The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/24050

Please be advised that this information was generated on 2021-02-07 and may be subject to change.
HYPERHOMOCYSTEINEMIA AS A RISK FACTOR FOR DEEP-VEIN THROMBOSIS

MARTIN DEN HEIJER, M.D., TED KOSTER, M.D., HENK J. BLOM, PH.D., GERARD MJ. BOS, M.D.,
ERNEST BRIET, M.D., PIETER H. REITSMAN, PH.D., JAN P. Vandenbroucke, M.D.,
AND FRITS R. ROSENDAAL, M.D.

Abstract Background. Previous studies have suggested that hyperhomocysteinemia may be a risk factor for venous thrombosis. To assess the risk of venous thrombosis associated with hyperhomocysteinemia, we studied plasma homocysteine levels in patients with a first episode of deep-vein thrombosis and in normal control subjects.

Methods. We measured plasma homocysteine levels in 269 patients with a first, objectively diagnosed episode of deep-vein thrombosis and in 269 healthy controls matched to the patients according to age and sex. Hyperhomocysteinemia was defined as a plasma homocysteine level above the 95th percentile in the control group (18.5 μmol per liter).

Results. Of the 269 patients, 28 (10 percent) had plasma homocysteine levels above the 95th percentile for the controls, as compared with 13 of the controls (matched odds ratio, 2.5; 95 percent confidence interval, 1.2 to 5.2). The association between elevated homocysteine levels and venous thrombosis was stronger among women than among men and increased with age. The exclusion of subjects with other established risk factors for thrombosis (e.g., a deficiency of protein C, protein S, or antithrombin; resistance to activated protein C; pregnancy or recent childbirth; or oral-contraceptive use) did not materially affect the risk estimates.

The methods by which blood samples were obtained and interview data were collected have been described elsewhere.4,14 The study protocol was approved by the local ethics committees, and all participants gave their informed consent. Briefly, consecutive patients younger than 70 years of age who had a first episode of deep-vein thrombosis, objectively confirmed (by impedance plethysmography, Doppler ultrasonography, compression ultrasonography, or contrast venography), between 1988 and 1993 and who had no known cancer were selected from the files of three anticoagulation clinics in the Netherlands (in Leiden, Amsterdam, and Rotterdam). These clinics monitor the anticoagulant treatment of virtually all patients in well-defined geographic areas. Each patient was asked to find his or her own healthy control subject of the same sex and age (within five years) by asking neighbors or friends. We restricted the present analysis to case patients and controls who were seen at the Leiden Anticoagulation Clinic and whose blood samples were processed and frozen on site with minimal delay. (Blood samples from participants in Amsterdam and Rotterdam were also processed in Leiden, which caused delays of several hours, and homocysteine measurements were therefore less accurate than those measured in samples from subjects in Leiden.)

The total homocysteine concentration was measured in citrated plasma by automated high-performance liquid chromatography with reverse-phase separation and fluorescent detection (with a Gilson 232-401 sample processor, Spectra-Physics 8000 solvent-delivery system, and Spectra-Physics LC 304 fluorometer). We used the method described by Fiskerstrand et al.13 with some modifications.14 If not otherwise stated, hyperhomocysteinemia was defined as a homocysteine level above the 95th percentile in the control group (18.5 μmol per liter). We calculated matched odds ratios as estimates of the relative risk of thrombosis for homocysteine values above a given point, with the matching factor taken into account. The univariate matched odds ratio is the ratio of the number of pairs of case patients and controls in which the homocysteine value for the case patient was above the specified level and the value for the control was below that level to the number of pairs in which the homocysteine value for the control was above the specified level and the value for the case patient was below that level. The 95 percent confidence intervals were calculated from...
a conditional logistic-regression algorithm by the maximum-likelihood method, with Egret software. We also investigated a possible dose–response relation by calculating odds ratios for several ranges of homocysteine concentrations in a conditional logistic model. In addition, we calculated odds ratios for men and women separately and for several age groups in order to study possible differences in risk among these subgroups.

We further explored the differences in risk between men and women by taking risk factors specific to women into account — specifically, the use of oral contraceptives, pregnancy, and recent childbirth. We analyzed the risk of thrombosis among women less than 50 years old, both with and without the inclusion of women with these risk factors, by calculating unmatched odds ratios. The use of unmatched odds ratios was necessary because in the restricted groups many matched pairs would not have been complete. Since the matched and unmatched odds ratios did not differ substantially in any of our analyses, we considered this approach justified.

We also assessed whether the increased risk associated with hyperhomocysteinemia in both sexes was confounded by other risk factors, such as a deficiency of protein C, protein S, or antithrombin. We repeated the analysis after excluding subjects with abnormally low levels of these proteins (measured, as previously reported, with a single test) and estimated the risk associated with hyperhomocysteinemia in persons with normal protein C, protein S, and antithrombin levels.

Finally, we looked at the possibility of an interaction between hyperhomocysteinemia and heterozygosity (carrier status) for factor V Leiden, a rather common defect that causes resistance to activated protein C. We analyzed this interaction by calculating univariate odds ratios for thrombosis in persons with both or either of these risk factors, as compared with persons with neither risk factor.

Results

The ratio of male to female subjects among both the case patients and the controls was 1.1:3, and the mean age was 44 years (range, 16 to 70 for the case patients and 16 to 71 for the controls); both these variables were used in matching the case patients and the controls.

The median plasma homocysteine level in the patients was 12.9 \(\mu \text{mol} \) per liter (range, 4.8 to 60.2), and that in the controls was 12.3 \(\mu \text{mol} \) per liter (range, 6.4 to 37.5). The homocysteine concentrations of individual case patients and controls are shown in Figure 1.

The 95th percentile of the homocysteine levels in the control group was 18.5 \(\mu \text{mol} \) per liter. Of the 269 patients, 28 (10 percent) exceeded this cutoff, as compared with 13 (5 percent, by definition) in the control group. The matched odds ratio for deep-vein thrombosis in subjects with a homocysteine concentration above the 95th percentile, as compared with those whose homocysteine levels were at or below that value, was 2.5 (95 percent confidence interval, 1.2 to 5.2). When the cutoff was set at the 90th percentile, the matched odds ratio was 1.9 (95 percent confidence interval, 1.1 to 3.3); it was 4.0 (95 percent confidence interval, 1.4 to 12.0) when the cutoff was the 97.5th percentile (Table 1).

In order to evaluate the possibility of a dose–response relation, we stratified the patients and controls according to their homocysteine concentrations and calculated odds ratios for thrombosis in the patients at the higher levels as compared with those at the lowest level. As Figure 2 shows, the risk of thrombosis did not increase among subjects with homocysteine levels up to 18 \(\mu \text{mol} \) per liter; the risk was greatly increased above 22 \(\mu \text{mol} \) per liter, however, indicating a threshold effect rather than a continuous dose–response relation.

Odds ratios for several age groups and for men and women separately are shown in Table 2. For both sexes, there was a sharp increase in the risk of thrombosis associated with hyperhomocysteinemia at increasing ages. The overall odds ratio for thrombosis associated with hyperhomocysteinemia in women was 7.0 (95 percent confidence interval, 1.6 to 30.8), and in men it was 1.4 (95 percent confidence interval, 0.6 to 3.4), with the cutoff set at the 95th percentile of the homocysteine levels in the control group (P = 0.007 for the comparison between the sexes). When we calculated the 95th percentile of the distribution of homocysteine levels for men and women separately, we found a 95th percentile of 17.1 \(\mu \text{mol} \) per liter among women and 20.0 \(\mu \text{mol} \) per liter among men in the control group. Using these cutoffs for hyperhomocysteinemia, we found an odds ratio for thrombosis of 3.8 (95 percent confidence interval, 1.4 to 10.2) for women and 1.8 (95 percent confidence interval, 0.6 to 5.4) for men.

The higher rate of hyperhomocysteinemia in women than in men was present at all ages, making it unlikely that the difference was due to risk factors specific to women, such as the use of oral contraceptives, recent childbirth, or pregnancy. Indeed, when we excluded women with these risk factors, the unmatched odds ratio for thrombosis that was associated with hyperhomocysteinemia (with the 95th percentile for both sexes — 18.5 \(\mu \text{mol} \) per liter — as the cutoff for hyperhomocysteinemia) among women under the age of 50 was 11.3 (95 percent confidence interval, 2.7 to 46.0), whereas it was 2.8 (95 percent confidence interval, 0.9 to 8.7) for all women, both those with and those without these risk factors, under the age of 50.

Of the 269 patients, 15 had protein C deficiency, 7 had protein S deficiency, and 10 had antithrombin deficiency. In the control group, four had protein C deficiency,
HYPERHOMOCYSTEINEMIA AS A RISK FACTOR FOR DEEP-VEIN THROMBOSIS

Table 1. Pairwise Distribution of Plasma Homocysteine Values in 269 Case Patients and Their Matched Controls, According to Various Definitions of Hyperhomocysteinemia.

<table>
<thead>
<tr>
<th>Cutoff of 90th Percentile (16.6 µmol per liter)</th>
<th>Case Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above cutoff</td>
<td>6 pairs</td>
<td>38 pairs</td>
</tr>
<tr>
<td>Below cutoff</td>
<td>20 pairs</td>
<td>205 pairs</td>
</tr>
<tr>
<td>Matched odds ratio for thrombosis, 1.9 (95% CI, 1.1–3.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutoff of 95th Percentile (18.5 µmol per liter)</th>
<th>Case Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above cutoff</td>
<td>3 pairs</td>
<td>25 pairs</td>
</tr>
<tr>
<td>Below cutoff</td>
<td>10 pairs</td>
<td>231 pairs</td>
</tr>
<tr>
<td>Matched odds ratio for thrombosis, 2.5 (95% CI, 1.2–5.2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutoff of 97.5th Percentile (21.1 µmol per liter)</th>
<th>Case Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above cutoff</td>
<td>2 pairs</td>
<td>16 pairs</td>
</tr>
<tr>
<td>Below cutoff</td>
<td>4 pairs</td>
<td>247 pairs</td>
</tr>
<tr>
<td>Matched odds ratio for thrombosis, 4.0 (95% CI, 1.4–12.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each cutoff point, subjects classified as having hyperhomocysteinemia were those with plasma homocysteine levels above the cutoff value; and subjects classified as not having hyperhomocysteinemia were those with levels at or below the cutoff value ("below cutoff"). The percentiles used as cutoffs were for the distribution of homocysteine values in the control group. Odds ratios were calculated as the risk of thrombosis in the subjects with hyperhomocysteinemia as compared with that in the subjects without hyperhomocysteinemia. CI denotes confidence interval.

Table 2.

Discussion

Our study shows that hyperhomocysteinemia is a risk factor for deep-vein thrombosis in the general population. Moreover, our results suggest that the association between mild hyperhomocysteinemia and venous thrombosis is similar in degree to that reported for hyperhomocysteinemia and arterial vascular disease. An unexpected finding was the substantial increase in the risk of thrombosis at the highest plasma homocysteine levels. Our data suggest that there may be a threshold level above which homocysteine has a thrombogenic effect.

Falcon et al. reported that hyperhomocysteinemia was a risk factor for juvenile thrombosis. Our data imply that hyperhomocysteinemia is a risk factor for thrombosis in adult subjects as well, since we found an increasing odds ratio with increasing age.

When we analyzed men and women separately, we found a difference in the risk of thrombosis associated with hyperhomocysteinemia. Even when we used different cutoff points for hyperhomocysteinemia in men and women by calculating the 95th percentiles of their homocysteine distributions in the control group separately, we found that the odds ratio was roughly twice as high for women as for men. This suggests that women may be more susceptible to the pathologic effects of elevated homocysteine levels, even though their homocysteine levels are in general lower than those of men. This effect cannot be explained by risk factors specific to women (such as pregnancy, recent childbirth, and oral-contraceptive use); an effect of these risk factors was even more pronounced.

Hyperhomocysteinemia remained a risk factor for deep-vein thrombosis unchanged. The statistical uncertainty of results based on these data is reflected in the wide confidence intervals, which do not exclude a relative risk as high as 16.9.

Figure 2. Odds Ratio for Thrombosis According to Plasma Homocysteine Level.

The reference category was the subjects with plasma homocysteine values of <12 µmol per liter.
Table 2. Odds Ratios for Thrombosis Associated with Hyperhomocysteinemia, According to Age and Sex.*

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>Men</th>
<th>Women</th>
<th>Both Sexes</th>
</tr>
</thead>
<tbody>
<tr>
<td><30</td>
<td>0.5 (0.1-5.5)</td>
<td>1.0 (0.1-16.0)</td>
<td>0.7 (0.1-4.0)</td>
</tr>
<tr>
<td>30–50</td>
<td>1.3 (0.3-4.6)</td>
<td>7.0 (0.9-56.9)</td>
<td>2.4 (0.8-6.8)</td>
</tr>
<tr>
<td>≥50</td>
<td>2.5 (0.5-12.9)</td>
<td>5.5 (1.2-24.8)</td>
<td>5.5 (1.2-24.8)</td>
</tr>
<tr>
<td>All ages</td>
<td>1.4 (0.6-3.4)</td>
<td>7.0 (1.6-30.8)</td>
<td>2.5 (1.2-5.2)</td>
</tr>
</tbody>
</table>

*Odds ratios were calculated as the risk of deep-vein thrombosis in subjects with hyperhomocysteinemia divided by the same in those with normal homocysteine concentrations. CI denotes confidence interval.

The next question to be answered is whether homocysteine-lowering therapy—folic acid, vitamin B₆ or vitamin B₁₂—contributes to the prevention of recurrent venous thrombosis.

We are indebted to Mrs. T. Visser, Mrs. A. van Beek, Mrs. M.T.W.B., and Mr. A. de Graaf-Hess for their excellent assistance.

References