INDIRECT EVIDENCE FOR FREE RADICAL RELEASE FOLLOWING EXERCISE-INDUCED ISCHAEMIA RESULTING IN MYOCARDIAL STUNNING

University Hospital of Wales, Cardiff, UK; Queens University, Belfast, UK

Direct and indirect evidence suggests that oxygen derived free radicals play a pathogenetic role in myocardial stunning. We investigated whether exercise-induced myocardial stunning was associated with free radical release in man.

Methods: Ten men (aged 32 ± 9 years) with triple vessel coronary artery disease, stable angina and normal left ventricular function performed symptom-limited treadmill exercise tests. Serial throrascopic echocardiography (ECHO) was performed before, and at regular intervals after exercise. Peripheral venous blood samples were taken prior to and immediately after exercise, and assays of lipid peroxidation were performed using HPLC as an indirect measure of free radical generation and resultant peroxidation.

Results: Heart rate, blood pressure and ST changes returned to baseline within 10 minutes of exercise in all patients. Exercise duration was 194 ± 180 sec, and maximum ST depression was 1.9 ± 1.1 mm. Quantitative ECHO data (mean ± SD) pre exercise, 30 minutes and 240 minutes post exercise are shown:

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre exercise</th>
<th>30' post</th>
<th>240' post</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRP (msec)</td>
<td>99 ± 6</td>
<td>106 ± 11*</td>
<td>90 ± 8</td>
</tr>
<tr>
<td>EF (%)</td>
<td>59 ± 8</td>
<td>52 ± 10*</td>
<td>59 ± 7</td>
</tr>
<tr>
<td>SF (%)</td>
<td>3.8 ± 0.9</td>
<td>3.6 ± 0.9*</td>
<td>3.6 ± 1.1</td>
</tr>
</tbody>
</table>

*p < 0.001 vs pre exercise

[IRP = isovolumic relaxation period, SF = shortening fraction in the ischaemic region, EF = global ejection fraction]

Significant systolic and diastolic abnormalities are demonstrated at 30 minutes post exercise due to myocardial stunning. Markers of lipid peroxidation are shown below (mean ± SEM).

<table>
<thead>
<tr>
<th>Group</th>
<th>Pre exercise</th>
<th>Post exercise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malondialdehyde (MDA) (umol/l)</td>
<td>0.61 ± 0.06</td>
<td>1.08 ± 0.11 (p < 0.01)</td>
</tr>
<tr>
<td>Lipid hydroperoxides (umol/l)</td>
<td>1.13 ± 0.08</td>
<td>1.43 ± 0.08 (p = 0.12)</td>
</tr>
</tbody>
</table>

A significant rise in MDA a marker of lipid peroxidation was detected following ischaemia, lipid hydroperoxides also rose but not significantly.

In conclusion, our finding of increased lipid peroxidation following ischaemia is consistent with the hypothesis that oxygen radicals play a pathogenetic role in myocardial stunning in humans.

DIFFERENTIAL EPICARDIAL AND ENDOCARDIAL ACTIVATION OF KATP CHANNELS MIGHT CAUSE PEAKED T-WAVES DURING ACUTE CORONARY OCCLUSION

H. Mitamura, S. Ogawa, Keio University School of Medicine, Tokyo, Japan

Purpose: We tested a hypothesis that there is a difference in epicardial (Epi) and endocardial (Endo) activation of KATP channels, which might cause electrophysiographic ST-T changes.

Methods: In anaesthetized open-chest dogs, a sequence of 5-min occlusion and 30-min reperfusion of the left anterior descending coronary artery was repeated, while Epi and Endo monophasic action potentials (MAPs) were recorded from the centre of ischaemic zone(n = 14). In a separate group(n = 7), unipolar electrograms were recorded from 47 Epi sites within the ischaemic zone using a mapping system. 5-hydroxydecanoate (30 mg/kg; 5-HD) or glibenclamide (0.25 mg/kg; GLB), specific blockers of KATP channels, or nicardipine (0.25 mg/kg; NCR), an opener, was administered intravenously before the third or fourth occlusion, then the data were compared with the second (control) occlusion data. Heart rate was kept constant by atrial pacing.

Results: During control occlusion, shortening rate of MAP duration at 90% repolarization was greater at Epi than Endo layer (19.7% ± 1.5 vs. 13.1 ± 2.4%, mean ± SE, n = 14, p < 0.05). 5-HD shortened the shortening rate preferentially at Epi layer, and reduced the difference between the two layers (11.0 ± 3.5 vs. 11.5 ± 3.7%, n = 6, NS). In contrast, NCR augmented the shortening preferentially at Epi layer, and increased the difference (29.2 ± 2.0 vs. 9.3 ± 3.0%, n = 6, p < 0.05). Concomitantly, occlusion-induced increase in the peak amplitude of T-waves was suppressed by GLB while augmented by NCR (control occlusion: 10.5 ± 0.5, GLB: 5.6 ± 0.4, NCR: 12.8 ± 0.5 mV, n = 7, p < 0.05). Collateral blood flow measured using radioactive microspheres during control occlusion was greater at Epi than Endo layer (31.3 ± 12.5 vs. 8.3 ± 3.1 ml/100 g/min, n = 8, p < 0.05).

Conclusion: These data suggest that epideroadially dominant activation of KATP channels cause less severe reoxygenation increases the time lag between Epi and Endo repolarization, thereby contributing to the formation of electrophysiographic, peaked T-waves immediately after acute coronary occlusion.

HURIDIN AND HIRULOG, BUT NOT HEPARIN OR ASPARIN SEEM TO PREVENT REOCCLUSION FOLLOWING SUCCESSFUL THROMBOLYSIS

F.W.A. Verheugt, A. Meijer. Depts. of Cardiology, University of Limburg, Maastricht and University Hospital, Nijmegen, The Netherlands

Both heparin (Hep) and aspirin (ASP) apart or combined lead to better outcome in patients (pts) with acute myocardial infarction (AMI) undergoing thrombolytic therapy (TT), supposedly due to prevention of reocclusion.

In numerous trials in pts treated with TT for AMI both Hep and ASP apart and combined have shown to improve patency of the infarct-related vessel (IRV) by angiography 50 minutes to several days after TT. But this does not prove that Hep or ASP prevents reocclusion. For the diagnosis of true reocclusion 2 angiograms are needed: one with an open IRV and one follow-up angiogram, There are faciliting thrombolysis rather than preventing reocclusion after TT for AMI.

Conclusion: H. had no significant effect on LV global and regional function after successful thrombolysis in pts with anterior Q-wave AMI in our pilot study.