Identification of a hot spot for microdeletions in patients with X-linked deafness type 3 (DFN3) 900 kb proximal to the DFN3 gene POU3F4

Yvette J. M. de Kok, Erik R. Vossenaar, Cor W. R. J. Cremers¹, Niklas Dahl², Jocelyn Laporte³, Ling Jia Hu³, Didier Lacombe⁴, Nathan Fischel-Ghodsian⁵, Rick A. Friedman⁶, Lorne S. Parnes⁷, Peter Thorpe⁸, Maria Bitner-Glindzicz⁹, Hans-Jürgen Pander¹⁰, Helmut Heilbronnert¹⁰, Johanna Graveline¹¹, Johan T. den Dunnen¹², Han G. Brunner, Hans-Hilger Ropers and Frans P. M. Cremers*

INTRODUCTION

The most frequent cause of X-linked deafness, DFN3 (McKusick catalog number 304400), is characterized by fixation of the stapes and, in most cases, by conductive and sensorineural hearing loss. In some cases, the conductive element is masked by a profound sensorineural component. When stapedectomy is performed, a perilymphatic/cerebrospinal gusher is encountered. Upon com-

Small mutations in the POU domain gene POU3F4 were recently shown to cause X-linked deafness type 3 (DFN3) in nine unrelated males. The POU3F4 gene was found to be located outside four of five deletions associated with DFN3. Two of these deletions were situated more than 400 kb proximal to POU3F4. Employing PCR analysis of sequence tagged sites from this region we initially identified novel deletions in two DFN3 patients. To investigate this chromosomal segment in more detail, we extended a previously established 850 kb cosmid contig in the centromeric direction to a total size of 1500 kb. Cosmids from this contig were hybridized to DNA of 11 unrelated males with DFN3. In two patients, we identified deletions encompassing the POU3F4 gene and variably sized segments of Xq21.1. In six of the nine remaining patients which lacked mutations in the POU3F4 gene, smaller deletions were identified which, with one exception, overlap in a 8 kb DNA segment 900 kb proximal to the POU3F4 gene. In one patient, we identified several small deletions in the vicinity of the 8 kb DNA segment. Together, deletions account for 56% (13/23) of all known DFN3 mutations, most (10/13) of which do not encompass the POU3F4 gene. The combined molecular data suggest that the deletion hot spot region in Xq21.1 contains another DFN3 gene or, alternatively, a sequence element involved in transcriptional regulation of POU3F4.
puterized tomodraphy (CT), DFN3 patients invariably show abnormalities of the petrous temporal bone consisting of a dilated internal auditory meatus (IAM) and an abnormal wide communication between the IAM and the basal turn of the cochlea (1.2).

Linkage analysis in DFN3 families and molecular characterization of deletions associated with contiguous gene syndromes assigned the DFN3 gene to Xq21 (3–7). Smaller deletions were found in four classical DFN3 patients, i.e. patients TD, 1/10, 1/17, and G8314 (8,9). Yeast artificial chromosome (YAC) clones spanning the critical region were isolated and a 850 kb cosmcd contig spanning DXS26 and DXS995 was constructed. These studies formed the basis for the cloning of the underlying gene, POU3F4 (10). The POU3F4 gene encodes a POU domain containing transcription factor which is expressed in the developing inner ear, brain, kidney, and neural tube (11; Y. J. M. de Kok et al., unpublished data). Thus far, small mutations were found in the POU3F4 gene of nine unrelated patients with DFN3 (10,12; Y. J. M. de Kok et al., in preparation). They result in truncation of the predicted protein or in non-conservative amino acid substitutions. Remarkably, these mutations are restricted to the POU-specific or POU homeodomain, together constituting only 35% of the open reading frame of the POU3F4 gene.

Surprisingly, the POU3F4 gene is located outside four of five microdeletions associated with DFN3, two of which are situated more than 400 kb proximal to POU3F4 (10,13). In one DFN3 patient we identified a 150 kb duplication associated with a paracentric inversion involving Xq21.1 and Xq21.31 sequences (14). The Xq21.1 inversion breakpoint is situated 170 kb proximal to the POU3F4 gene. Here, we describe a detailed molecular characterization of a region 600–1200 kb proximal to the POU3F4 gene. By constructing a nearly complete cosmcd contig encompassing DXS169 and DXS26, we were able to identify a hot spot for DFN3 associated microdeletions 900 kb proximal to the POU3F4 gene.

RESULTS

Identification of novel DFN3 associated deletions by PCR analysis of sequence tagged sites

Recently, Dahl et al. (13) isolated several sequence tagged sites (STSs) from YAC 813a2, which is located just proximal to the POU3F4 gene, and partially overlapping YAC 4893. We performed PCR analysis to investigate the location of these STSs with respect to our 850 kb cosmcd contig which was constructed from YACs 4893 and 5045. Three STSs were located in cosmcds derived from YAC 4893. STSs 24:5 and 71:15 hybridize to the same 1.9 kb EcoRI fragment of cosmcd 4893F4; STS 34:71:2 detects two adjacent EcoRI fragments of 1.3 and 7.2 kb in cosmcd 4893D9 (Fig. 2). Five STSs, i.e. 71:21, 24:17, 71:3, 34:2, and 71:2, were located proximal to this contig (see below).

In previous studies we and others had examined patients 1187, 2412, 2540, 5482, 6371, 7088, GL, TAL1, and RAF 4 (see Table 1) for mutations in the POU3F4 gene by nucleotide sequencing of the complete open reading frame, without success (10, 20; Y. J. M. de Kok et al., unpublished data). Some of these patients were investigated for deletions in the region proximal to POU3F4 by PCR analysis of the STSs 71:2 and 71:21. As expected from previous mapping data, both STSs are located in the deletion of patient G8314 (Fig. 1). STS 71:2 was present in the DNA of the DFN3 patients 2412, 5482, 1187, 6371, and 2540; STS 71:21 was absent from the DNA of patients 2412 and 5482, and present in patients 1187, 6371, and 2540 (Fig. 1). To investigate the DNA segment around STS 71:21 in more detail, we constructed a cosmcd contig of YAC 813a2.

Construction of a cosmcd contig spanning DXS169 and DXS26

Physical mapping of YAC 813a2 endclones generated by the ligation-mediated PCR procedure indicated that this YAC is chimeric; it contains a small non-X-chromosomal segment at its distal side (25). High molecular weight DNA from YAC 813a2 was used to construct a cosmcd library consisting of approximately 20 000 independent clones. Three hundred and fifty cosmcds containing human inserts were isolated from 5000 clones, and gridded on nylon membranes. The remaining clones were plated at moderately high density and replicated on nylon membranes. Initially, small cosmcd contigs were established by hybridization of cosmcd grids with pX104f (DXS169), cosmcd 4893D12, and the STSs 71:21, 24:17, 71:3, 34:2, and 71:2. Next, cosmcd grids and Southern blots containing EcoRI digested cosmcd DNAs were hybridized with cosmcd inserts. The orientation of cosmcd contigs could be deduced by Southern blot analysis of patients with known or new (micro)deletions in this region (see below).

Employing the first set of 350 cosmcds, gaps remained in two regions, i.e. between cosmcds 813h4 and 813a1, and between cosmcds 813m9 and 813G6. Inserts from these cosmcds were used to screen the larger cosmcd library, and the most proximal gap could be closed with cosmcd 813I13. The distal gap between 813m9 and 813G6 was narrowed, but not yet closed, with the identification of two cosmcds, i.e. 813D18 and 813I19. In this way, an EcoRI restriction map was constructed spanning an additional 650 kb. On average, our cosmcd coverage is 6-fold and the map does not contain any inconsistencies. The five proximal STSs were hybridized to EcoRI digested cosmcd DNAs, and positioned in the contig. STSs 71:2 and 34:2 hybridize to 15 and 7.1 kb EcoRI fragments of cosmcds 813I19 and 813a1, respectively (Fig. 2). STSs 71:21, 24:17, and 71:3 recognize the same 9 kb EcoRI fragment of cosmcds 813b5 and 813Q5 (Figs 2,5). A comparison of the STS location in our cosmcd contig with the proposed assignment by Dahl et al. (13) revealed two inconsistencies. First, STS 24:17, which was mapped in the same DNA segment as 71:2 by Dahl et al., in our study colocalizes with 71:21 and 71:3. This is based on Southern blot analysis of cosmcd clones, as well as Southern blot analysis of DFN3 patients with
deletions. Second, STS 34:2 was mapped as the most centromeric STS near DXS169 by Dahl et al., whereas it mapped between the STSs 71:21/24:17/71:3 and the STS 71:2 in our study. We have observed no inconsistencies in our cosmid contig indicating that the proposed map locations of the STSs are correct.

Identification and characterization of deletions associated with DFN3

The cosmid contig enabled us accurately to map the proximal endpoint of the known deletions in patients TD (cosmid 8134), G8314 (cosmid 813T4), and the distal deletion endpoint in patient BD6/ML (cosmid 81319) (Fig. 2). In addition, we localized the proximal deletion/paracentric inversion breakpoint in patient II/7 (cosmid 813H9; Fig. 2). Employing Southern blot and PCR analysis, we also mapped the deletions recently identified in DFN3 patients VS and EP. As indicated by PCR analysis, both lack the entire POU3F4 gene (data not shown). At the distal side, both deletions extend beyond the cosmid contig, but do not encompass the DXS232 locus (Fig. 2). At the proximal side, the deletion in EP encompasses DXS169, DXS72, DXS738, but not DXS986, spanning approximately 3–4 megabases of DNA (data not shown). The proximal breakpoint of the deletion in VS was mapped in cosmid 4893A1, 10 kb proximal to one of the duplication breakpoints in patient 5086 (Fig. 2).

Southern blot analysis of DNA from patients 2412 and 5482 revealed deletions of 120 and 220 kb, respectively (Figs 3, 5). Southern blot analysis of seven additional DFN3 patients which had not shown POU3F4 mutations revealed deletions in patients 7088, RAF4, 2540, and GL (Figs 2, 3, 4a). Patients RAF4 and 7088 carry deletions of 30 and 200 kb, respectively (Figs 4a, 5). In addition, we found smaller deletions in patients 2540 and GL (Fig. 3) which were analysed in detail. We did not find deletions in the DNA of patients 1187 and 6371 employing all cosmids from the proximal 600 kb of the cosmid contig. In DFN3 patient TAL1, no deletion was found with the cosmids 813C4, -b5, -Z1, -H9, -IC4, -I4, -S8, and -S9.

Detailed molecular characterization of the deletions in patients 2540 and GL

Using cosmids 813Z1 or 813H9 (Fig. 3a) as a probe, Southern blot analysis of DNA of patient 2540 revealed an 8 kb shortening of a 13 kb EcoRI fragment to 5 kb. Flanking EcoRI fragments (Fig. 5) showed normal sizes in this patient, indicating that the deletion is confined to the 13 kb EcoRI fragment (data not shown).

Employing the cosmids from the proximal part of this contig, Southern blot analysis of the DNA of DFN3 patient GL revealed deletions at different positions. Cosmid IC4 identified a deletion which apparently encompasses a 6 kb EcoRI fragment (Fig. 3b). To confirm this finding, the 6 kb EcoRI fragment was hybridized to the same Southern blot as shown in Figure 3a,b. Indeed, as shown in Figure 4b, the 6 kb EcoRI fragment is absent. Instead, a faintly visible smear of bands, reminiscent of the picture seen for unstable trinucleotide repeats, is visible around 2.1 kb. In addition, we encountered 2.6 and 6.5 kb deletions in 81314, a 2.7 kb deletion in 81313, a 6.5 kb deletion in 813H9 (Fig. 3a), a 7 kb deletion of the neighboring 4.1 and 3.0 kb EcoRI fragments in 813Z1 and a 4.4 kb deletion in 813T4 (Figs 2, 5).

To rule out an intrinsic instability of the chromosomal region between DXS169 and DXS26, we performed Southern blot analysis of EcoRI digested DNAs of 300 unrelated males employing cosmids 813Z1, -S9, -O4, -I4, and -I4. No rearrangements were found (data not shown).
Discussion

When exploring DNA proteins, several regulatory processes are involved in the formation of DNA proteins and the expression of these proteins in various tissues. These processes include DNA transcription, DNA replication, DNA repair, and DNA degradation. DNA transcription is the process by which the DNA sequence is transcribed into RNA, and DNA replication is the process by which the DNA sequence is duplicated. DNA repair is the process by which damaged DNA is repaired, and DNA degradation is the process by which DNA is degraded.

In this study, we investigated the effect of DNA proteins on the expression of DNA proteins in various tissues. We found that DNA proteins play a crucial role in the expression of DNA proteins, and that the expression of DNA proteins is regulated by various factors, including DNA transcription, DNA replication, DNA repair, and DNA degradation.

We also found that DNA proteins are involved in the regulation of DNA transcription, DNA replication, DNA repair, and DNA degradation. DNA transcription is regulated by DNA proteins, which are involved in the initiation of DNA transcription. DNA replication is regulated by DNA proteins, which are involved in the initiation of DNA replication. DNA repair is regulated by DNA proteins, which are involved in the initiation of DNA repair. DNA degradation is regulated by DNA proteins, which are involved in the initiation of DNA degradation.

In conclusion, DNA proteins play a crucial role in the expression of DNA proteins in various tissues, and are involved in the regulation of DNA transcription, DNA replication, DNA repair, and DNA degradation. The study of DNA proteins is essential for understanding the regulation of DNA proteins in various tissues, and for the development of new therapies for DNA-related diseases.
Figure 5. Detailed EcoRI restriction and deletion map of the proximal region. On top, the location of cosmids is depicted. Stippled lines represent deletions. Interrupted lines represent DNA segments in patients that have not yet been tested employing Southern blot analysis.

Table 1. Clinical features of patients with classical X-linked deafness type 3 (DFN3)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Bony defect</th>
<th>Perilymph gusher</th>
<th>Deafness type</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>5086</td>
<td>+</td>
<td>NS</td>
<td>sensorineural</td>
<td>(14, 15)</td>
</tr>
<tr>
<td>EP</td>
<td>NI</td>
<td>+</td>
<td>mixed</td>
<td>this study</td>
</tr>
<tr>
<td>VS</td>
<td>+</td>
<td>+</td>
<td>mixed</td>
<td>this study</td>
</tr>
<tr>
<td>TD</td>
<td>NI</td>
<td>+</td>
<td>mixed</td>
<td>(9, 16)</td>
</tr>
<tr>
<td>1/10</td>
<td>NI</td>
<td>+</td>
<td>mixed</td>
<td>(7, 5)</td>
</tr>
<tr>
<td>II/7</td>
<td>+</td>
<td>NS</td>
<td>sensorineural</td>
<td>(9, 17)</td>
</tr>
<tr>
<td>G8314</td>
<td>+</td>
<td>NS</td>
<td>sensorineural</td>
<td>(9, 18)</td>
</tr>
<tr>
<td>BD6/ML</td>
<td>+</td>
<td>NS</td>
<td>mixed</td>
<td>(13, 19)</td>
</tr>
<tr>
<td>RAF-case 4</td>
<td>+</td>
<td>+</td>
<td>mixed</td>
<td>(20)</td>
</tr>
<tr>
<td>5482</td>
<td>+</td>
<td>NS</td>
<td>mixed</td>
<td>(15)</td>
</tr>
<tr>
<td>2412</td>
<td>-</td>
<td>+</td>
<td>mixed</td>
<td>(10, 21)</td>
</tr>
<tr>
<td>7088</td>
<td>+</td>
<td>+</td>
<td>mixed</td>
<td>(22)</td>
</tr>
<tr>
<td>2540</td>
<td>+</td>
<td>+</td>
<td>mixed</td>
<td>(10, 23)</td>
</tr>
<tr>
<td>GL</td>
<td>+</td>
<td>NS</td>
<td>mixed</td>
<td>this study</td>
</tr>
<tr>
<td>1187</td>
<td>-*</td>
<td>+</td>
<td>mixed</td>
<td>(1)</td>
</tr>
<tr>
<td>6371</td>
<td>+</td>
<td>NS</td>
<td>mixed</td>
<td>this study</td>
</tr>
<tr>
<td>TAL-case 1</td>
<td>+</td>
<td>+</td>
<td>mixed</td>
<td>(20, 24)</td>
</tr>
</tbody>
</table>

The temporal bone was investigated in most cases employing high resolution computerized tomography. NI = not investigated; NS = no surgery performed. * patient 1187 was studied by polytomography.

MATERIALS AND METHODS

Patients

A detailed description of the clinical features observed in the DFN3 patients, except for patients EP, VS, GL, and 6371, have been published elsewhere (see refs in Table 1). A summary of the deafness related findings is given in Table 1. Patient EP is a 51 year old male showing deafness and mild mental retardation (MR). He lives with his parents and works in sheltered employment. Apparently, he suffered from a birth trauma. Three of his nephews also show deafness but no MR. Two of them also show hyperactive behavior.

Patient VS is a 12 year old boy showing a mixed hearing loss. This type of deafness was also observed in a younger brother, as well as in a half-brother.

Patient GL is the proband of a large family from the south-west of France. GL, two of his nephews, and an uncle show the typical cochlear and inner ear canal abnormalities. All affected males show a profound bilateral mixed deafness. Stapedectomy has not yet been performed in this family.

Patient 6371 (MvE) is a 13 year old boy who has suffered from impaired hearing since birth. He shows a mixed hearing loss and an abnormal wide communication between the inner ear canal and the cochlea.

PCR analysis of sequence tagged sites and Southern blot analysis

The primers of the STSs employed in this study, as well as their annealing temperatures, were described by Dahl et al. (13).
Polymerase chain reaction was performed with 250 μM dNTPs, 1 pmol of the respective primers, 2.5 units of Taq DNA polymerase (Perkin Elmer), and 250 ng of genomic DNA. The reaction mixture for STSs 24:17 and 71:2 in addition consists of 10 mM Tris–HCl (pH 9), 50 mM KCl, 0.01% (w/v) gelatin, 1.5 mM MgCl₂, and 0.1% Triton-X-100. The remaining STSs were amplified in 10 mM Tris–HCl (pH 9), 50 mM KCl, 1 mM DTT, and 1.5 mM MgCl₂ (STS 7:3) or 3.0 mM MgCl₂ (STS 71:21, 34:2, 24:5, and 71:15). Southern blot analysis was carried out as described elsewhere (9).

Construction of the cosmid contig

Mapping data for YAC 813a2 have been described elsewhere (25). Yeast cell culturing and DNA isolation was performed as described previously (37). A cosmid library of YAC 813a2 was constructed essentially as described (38), using partially Sau3A-digested DNA. DNA fragments with a size of 35–40 kb were ligated into the BamHI site of scCOGH2. scCOGH2 was derived from scCOCH1 (39) by deleting an Aartl-Sspl fragment containing part of the 3' non-coding region of the human growth hormone gene including an Alu-repeat element. The primary library consisted of 20,000 cosmids, 5000 of which were plated on 10 LB-agar plates supplemented with 50 μg/ml ampicillin. The colonies were replica-lifted onto hybond-N filters which were stored at -80 °C. A single colony was cultured and DNA was isolated employing the Qiaprep spin plasmid miniprep kit (Qiagen). The cosmid DNAs were digested with EcoRI, electrophoresed in 0.8% agarose, and blotted to nylon membranes and screened with the respective probe. Signals of positive clones were positioned on the master filters, wrapped in 500 μl LB/ampicilline, serially diluted, and plated on LB/ampicilline-agar plates, and replicated onto hybond-N membranes. The remaining 15,000 cosmid clones were plated on 4 LB/ampicilline-agar plates supplemented with 50 μg/ml ampicillin. The colonies were replica-lifted onto hybond-N filters which were stored at -80 °C. Initially, the cosmid grids were screened with pX104f (DXS169), PCR products from the STSs 71:21, 34:2, and 71:2, and the cosmid insert of 4893D12. Positive cosmids were cultured and DNA was isolated employing the Qiaprep spin plasmid miniprep kit (Qiagen). The cosmid DNAs were digested with EcoRI, electrophoresed in 0.8% agarose, and blotted to Quibane nylon membranes. By comparing the EcoRI restriction patterns of the cosmids, the inserts of the cosmids at the ends of the mini-contig were used for the next screening round of the cosmid grids. After screening of the replicates of the master plates, the frozen glycerol-saturated membranes were put on top of a glass plate cooled at -79°C. The autoradiograms containing signals of positive clones were positioned on the master filters, and the positive cosmids were cut from the membrane. They were suspended in 500 μl LB/ampicilline, serially diluted, and plated on LB/ampicilline-agar petridishes. Plates containing approximately 100 cosmid clones were replica plated on nitrocellulose membranes and screened with the respective probe.

ACKNOWLEDGEMENTS

The authors thank S. D. van der Velde-Visser and E. Boender van Rossum for technical assistance in cell culturing. We thank Drs M. Ross and G. Zehetner for access to ICRF cosmid library filters. Y.J.M.d.K. is supported by the Netherlands Organization for Scientific Research (NWO). The research of F.P.M.C. has been made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.

REFERENCES

