pull this
off in a unit-limited system, individual units will have to
play double duty. Fortunately, there is ample evidence
that neurons can participate in multiple larger networks,
even “at the same time” by firing at different frequencies
as part of different networks (Bucher, Taylor, & Marder,
2006; Weimann & Marder, 1994; Hooper & Moulins,
1989). There are likely many cellular mechanisms that
underlie overlapping neural circuits and the “switching”
of neurons on and off within an assembly; it appears that
the system can employ a number of these mechanisms
concurrently to achieve rhythmic homeostasis (Marder,

2012). In the second section, I return to how gain mod-
ulating through coordinate dimensions in the manifold
links up with a mechanism for learning and representing
structures in a computational model (itself a theory of
representation) and with principles from neurophysiology
and linguistic theory. Essentially, to make the architecture
proposed in the first section sufficient to support compo-
sitionality, the representations at each level of linguistic
description must be functionally orthogonalized. From
a computational point of view, there are two ways to
achieve this, one is to hardcode vector orthogonalization,
which in my opinion yields data structures that are not
flexible enough to account for the productivity and gener-
alization seen in natural language, and the other more
plausible way is to use a time-based neural processing
mechanism (viz., an algorithm or series of algorithms that
control the neural transform path over time) in a way that
maintains independence between representational layers
as per formal linguistic needs.

II. A MECHANISM FOR COMPOSITION:
BRAIN RHYTHMS STRUCTURE SPEECH
INPUT INTO LANGUAGE VIA
GAIN-MODUILATED MULTIPLEXING

Neurobiological models have focused on identifying the
functional and anatomical circuits that underlie speech
and language processing in the brain (Friederici & Singer,
2015; Skipper, 2015; Hagoort, 2013; Hickok & Poeppel,
2007). However, within the last decade, a wealth of results
has emerged that points toward a process model based on
neural oscillations and their role in speech and language
processing has emerged (e.g., Meyer, Sun, & Martin, 2019;
Obleser & Kayser, 2019; Meyer, 2018; Murphy, 2018; Ding,
Melloni, Zhang, Tian, & Poeppel, 2016; Keitel & Gross, 2016;
Friederici & Singer, 2015; Gross et al., 2013; Hagoort, 2013;
Arnal & Giraud, 2012; Giraud & Poeppel, 2012; Peelle & Davis,
2012; Ghitza, 2011; Obleser, Meyer, & Friederici, 2011,
Morillon, Kell, & Giraud, 2009; Bastiaansen, Oostenveld,
Jensen, & Hagoort, 2008; Luo & Poeppel, 2007; Bastiaansen
& Hagoort, 2006; Hald, Bastiaansen, & Hagoort, 2006;
Bastiaansen, van der Linden, Ter Keurs, Dijkstra, & Hagoort,
2005). These accounts have taken the first steps in attempt-
ing to link real-time signals for cortical networks during
speech and language processing to the neural mechanisms
that render language comprehension from the acoustic sig-
nal of speech (e.g., Ding et al., 2016; Giraud & Poeppel,
2012). Inquiry into the classes of neural architectures and
computations that the brain could carry out to achieve
perception of linguistic structure from sequential sensory
input is ongoing (see Martin & Doumas, 2017, 2019a,
2019b; Meyer et al., 2019; Martin, 2016); here, I offer
an account of (de)compositionality in a computational
framework that uses oscillatory activation to combine
and separate information in a system bounded by cycles
of activation and inhibition.
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Phase Synchronization and Temporal Multiplexing
of Information as Structure Building

A prominent feature of neural oscillations is the potential
correspondence with multiple timescales of information
processing, expressed either in aspects of time (latency, on-
set, duration), in the periodicity of processing, in power, or
in phase information. From animal models of basic neuro-
physiological mechanisms, temporal multiplexing, often
empirically operationalized at cross-frequency coupling or
phase (phase—phase, phase—amplitude) coherence, is im-
plicated as a stalwart processing mechanism, carrying infor-
mation that either occurs on different timescales or is
relevant on different timescales for perception, action,
and behavior (Fries, 2009; Schroeder & Lakatos, 2009;
Lakatos et al., 2007). Evidence suggests that synchroniza-
tion between cell assemblies as reflected in neural oscilla-
tions and phase coherence generalizes widely to other
areas of perception and memory in humans (Hanslmayr
& Staudigl, 2014; Fries, 2009; van Rullen & Koch, 2003)
as well as to speech processing (Obleser & Kayser, 2019;
Assaneo & Poeppel, 2018; Rimmele, Morillon, Poeppel,
& Arnal, 2018; Keitel & Gross, 2016; Giraud & Poeppel,
2012). Questions that the emerging field of neural oscilla-
tions during speech and language processing grapples with
include (a) whether neural oscillations are indeed the com-
putations at work, or just “read-out” of those computations,
(b) whether endogenous neural oscillations encode ab-
stract stimuli beyond the Fourier transform (Cole &
Voytek, 2017), and () if there is a functional interpretation
for a given frequency band, and if so, what it is and is it a
type or a token.® Regardless of the answers to these difficult
questions, one thing is clear: Brains make use of informa-
tion that occurs on different timescales in the environment
and within the individual (cp. Buzsdki, 2019). I will take for
granted, then, a link between the syllable envelope or
speech rhythm and the theta oscillation (~4-7 Hz), and be-
tween the fine acoustic featural structure of speech and the
gamma oscillation (~30-90 Hz), and assume that this link re-
flects the perceptual mechanism that renders speech into
language (cp. Giraud & Poeppel, 2012). A strong version
of such a hypothesis is that slower rhythms (i.e., delta
and theta oscillations) give structure that is regularly
phase reset by informationally dense (relatively infre-
quent) linguistic units, such as stressed syllables demar-
cating lexical and phrase codas (Alday & Martin, 2017;
Halgren et al., 2018; Ghitza, 2013), and higher frequency
bursts of activity reflect the application of grammatical rules
or stored lexical knowledge to infer a larger structure coded
by a new assembly that has come online. In this character-
ization, gamma activity is associated with the retrieval of
memory-based linguistic representations by minimal or
thresholded acoustic cues (Meyer et al., 2019; Martin,
2016), which may require increased interregional
communication. Gamma has been associated with interre-
gional coherence in cognition (Buzsdki & Schomburg,
2015; Lisman & Jensen, 2013), and seems to be tied to
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perisomatic inhibition (Buzsdki & Wang, 2012). Gamma
magnitude is also modulated by slower rhythms and occurs
with the irregular firing of single neurons, and is impli-
cated in the transient organization of cell assemblies
(Buzsdki & Wang, 2012). These characteristics align with
the inference of higher level linguistic representations
from sensory input being a punctate perceptual event that
has ongoing consequences for whole brain dynamics. Once
higher-level linguistic structure has been inferred, further
coordination of assemblies must occur via inhibition, pass-
ing inhibition to recently processed constituent representa-
tions and to related competitor representations. This
process would result in gamma modulations, which in
turn shapes the processing of upcoming sensory input
in the context of recent events/activated representations.
If higher-level structures have ongoing consequences for
future processing, as in, they shape upcoming sensory
processing through biases and prediction, then gamma
modulations should be observable as a function of the
generation of higher-level linguistic structure and the
degree to which upcoming input is constrained by it
(Nelson et al., 2017). In a model that generates linguistic
structure internally, knowledge about what goes with what
or what is likely to come next is encoded in the structures
themselves. The system has access to predictive information
by virtue of the way that it represents structures and infers
them from incomplete sensory input. The predictive aspect
of the model’s architecture would crucially rely on it not
being feed forward, on passing inhibition laterally and down-
ward, and on the ability to learn from internal dynamics. An
instantiation of this latter ability can be seen in a settling net-
work architecture that uses the systematic perturbations of
internal states to learn representations (Martin & Doumas,
2019a; Doumas & Martin, 2018; Doumas et al., 2008).

On this view, ongoing slow rhythms are coupled with
high-frequency activity that reflects inference, the activa-
tion of abstract grammatical knowledge in memory (likely
both procedural and semantic memory; Buzsaki, 2019;
Martin, 2016; Ballard, 2015).” “Entrainment” to higher level
structure is actually driven by internal evoked responses
to sensory input—the cascade of perceptual inference via
gain modulation and inhibition (Meyer et al., 2019; Martin,
2016) resulting in path dependence as discussed in the first
section. Linguistic structures, merely by virtue of their neu-
ral coding structure, then can constrain sensory processing
forward in time in what could be described as predictive
coding (Haegens & Golumbic, 2018; Spitzer & Haegens,
2017; Arnal & Giraud, 2012; Morillon et al., 2009; Friston,
2005). But how linguistics units combine together via gain
modulation over time is hypothetical and must be tested; in
Table 2, 1 offer pseudocode that presents a hypothesis
about how such an algorithm might work.

The articulatory gestures that produce speech have a
necessarily sequential nature, as our articulators cannot
work in parallel and produce more than one gesture at
a time. However, coarticulation and other phenomena
allow information about both what is upcoming and what
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has recently occurred to be spread across the signal.
Similarly, in comprehension, acoustic and temporal enve-
lope information enter the system and is segmented into
discrete units across multiple timescales for further pro-
cessing (Ghitza, 2011, 2013; Giraud & Poeppel, 2012;
van Rullen & Koch, 2003). In speaking and listening, the
representation and processing of information must differ
across multiple timescales (roughly: articulatory unit, mor-
pheme, word, phrase). In production a composed mes-
sage must be sequenced into articulatory gestures, and
in comprehension, the acoustic and rhythmic output of
those gestures must be composed into a hierarchical
structure from a sequence.’® This gives rise to the need
to branch or spread information across linguistic levels
of analysis across time—syllables, words, phrases, and
sentences tend to occur on disparate timescales, but
often, timescale and linguistic content cannot be fully
orthogonalized—a syllable can be a morpheme, a word,
a phrase, or even denote a sentence. To solve the problem
of interpretation and production of structured meaning
through sequential channels of speech, sign, or text, the
brain needs a mechanism that can spread information
about representational content across time. The theta os-
cillation may be a likely carrier signal for linguistic sensory
input, but more carrier signals and coherence between
them must exist for the perceptual inference of linguistic
structure, which itself is not recoverable from the sensory
codes alone.

How Time and Rhythm Could Generate
Compositional Linguistic Structures

The problem of (de)composing representations in lan-
guage processing can be conceptually analyzed as, at
minimum, two states of the network must be linked
together for processing by a third, separable representa-
tional state (Doumas & Hummel, 2012). The instantiation
of a third state is what allows stored representations to
not be defined by this particular instance of composition
(see Figure 3 for an illustration of a trajectory in the
manifold for a sentence). Such a mechanism allows the
system to maintain independent representations of in-
puts that are composed together during processing as
needed during multiplexing and, in principle, to produce
a theoretically limitless set of combinations of states. As
such, in sequences, implicit ordinal and time-sensitive re-
lationships matter and carry information and, in fact, can
be used to signal the hierarchical relationships that have
been compressed into that sequence and which can be
reconstructed from that sequence (Martin & Doumas,
2017, 2019a, 2019b; Doumas & Martin, 2018; Doumas
et al.,2008, 2017). Information represented in the lower
layers of the cortical network is directly read in from the
neural projections in sensory dimension of the manifold of
the sequential input. In such an architecture, higher level
representations are dimensions in the manifold that inte-
grate or bind lower level representations over time, which

gives rise to more protracted activity. Hierarchical struc-
tures thus mandate an asynchrony of activation in time be-
tween layers of the network or across dimensions of the
manifold, which correspond to levels of linguistic repre-
sentation and the products of composing them into mean-
ingful structures. This asynchrony/desynchronization can
only be achieved with a modulator, in this case, inhibition
carried out by yoked inhibitors.

One way to implement multiplexing computationally is
to distribute levels of representation across layers of a neu-
ral network (Martin & Doumas, 2017, 20192; Doumas et al.,
2008). Representations that must be sequenced from a hi-
erarchy, and vice versa, can be composed and decomposed
only if activation across layers is desynchronized at some
point in time. This fact gives rise to “rhythmic computation”
in the network, where time is used to carry information
about the relationships between representations that are
present in the input (see Martin & Doumas, 2017, 2019a;
Doumas & Martin, 2018; Doumas et al., 2008, 2017). The
mechanism of rhythmic computation is based on a princi-
ple of cortical organization that “neurons that fire together,
wire together” (Hebb, 1949). Neurons that do not fire in
synchrony can stay independent—the proximity in time be-
tween firings can be exploited to carry information about
the relation between recognized inputs in the sequence.
Though all neural networks can be said to contain an im-
plicit notion of time (i.e., in that they have activation func-
tions and learn as a function of iteration and weight
updating), few models explicitly use time to carry informa-
tion. Those that do tend to use the synchrony of firing to
bind information (Singer, 1999; von der Malsburg, 1999)
and do not use the information carried by asynchrony
(Shastri, 1999; von der Malsburg, 1995).

In contrast, Discovery of Relations by Analogy (DORA; a
symbolic-connectionist model of relational reasoning; the
full computational specifics can be found in Doumas et al.,
2008, 2017) exploits the synchrony principle, but it does
so by using “both sides” of the distinction (see Figure 2
for a cartoon illustration). To keep representations separa-
ble while binding them together for processing, the model
is sensitive to asynchrony of firing. The use of time on
multiple scales to carry information about the relations be-
tween inputs in a sequence is implemented as systematic
asynchrony of unit firing across layers of the network. This
manner of computation is rhythmic because synchrony
and asynchrony of activation is what computes the bind-
ings. Rhythmic activation of separable populations of units
computes different levels of representation as they occur
in time, which both binds the representations together
while keeping them as separable neural codes. The ability
to maintain (de)compositionality is a computational fea-
ture that is crucial for the kinds of relations that are
necessary to represent human language. DORA achieves
compositionality by representing information across layers
of the network and using a combination of distributed
codes (e.g., for features, objects, words, concepts) and loc-
alist codes (e.g., for role-filler bindings). The particular
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Figure 3. A cartoon of the

neural trajectory for the
sentence “Time flies like an
arrow” as it progresses through
the manifold. Time progresses
in a clockwise manner. Mutual
constraint between dimensions
is represented by the dotted
lines; the solid lines are the
expression of path dependence
into larger linguistic structures.
The small Gaussian symbols
represents the application of
gain and inhibition as coordinate
transform occurs. Temporal
multiplexing is represented in
the cascaded and twisting nature
of the solid line arms, such that
there is also desynchronization
between levels of linguistic
representation. Dimension or
level of linguistic representation
is represented by the different
color circles.

@ Exogenously driven sensory rhythms
@ Mapping to endogenous rhythms (lexical and morphemic content)

@ Unit rhythms form larger linguistic structures

implementation of the conjunctive localist nodes in DORA
make the tacit assumption that words and phrases are
composed with one another via vector addition and not
a multiplicative operator (e.g., a tensor product). It is not
known whether vector addition is a sufficient operator for
compositionality in natural language, but addition has clear
advantages over tensors for formal reasons relating to variable
value independence (Martin & Doumas, 2019b; Doumas &
Hummel, 2005; Hummel, 2011; Hummel & Holyoak, 1997,
2003; Holyoak & Hummel, 2000).
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In the conceptual terminology of neural oscillations, tem-
poral asynchrony corresponds to neural desynchronization.
In our case, this would be expressed as desynchronization be-
tween dimensions in the manifold. These desynchronizations
tune the path of the evolving trajectory of the linguistic struc-
ture in question and create, over time, phase sets that denote
or group units that are interpreted together. Importantly, syn-
chrony and asynchrony of unit firing in time are not orthog-
onal mechanisms; they are the same function or variable with
different input values (e.g., sin(x) and sin (2x)) that can carry
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different information. Binding or forming representations
through synchrony alone would effectively superimpose a
variable and its value onto a single, undecomposable repre-
sentation (Singer, 1999, von der Malsburg, 1999). Martin
and Doumas (2017) showed that DORA and, in principle,
any model that represents and processes information in a
similar way, better predicts cortical rhythms to spoken sen-
tence comprehension (Ding et al., 2016) than models that
do not represent structures or exploit time explicitly (e.g., tra-
ditional recurrent neural networks). Energy expenditure in
cortical and artificial networks was consistent with formal lin-
guistic descriptions of the structure of language and offers
evidence that the human brain represents and processes in-
formation in a way that is more similar to a hierarchical com-
positional system than to an unstructured one. As in the
DORA architecture, inhibition plays a key role in how infor-
mation that has recently been processed is suppressed or
controlled and how information is combined and separated.

Applying Rhythmic Computation to Producing and
Comprehending a Phrase

In the DORA instantiation, a phrase can be formed from
vector representations of the input words via a conjunctive
code on a different layer of the network. This conjunctive
code represents the phrase; the individual input words
have distributed representations in DORA. Under such a
coding scheme, a phrase is separable from word-level rep-
resentations whose distributed representations are func-
tionally independent from the conjunctive code of the
phrase. In comprehension, the activation of the phrase
can only occur after the onset of the first word and persists
throughout the duration of the second word. In produc-
tion, the activation of the conceptual proposition and thus
phrasal relations precedes the activation of individual
words. This difference in the time course of activation
makes the prediction that compositional representations
should be detectable earlier in production than in compre-
hension. It is also consistent with the idea that, during com-
prehension, representations serve as cues to each other in
a form of perceptual inference, and during production, the
path from meaning to its ultimate expression can be incre-
mentally and dynamically composed as long as local domains
like words and phrase are internally coherent. An incre-
mental, cascaded, treelet-like grammar could capture these
processing dynamics (Kempen, 2014; Pauls & Klein, 2012;
Hagoort, 2003; Marcus, 2001; Vosse & Kempen, 2000).
Temporal multiplexing is expressed in this instantiation by
firing the distributed codes for the words in the phase set
of the phrase, essentially the phrase node stays active for the
duration of all of the words that make up that phrase, but
the yoked inhibitor of the word-level representation turns
off the activity of the individual words after their sensory
time has elapsed. As a result, the model oscillates, with
pulses of activation related to activating distributed word
codes and a slower pulse of activation that codes the phrase
(see Martin & Doumas, 2017). Inhibition and yoked

integrative inhibitors are used to turn the word units off
as they pass activation to phrase nodes (for a detailed de-
scription of the DORA model, including pseudocode, see
Martin & Doumas, 2017, 2019a; Doumas & Martin, 2018;
Doumas et al., 2008, 2017).

In the terminology from the first section, forming a
phrase from words (see phrase-specified pseudocode ex-
amples in Table 2) draws on an iterative process whereby
a path is formed through the neural trajectory manifold,
each dimension is claimed to correspond with levels of lin-
guistic representation. Gain modulation controls the pro-
gression of transforms through the path, and each time
step brings sensory representations toward latent struc-
ture in comprehension, whereas in production, each time
step moves progressively toward articulatory gestures.
Temporal multiplexing works here to combine dimen-
sions—projection of activation through gain fields and
concomitant inhibitory signals on the “path not chosen”
or “path not taken” shape by the coding of upcoming sen-
sory input in comprehension and upcoming articulatory
gestural movements in production. As in the DORA imple-
mentation, the concept of phase set is useful in conceptu-
alizing how trajectories in the manifold form word and
phrase patterns. Desynchronization, fueled by inhibition,
is what allows the phase sets to form in the manifold.

Predictions

There are a measure of coarse-grained predictions that
arise from the claims I make here. I have summarized four
general predictions for oscillatory activity related in lan-
guage processing in Table 3. These are expected patterns

Table 3. Predictons

1. If linguistic structure is represented as claimed in the
model, then low-frequency power and phase
synchronization should increase as structure accrues.

2. Lower level linguistic representations (i.e., those closer
to sensory representations during comprehension)
should be treated differently by the brain as a function
of the unfolding trajectory context.

3. Linguistic content and the encoding of the timescale
of its occurrence should be separable in the brain, if
not orthogonalizable.

4. If coordinate systems exist for levels of linguistic
representation and there is path dependence between
levels, then perturbations or experimental manipulations
on a lower level should have bounded effects on the next
level’s representational coding.

The relationship between the neural signals that index the
coordinate systems for linguistic representation should
be better fit by models that use a modified gain function
than ones that use another method for combining
sources of neural information.

N
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in neural oscillations if the core claims of the architecture
are attested. Here, I outline a second set more closely re-
lated to psycholinguistics, which concerns how behavior
(production vs. comprehension) should modulate gain-
controlled neural responses.

The chief prediction regarding structure and meaning
from the architecture is that low-frequency power and
phase synchronization should increase as structure and
meaning build up in time. This has been attested in the lit-
erature (Brennan & Martin, 2020; Kaufeld, Ravenschlag,
et al., 2020; Kaufeld, Naumann, et al., 2019; Meyer, 2018;
Ding et al., 2016; Meyer, Henry, Gaston, Schmuck, &
Friederici, 2016; Bastiaansen et al., 2005, 2008; Bastiaansen
& Hagoort, 2006) but needs more careful investigation. It
is likely that low-frequency phase organization reflects the
increasingly distributed nature of the neural assemblies
being (de)synchronized as structure and meaning are

inferred, rather than reflecting a phrasal or sentential os-
cillator. If perceptual inference is a product of neural tra-
jectory, then lower level linguistic representations should
be treated differently by the brain as a function of the con-
text they occur in. This model also predicts that there
should be more phase synchronization between assem-
blies involved in coordinate transform between dimen-
sions than between assemblies that are not participating
in coordinate transform.

In terms of behavioral tuning, the first prediction is
that different dimensions should compete or interfere
as a function of behavior—when preparing to speak, se-
mantic competitors, both at the combinatorial and word
level, should be more detrimental to processing than per-
ceptually overlapping stimuli—which should interfere only
later. For example, when preparing to say “coffee,” “tea”
should be more problematic to process than “coffin.”

Table 4. A Summary of the Theses and Axioms Put Forth in this Paper

Computational-level Thesis

1. Linguistic representations in the brain are the product of cue-based perceptual inference, an internally driven generative model

for externalizing formatted thought.

2. The perceptual inference of linguistic representations is a series of transformations of sensory input into other coordinate
systems; although elicited by sensation, linguistic representations are an internally driven cascade of transformations that

become distinct in neural spacetime from sensation.

Grammatical knowledge of different levels of granularity is encoded in the possible trajectories of the manifold.

4. Morphisms exist between coordinate transforms, as morphisms between categories are described in mathematical linguistics
(composition preserves the morphism from syntactic algebra to the semantic one; Partee et al., 2012).

5. There is a mapping between each dimension and coordinate system in the manifold. A functor describes this mapping. Most
dimensions are not isomorphic and thus not injective in relation to each other (viz., there is no 1:1 mapping between

dimensions, nor their coordinates).

6. Grammatical “rules” can be generalized to new inputs and outputs via low dimensional projections (core) into higher
dimensional spaces (periphery). *candidate algorithms: mapping, relational generalization from (see Doumas et al., 2008;

Hummel & Holyoak, 1997, 2003).

Algorithmic-level Thesis

1. Perceptual inference of linguistic structure is a coordinate transform that is achieved through gain modulation, of which
inhibition is an important form that is used to separate dimensions and build structure through desynchronization of relevant

population activity.

2. Perceptual inference for language is achieved through the synthesis of sensory information with stored knowledge. Priors about
the relationship between sensory objects and abstract structures exist on short and long timescales and bias the inference

process.

3. “Temporal multiplexing” describes the propagation of activation through the manifold of trajectories. It refers to information on
one timescale cueing information at other timescales. It depends on inhibition and performs inference in an iterative fashion
such that mutual constraint is achieved between stimulus and increasingly abstracted internal states.

Implementational Axioms

1. Low-frequency oscillations (viz., delta) are more likely indicative of the increasingly distributed nature of cell assemblies than any

timescale-related activation of linguistic structure.

2. Trajectories are specified by priors about both specific sensory objects and abstract structures; these trajectories can be
interpolated and extrapolated to support novel composition and productivity.
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The reverse should be true in comprehension. Similarly,
when processing adjective—noun phrases like “green
tea,” “tree” should be more intrusive during comprehen-
sion than during production. Such predictions also imply
that inhibitory control will be needed for lemma selection
in production, but for segmentation in comprehension.
The main prediction that is unique to this theory of lan-
guage and that is derived necessarily from the symbolic
connectionist systems that it is inspired by (Doumas
et al., 2008; Hummel & Holyoak, 1997, 2003) is that acti-
vation in the system, as it corresponds to levels of linguis-
tic representation, is additive. Because the model relies on
vector addition and asynchrony of firing through yoked
inhibitor nodes to dynamically bind variables and values,
it predicts that activation patterns of words becoming a
phrase should be additive, not interactive or multiplica-
tive. This claim is similar to Sternberg’s additive factors
logic (Sternberg, 1969) and distinguishes the model from
others, especially those based on tensor products. By com-
paring representations along dimensions and exploiting
their intersections to find latent structure and other orders
of representation (Doumas et al., 2017, 2008), we may be
able to explain how generative unbounded combinatorial-
ity can exist in the human mind and brain.

Table 4 summarizes the claims I have made in this paper.
There is accumulating evidence that is consistent with the
theses put forth here, from evidence for cross-linguistic-level
cue integration (listed under “Linguistic Representation
in Neural Terms”) to the modulation of oscillatory signa-
tures during sentence processing (listed under “Cortical
Rhythms Structure Speech Input into Language through
Gain-Modulated Multiplexing”). A next step or, more likely,
a longer term goal is to see if this model can offer a satis-
fying explanation for a wider range of behavioral effects in
psycholinguistics.

Conclusion

In this paper, I have argued that the core properties of
human language—the formation of compositional, hierar-
chical structures whether spoken, signed, or heard—can
be accounted for, in principle, by a theory of the space-
time trajectories of neural assemblies controlled by gain
modulation. In the first section, I described how the rep-
resentations that underlie language processing could be
expressed as dimensions in a neural trajectory manifold,
where a particular trajectory is a function of grammatical
knowledge impinging upon sensation in a path-dependent
way and is determined by behavior (viz., production or
comprehension). The multiplexing mechanism presented
in the second section operates over the spatiotemporal
patterns in the manifold and cascades the inference of la-
tent structures via gain modulation of sensory input into
the coordinates of abstract representation. Inhibition of
lower level structures by higher level ones gives rise to os-
cillatory patterns of activation during language processing
and is what allows the system to preserve independence

between lower level input units and the higher level struc-
tures they form. The mechanism described in the pseudo-
code in Table 2 is synthesized from a computational model
of relational cognition (DORA; Doumas et al., 2008) and
basic principles of neurophysiology; it uses oscillatory ac-
tivation to combine and separate information in a neural
network and is able to predict human cortical rhythms
to the same stimuli. Through this synthesis, I have tried
to turn the core computational properties of human lan-
guage, which have traditionally made language difficult to
account for within existing neurobiological and cognitive
theories into the lynch pins by which language’s physical
expression, that is, its extension across multiple timescales,
becomes the currency of neural computation.

GLOSSARY

argument — input to a function or variable.

cell assembly — network of neurons whose excitatory
connections have been strengthened in time and this
strength is the basis of their unit (Buzsiki, 2006, 2019;
Hebb, 1949).

compositionality — the property of a system whereby
the meaning of complex expression is determined by its
structure and the meanings of its constituents (Partee, 1984).

coordinates — values that neural representations or
population codes can be expressed in that are derived
from the mode of processing or computation that a given
neuron or cell assembly is participating in. For example,
coordinates range from being topographic in nature, de-
rived from external visual space, or become sensory in na-
ture as in retinal- or head-centered, toward latent coordinate
systems that describe the systems of abstract structure that
are generated to guide behavior. As sensory coordinates are
gain-modulated by representations of stored linguistic
knowledge, the neural coordinates describing linguistic
representation necessarily become abstractions in a high-
dimensional space; however, it is likely that the neural coor-
dinates of a given dimension of the manifold for language
processing correspond to units of linguistic analysis (e.g.,
phonetic features, lexical semantic features, possible syntac-
tic relations in a grammar).

coordinate transform — modifying a set of coordi-
nates by performing an operation on the coordinate axes;
changes the reference frame of a representation from
and between afferent/efferent spaces in sensation and
action and moves toward latent coordinate systems to
guide complex behavior.

domain — the set of possible values of the independent
variable or variables of a function; in linguistics, the influ-
ence spheres of elements in a structure (Kracht, 1992).

Junction — a relation or expression over one or more
variables; a relation that takes an element of a set and as-
sociates it with another set.

Junctor — a map or function between categories (Phillips
& Wilson, 2010); encodes an invariant link between catego-
ries (Bradley, 2018).
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gain modulation — nonlinear way in which neurons
combine information from two or more sources (Salinas
& Sejnowski, 2001).

inbibition — interruption, blockade, or restraint of neu-
ral activity in both space and time (Jonas & Buzsiki, 2007).

latent variable or structure — a variable or struc-
ture that “lies hidden” and is not directly perceived but
rather inferred from other observed variables.

manifold — a collection of points forming a set; a to-
pological space that resembles a Euclidean space at each
point (Lee, 2010).

morphism — structure-preserving map from one ob-
ject to another of the same type; relations between alge-
bras may be described by functions mapping one algebra
in another, a “morphism” is a mapping conceived of as a
dynamic transformation process (Partee, ter Meulen, &
Wall, 2012).

neural oscillations — brainwaves, brain rhythms, re-
petitive patterns of activity in neural space and time
caused by excitatory and inhibitory cycles in cell assem-
blies (Buzsiki, 2006, 2019).

neural trajectory — activity of a neural population
overtime; plotted in a space where each dimension is
the activity of a unit or a sub-population. Dimensions
can be summaries of a given assembly’s activation in time
when participating in larger assembly computation.

path dependence — when the set of possible trajecto-
ries is delimited by past trajectories and choices about them.

path integration — the estimation of the path to the
starting point from the current position in the state space
(Gallistel, 1990).

perceptual inference — the ability to infer sensory stim-
uli from information stored in internal neural representa-
tions acquired through experience (Aggelopoulos, 2015).

phase synchronization — state or process where two
or more cyclic signals oscillate in such that their phase an-
gles stand in a systematic relation to one another (Pikovsky
& Rosenblum, 2007).

phonology — the sound system of a language (Larson,
2009).

predicate — expression of one or more variables de-
fined in a domain; quantifying a variable; something that
is affirmed or denied about an object or proposition.

scope — the domain over which an operator affects in-
terpretation of other phrases.

semantics — the meanings of a language’s words and
how those meanings combine in phrases and sentences
(Larson, 2009).

syntactic structure — basic structural elements of a
language and their possible combinations in phrases
and sentences (Larson, 2009).
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Notes

1. This paradox is particularly striking from a neuroscientific
perspective; in a particularly charming turn of phrase, the brain
has been described as a log transform of its environment (see
Buzsdki, 2019, Chap. 12). Perhaps more generously, it could be
described as a log transform of the perception—action demands
of the environment and the latent states those entail. I add to
this description that some of those latent states seem to be
learned via statistics, but nonetheless come to represent sym-
bolic structures and rules that operate over them.

2. Tuse these concepts and jargon in an attempt to synthesize
knowledge from putatively disparate disciplines in the hope of
showing how ideas in one discipline fit or line up with notions
from another. I include a glossary of working definitions for all
the terms I will use (see Glossary).

3. Helmholtz’s actual term is “psychic energy.”

4. 1do not offer a satisfying account of learning here, but I will
note that I see a promising account entailed in the Discovery of
Relations by Analogy (DORA) model of Doumas et al. (2008). In
DORA, learning of structured representations from experience
occurs because of a few key principles. First, DORA is not a
feed-forward architecture but rather a settling network; it com-
pares internal states and gleans information from the settling
rates to equilibrium after perturbation by a stimulus. To achieve
comparison of internal states, inhibition is passed within a neu-
ral processing bank, but not between banks such that two spa-
tiotemporal patterns can be compared. This architecture allows
the comparison (and also orthogonalization) of sensory rep-
resentations for two stimuli; the distributed and relational
features in common can be symbolized into a structure that is
latent in both stimuli but now able to be activated orthogonally
from the stimuli (although it will pass activation to related stim-
uli when the structure is active if the model is interacting with
long-term memory). The orthogonalizing features can also be
learned from. Comparison, combined with time-based binding,
as well the Mapping and Relational Generalization algorithms
from Hummel and Holyoak (1997, 2003) in my view represent
important insights about boundary conditions on learning
mechanisms for structured representations in neural systems.
5. I note that it is not a core claim of my approach that the
system is Euclidean or non-Euclidean in nature; the most com-
mon descriptions in neuroscience tend to be Euclidean at the
moment while the dynamics are assumed to be nonlinear.

6. Gain fields speak to a classic representational conundrum for
speech processing: the degree of involvement of articulatory mo-
tor programs in speech perception (Assaneo & Poeppel, 2018;
Cheung et al., 2016; Skipper, 2015; Hickok, 2012; Hickok &
Poeppel, 2007; Skipper, Nusbaum, & Small, 2005). Upon percep-
tion of a given unit, the articulatory motor program may receive
activation because it is highly related to the sensory unit, but as
the network or assembly is not in production mode, but rather
has the behavioral goal of detecting a linguistic signal, gain mod-
ulation amplifies nonmotor aspects of representation related to
the perceived unit in motor cortices, which then dominate pro-
cessing. Such a scheme may account for why motor areas have
been observed to be activated during speech perception
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(Cheung et al., 2016; Skipper et al., 2005) even when clinical data
suggest that motor representations are not required for speech
perception to occur (Hickok, 2012).

7. Internally generated representations should not be injective (see
Partee, ter Meulen, & Wall, 2012) with the stimulus properties—that
is, onsets of internal representations or the rhythms that rep-
resent higher level linguistic structures should not be evoked
by stimulus rhythms in a one-to-one way, in other words, they
do not have to stand in a one-to-one relationship to spectral
and envelope response. In fact, to be divorced from stimulus
properties and thus generalizable, rhythms reflecting internal
generation of structure must not be injective with sensory
rhythms to avoid the superposition catastrophe.

8. This is an important question that needs to be explored
carefully and is beyond the scope of the current thesis. I think
there are reasons to see frequency bands as tokens of processes
with physiological bounds that render them into functional
types. Without the space to reason this conjecture out based
on existing literature via conceptual analysis, I can only say that
I do not think they are strict types with fixed functional interpre-
tations that map in an injective way onto cognition.

9. Evidence that speech production might also be structured by
time and rhythm comes from magnetoencephalographic studies
of overt and covert speech production. Tian and Poeppel (2013,
2014) showed that the production of syllables where the lag be-
tween production and self-comprehension was artificially delayed
by more than 100 msec were judged as being produced by some-
one else and that auditory cortex responded to these syllables as if
they were no longer self-produced. Although these findings sug-
gest that timing and rhythm might structure production and con-
tribute to suppressing neural responses to one’s own speech, the
functional role of cortical entrainment in naturalistic language
production is largely unknown (but see Giraud et al., 2007).

10. For example, if your friend says a phrase or a sentence,
when she produces the corresponding bursts of energy, the in-
tended composed meaning will be activated earlier in her neural
system than yours, and consequently, the values along a given di-
mension of your friend’s neural response during preparation of
the utterance will differ from those incurred when you perceive
the phrase. Conversely, the compositional structure will be avail-
able later in time in your cortical networks because it must be in-
ferred from sensory input as latent structures.
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