Short Communication

Homozygous deletion of exon 18 leads to degradation of the lysosomal α-glucosidase precursor and to the infantile form of glycogen storage disease type II

We describe two unrelated Dutch patients with typical symptoms of infantile glycogen storage disease type II (GSD II) and virtual absence of acid α-glucosidase activity in leukocytes and cultured skin fibroblasts. The patients were identified as homozygotes for a deletion of exon 18 of the acid α-glucosidase gene (GAA). The in-frame deletion manifests at the protein level in a characteristic way: the enzyme precursor is smaller than normal and degraded in the endoplasmic reticulum or Golgi complex. These cases present an evident example of a genotype-phenotype correlation in glycogen storage disease type II.

Key words: acid maltase – glucosidase – lysosomal storage disease

Margreet G. E. M. Ausems1, Marian A. Kroos2, Magna Van der Kraan2, Jan A. M. Smeitink3, Wim J. Kleijer2, Hans Kristian Ploos van Amstel1 and Arnold J. J. Reuser2
1Clinical Genetics Centre Utrecht, Utrecht, 2Department of Clinical Genetics, Erasmus University, Rotterdam, and 3Department of Metabolic Diseases, University Children’s Hospital “Het Wilhelminal Kinderziekenhuis”, Utrecht, The Netherlands

Received 6 June 1995, revised version received 8 January, accepted for publication 17 January 1996

Glycogen storage disease type II (GSD II; Pompe disease; acid maltase deficiency) is an autosomal recessive lysosomal storage disorder caused by deficiency of acid α-glucosidase (McKusick 1994). The disease is characterized by lysosomal accumulation of glycogen, affecting muscle function and leading to muscle wasting. Early- and late-onset phenotypes are distinguished. The major difference is cardiac involvement and early demise in the first phenotype, and slowly progressive muscle degeneration in the second (Hirschhorn 1995).

One of the aims of current research on GSD II is to establish a genotype-phenotype correlation. The gene for acid α-glucosidase (GAA) has a length of over 20 kb (Hoefsloot et al. 1990, Martiniuk et al. 1991) and is composed of 20 exons coding for a protein of 952 amino acids (Hoefsloot et al. 1988, Martiniuk et al. 1990). Several gene defects have been reported leading to acid α-glucosidase deficiency (Reuser et al. 1995, Raben et al. 1995). Patients often have rare mutations and are compound heterozygotes, which complicates the assessment of a genotype-phenotype correlation. It is only recently that relatively frequent mutations have been identified, enabling the search for defined combinations of genotype and phenotype. These mutations are the

In this paper we describe two unrelated patients with infantile onset GSD II, who are both homozygotes for the exon 18 deletion and show the direct effect of this mutation on acid α-glucosidase synthesis and function.

Case reports

Patient A (cell line 93RD148) was the second male child of healthy, non-consanguineous Dutch Caucasian parents. He presented with prolonged jaundice 3 weeks after birth. At age 2.5 months, hypotonia, tachypnea and a cardiac murmur were noticed. Ultrasound of the heart demonstrated a hypertrophic cardiomyopathy. A severe deficiency of acid α-glucosidase was demonstrated in leukocytes (not shown) and cultured fibroblasts (Table 1). The boy died at the age of 4 months.

Patient B (cell line 80RD156) was the third male child of healthy, non-consanguineous Dutch Caucasian parents. By history he was hypotonic from the age of 6 weeks. At presentation at age 5 months, severe hypotonia and areflexia were noticed. There was a hypertrophic cardiomyopathy. Also, the acid α-glucosidase activity of this patient was practically absent in fibroblasts (Table 1). The patient died at the age of 10 months. At autopsy, glycogen storage was demonstrated in heart, muscle, liver, kidneys and peripheral nerves.

Material and methods

DNA analysis

High molecular weight DNA was isolated from cultured fibroblasts according to established procedures. The essential parts of the GAA gene were amplified using the polymerase chain reaction (Saiki et al. 1985). The exon 18 deletion was analyzed by amplification of exon 17 and 18 in tandem using the primers POM17F (TGTTCTCTGAGGACAGCATG) (forward) and POM18R (AGTGGCAGGATGACATCGGTG) (reverse). The amplification was performed in 33 cycles, each cycle consisting of 1 min denaturation at 94°C, 1 min annealing at 55°C and 2 min extension at 72°C. The reaction mixture contained 400 ng of high molecular weight DNA, 400 ng of each primer; 1.5 mM of each dNTP; 100 µg/ml bovine serum albumin; 67 mM Tris-HCl (pH 8.8); 6.7 mM MgCl₂; 10 mM β-mercaptoethanol; 6.7 µM EDTA; 16.6 mM (NH₄)₂SO₄; 10% dimethylsulfoxide and 40 U/ml of Taq-DNA polymerase (Cetus Corp, Emeryville, CA, USA).

Protein analysis

The biosynthesis of acid α-glucosidase in fibroblasts was monitored by pulse-chase labelling with ³⁵S methionine (TranS, 1200 Ci/mmol, ICN) followed by immunoprecipitation and SDS-polyacrylamide gel electrophoresis, as described by Hermans et al. (1994). In particular experiments, Brefeldin A...
was added to the culture medium in a concentration of 10 µg/ml from 1 h prior to labelling till harvest.

Results and Discussion

Exon 17 and 18 of the lysosomal acid α-glucosidase gene (GAA) of the two patients with infantile GSD II were PCR amplified in tandem to possibly identify the frequently occurring exon 18 deletion. Fig. 1 shows that abnormally small PCR fragments indicative for the deletion were found, and that patient A is homozygous for the deletion. The amplified DNA fragment was directly sequenced, and this revealed the deletion to be identical to the one previously described by Huie et al. (1994a), Van der Kraan et al. (1994) and Boerkoel et al. (1995). Homozygosity for the exon 18 deletion was also detected in patient B (data not shown).

The effect of the exon 18 deletion on acid α-glucosidase synthesis and function was studied by pulse-chase labelling of cultured fibroblasts. Fig. 2 shows that deletion of exon 18 (coding for 55 amino acids) results in synthesis of a mutant acid α-glucosidase precursor with a reduced molecular mass (less than the normal 110 kD) (0 h of chase). After 6 h of chase the wild-type precursor had been converted proteolytically to 95 kD and 76 kD species. The mutant precursor had not matured, but had almost disappeared. After 12 h of chase the mutant precursor was no longer detectable. When Brefeldin A is added (preventing exit of glycoproteins from the endoplasmic reticulum and Golgi complex), the normal precursor is not proteolytically processed but gains apparent molecular mass (Fig. 2) by acquisition of sialic acid residues (Wisselaar et al. 1993). The mutant precursor is not detectable under these conditions, which is indicative for degradation in the endoplasmic reticulum or Golgi complex.

This view is supported by two additional findings: the mutant precursor is not secreted and is not immunologically detectable in lysosomes (results not shown). Since degradation of lysosomal glycogen requires the formation of 76 kD acid α-glucosidase, it is understandable that homozygosity for the exon 18 deletion results in a complete loss of catalytic function (Table 1). The severe clinical phenotype of the patients is thereby explained.

These studies demonstrate the importance of frequent mutations with well-defined functional effects for the establishment of a genotype-phenotype correlation.

Acknowledgements

We thank Tom de Vries Lentsch and Ruud Koppenol for photographic artwork and Jeannette Lokker for secretarial assistance.

Table 1. α-Glucosidase activities in two families with exon 18 deletion

Family A	Patient	0.2	+/+
Family A	Father	47	+/−
Family A	Mother	61	+/−
Family B	Patient	0.4	+/+
Normal controls		40−160	−/−

a The substrate used for the assay of acid α-glucosidase activity in fibroblasts is 4-methylumbelliferyl-α-D-glucopyranoside according to Hermans et al. (1994). The activity is expressed in nmol/h per mg protein;

b Positive (+) and negative (−) identification of the α-exon 18 alleles is indicated.

References

Ausems et al.

