EXPRESSION OF \textit{nma}, A NOVEL GENE, INVERSELY CORRELATES WITH THE METASTATIC POTENTIAL OF HUMAN MELANOMA CELL LINES AND XENOGRAFTS

Departments of 1Biochemistry, 2Pathology and 3Human Genetics, University of Nijmegen, Nijmegen, The Netherlands.

\textit{nma}, a novel gene, was isolated by using a subtractive hybridization technique in which the gene expression was compared in a panel of human melanoma cell lines with different metastatic potential. \textit{nma} mRNA expression (1.5 kb) is high in poorly metastatic melanoma cell lines and xenografts and completely absent in highly metastatic human melanoma cell lines. Fluorescence \textit{in situ} hybridization combined with the analysis of a panel of human–rodent somatic cell hybrids indicated that the \textit{nma} gene is located on human chromosome 10, in the region p11.2–p12.3. Sequence analysis of \textit{nma} showed no homologies with other known genes or proteins, except for several partially sequenced cDNAs. The predicted amino acid sequence suggests that the protein encoded by \textit{nma} contains a transmembrane domain. Expression of \textit{nma} is high in human kidney medulla, placenta and spleen, low in kidney cortex, liver, prostate and gut and absent in lung and muscle. Whereas \textit{nma} is not expressed in normal skin tissue, expression is high in melanocytes and in 3 out of 11 melanoma metastases tested.

\begin{flushright}
© 1996 Wiley-Liss, Inc.
\end{flushright}

Metastatic melanoma is one of the most invasive cancers, the incidence of which has rapidly increased in the past decade. The process of metastasis is thought to be characterized by subsequent distinct stages as defined by Clark et al. (1984) and Herlyn et al. (1987), and eventually enables a primary tumor to spread and colonize at secondary sites. A set of biological markers defining unequivocally each stage of tumor development is lacking. New markers are thus sought for better diagnosis and therapeutic strategies. They may also lead to a better understanding of the tumor biology of melanoma.

In cultured human melanocytic cells, several tumor markers have been defined that are possibly indicative for metastatic potential (Weterman et al., 1994). Some of these markers may be very useful in clinical practice as well as in studies of tumor biology. Several strategies have been used to isolate tumor progression markers. The use of monoclonal antibodies (MAbs), in particular, was successful in the isolation of membrane associated proteins, such as membrane receptors and adhesion molecules (Real et al., 1985). A number of melanoma markers represent (potential) tumor suppressor activities, e.g., \textit{nm23} (Leone et al., 1991) and \textit{p16} (Kamb et al., 1994).

In the last few years, we have identified several potential progression markers, e.g., calcyclin (Weterman et al., 1992), thymosin-\beta 10 (Weterman et al., 1993), \textit{nm23} (Weterman et al., 1995) and \textit{nma} (this report), by using differential and subtractive hybridization techniques. Calcyclin and thymosin-\beta 10 are expressed in highly metastatic human melanoma cell lines, whereas \textit{nm23} and \textit{nma} are expressed in poorly metastatic human melanoma cell lines.

The absence of expression of \textit{nma} and \textit{nmb} in highly metastatic cell lines does not imply a role in tumor progression. It merely indicates that these markers are part of the phenotype of a non-metastasizing cell line. Because this phenotype may be relevant for tumor biology, we now present a characterization of the \textit{nma} gene.

\begin{flushright}
\textbf{MATERIAL AND METHODS}
\end{flushright}

\begin{flushleft}
\textbf{Biological materials}
\end{flushleft}

Human melanoma cell lines 1F6, 530, BLM, MV3 and MV1 (van Muijen et al., 1991a, b, c) were cultured as described by Weterman et al. (1992). In this panel of cell lines, BLM and MV3 represent the highly metastatic cell lines, i.e., those in which metastases occur in more than 50% of the tumor-bearing mice. 1F6, 530 and MV1 produced metastases in less than 10% of the tumor-bearing mice, representing the poorly metastatic cell lines (van Muijen et al., 1991a); 3 x 106 cells were used for s.c. inoculation into nude mice (nu/nu BALB/c; Bomholtgaard, Ry, Denmark).

Excision and processing of the human tissues was performed as described by Weterman et al. (1995).

\begin{flushleft}
\textbf{RNA isolation and Northern blot analysis}
\end{flushleft}

Total RNA was isolated using the lithium-urea procedure described by Auffray and Rougeon (1980), RNA oligodeoxynucleotide selections were performed using oligodeoxynucleotide columns (type II; Collaborative Research, Bedford, MA). Total RNA (10 \mu g) was glyoxylated (McMaster and Carmichael, 1977), size fractionated on 1% agarose gels and blotted onto Hybond N-plus filters (Amersham, Aylesbury, UK). Northern blots were hybridized according to Church and Gilbert (1984), with the addition of 0.1 ng denatured herring sperm DNA/ml of hybridization mixture. To confirm that equal amounts of RNA were loaded in each lane, the blots were hybridized afterwards to an 18S ribosomal probe.

\begin{flushleft}
\textbf{Construction of cDNA and subtraction libraries}
\end{flushleft}

cDNA libraries were constructed from 5 \mu g of oligodeoxynucleotide selected RNA using a cDNA cloning kit (Invitrogen, San Diego, CA) or a XZAP cDNA synthesis kit (Stratagene, La Jolla, CA). Construction of the MV3-MV1 subtraction library with a subtractor kit (Invitrogen) was performed as described before (Weterman et al., 1993). The poorly metastatic human melanoma cell line 530 was used for the construction of the 530 XZAP cDNA library.

\begin{flushleft}
\textbf{DNA probes and hybridization of cDNA and genomic libraries}
\end{flushleft}

DNA probes were radiolabeled using the random prime method as recommended by Boehringer Mannheim (Germany). Hybridization of cDNA libraries and the human fetal brain genomic library (kindly provided by Mr. A. van Bokhoven, Department of Urology, Nijmegen) was performed for

4To whom correspondence and reprint requests should be sent, at Department of Biochemistry, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Fax: 31 24 5340525.

Received: June 29, 1995 and in revised form September 19, 1995.
16 hr in 5× SSPE, 5× Denhardt’s and 0.5% SDS in the presence of 0.1 mg/ml denatured herring sperm DNA at 65°C. Filters were washed in a stringent manner, using decreasing salt concentrations (2× and 1× SSPE/0.1% SDS) at room temperature and 65°C, respectively.

Chromosomal DNA isolation and Southern blot analysis

Chromosomal DNA was isolated using the method of Blin and Stafford (1976). DNA was digested with EcoRI, and 10 μg was size fractionated on 1% agarose gels. DNA was transferred to Hybond N-plus filters and hybridized as described previously for Northern blot analysis. To confirm that equal amounts of DNA were loaded in each lane, blots were hybridized afterwards to a chromosome 18-specific centromeric probe. Abnormalities involving chromosome 18 have not been described in relation to melanoma.

DNA sequencing and computer analysis

DNA fragments were sequenced according to the dideoxy method described by Sanger et al. (1980) using a Sequenase sequencing kit (USB, Cleveland, OH). Large fragments were sequenced by constructing a set of deletion clones using exonuclease III (Erase-a-base kit, Promega, Madison, WI). Searches for known DNA sequences were performed using the GenBank and EMBO databases (Devereux et al., 1984; Pearson and Lipman, 1988). DNA sequence analysis, including searches for motifs, alignments and structure predictions, was performed using the CAMMSA programs MOTIFS, PILEUP, CLUSTAL V, BESTFIT, PEPTIDESTRUCTURE, PLOTSTRUCTURE and MEMBRANE PROPENSITY, which are all part of the Wisconsin Package V.7.0 (Devereux et al., 1984).

Determination of the transcription start site of the nma gene by S1 mapping

Nuclease S1 mapping was performed using the method of van Lcn et al. (1986). Briefly, 50 μg of total 530 RNA or yeast tRNA was hybridized with 1 × 10^6 cpm of a 32P-labeled antisense ssDNA probe derived from the human genomic nma subclone pW1D117. Subclone pW1D117 consists of a 418 bp Avai DNA restriction fragment subcloned in pGEM-3zf(−). Nucleotide positions 304 to 418 of this Avai fragment correspond to positions 1 to 115 of the human nma cDNA sequence. This fragment also contains a putative TATA and CAAT box. The insert was labeled using the method of Sanger et al. (1980), and a single stranded DNA probe was isolated following SacI digestion and electrophoresis on a 4% polyacrylamide/7 M urea gel. Annealing was performed at 40°C overnight. Nuclease S1 (Boehringer Mannheim) was used at 1000 units/ml for 1 hr at 37°C. The remaining product was electrophoresed on a 6% polyacrylamide/7 M urea gel.

Chromosomal localization of the nma gene

The initial chromosomal assignment of the nma gene was carried out by using a panel of monochromosomal human-
RESULTS
Cloning and characterization of a differentially expressed nma cDNA clone

During the isolation of cDNA clones differentially expressed in a panel of poorly metastatic versus highly metastatic human melanoma cell lines, 2 novel genes, designated nmb (Weteman et al., 1995) and nma, were identified that showed expression in the poorly metastatic human melanoma cell lines 1F6, 530 and MV1. The expression of nma is shown in Figure 1. nma mRNA expression is high in the poorly metastatic human melanoma cell lines 1F6, 530 and MV1 and derived xenografts. Expression was not detected in the highly metastatic cell lines BLM and MV3 and xenografts derived from these cell lines.

Sequencing revealed that nma represents a novel gene. Screening of a cDNA library derived from the poorly metastatic human melanoma cell line 530 resulted in the isolation of the nma cDNA clone pWD58. An S1 mapping experiment described below indicates that clone pWD58 contains the complete cDNA. The nma cDNA sequence with a putative polyadenylation signal, translation start site and open reading frame (260 amino acids) is shown in Figure 2. A consensus signal cleavage site located downstream of amino acid 27 (Glu) indicates that the predicted nma protein contains a signal sequence. A glycosylation site and a Kyte and Doolittle (1982) prediction of hydrophilicity are schematically depicted in Figure 3. The predicted amino acid sequence contains a transmembrane domain indicating, together with the other data, that nma codes for a transmembrane protein.

Sequence comparison showed no similarities with known genes or proteins, except for several partially sequenced cDNAs (150 to 500 bp) with accession numbers D25985, T73919, T85484, T90372, Z39158 and Z41678.

Isolation and partial sequencing of a genomic clone containing the nma gene

Screening of a human fetal brain genomic library with nma cDNA clone pWD58 yielded 1 positive clone with an insert of approximately 30 kb. Characterization of this genomic clone nma-1 was performed by producing a set of subclones using several restriction endonucleases. A 9 kb BamHI fragment was isolated that hybridized with both a 5' and a 3' nma cDNA probe and, thus, contained the complete coding sequence. Subclones of this 9 kb BamHI fragment were partially sequenced in order to locate exon-intron junctions. The gene consists of 3 exons, 448, 288 and 784 bp, respectively, separated by 2 introns of 3 kb and 435 bp (Fig. 4; GenBank accession numbers for exon-containing sequences I, U29188; II and III, U29189).

The 9 kb BamHI nma genomic fragment is flanked by 2 EcoRI restriction sites and also contains 1 EcoRI restriction site between exons II and III, and 1 EcoRI site in exon III (Fig. 4). When hybridizing a Southern blot containing EcoRI digested genomic DNA from human melanoma cell lines to a complete nma cDNA probe, 3 bands are expected to hybridize. In Figure 5, the 3 EcoRI bands are indicated by arrows. An additional band of approximately 4 kb is visible in melanoma cell line BLM that may be the result of cross hybridization.

S1 mapping was performed with a genomic nma antisense ssDNA probe overlapping the putative transcription start site and total RNA from the poorly metastatic melanoma cell line 530, to define precisely the 5' transcription start site of the nma gene. Besides the first 115 nucleotides of the cDNA sequence, this genomic nma DNA fragment also contains a putative TATA and CAAT box. A transcription start region corresponding to protected transcripts of 113 to 115 nucleotides long is visible in Figure 6, indicating that 2 or 3 alternative transcription start sites are used.

Chromosomal localization of the nma gene

The initial chromosomal assignment of the nma gene was carried out via Southern blot analysis of a well-defined panel of monochromosomal human–rodent somatic cell hybrids with nma cDNA pWD58 as a probe. A single hybrid revealed a human-specific hybridizing fragment (not shown). This hybrid contains chromosome 10 as its only human constituent, thus mapping the gene to this human chromosome. Further refinement of the localization was obtained by using FISH with the genomic nma-1 clone. In this case, hybridization signals were observed in several (telomeric) chromosomal regions (not

![Figure 3 - Predicted characteristics of the protein encoded by nma. The upper panel shows a Kyte and Doolittle (1982) prediction of hydrophilicity. Hydrophobic regions are indicated by negative values.](image)
EXPRESSION OF \textit{nma} IN CUTANEOUS MELANOMA

A

\begin{center}
\begin{tabular}{cccccc}
 & E & B & X & S & H \\
I & & & & & \\
II & & & & & \\
III & & & & & \\
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{cccccc}
 & & & & & \\
I & & & & & \\
II & & & & & \\
III & & & & & \\
\end{tabular}
\end{center}

\textbf{FIGURE 4} – Schematic map of the \textit{nma} gene. (a) The schematic map of \textit{nma} with the major restriction sites. The black boxes in the gene correspond to the 3 exons. B, BamHI; E, EcoRI; H, HindIII; S, SaeI; X, XbaI. (b) Nucleotide sequences of exon-intron junctions of exons I, II and III. Lowercase letters indicate intron sequences, whereas exon sequences are indicated by capitals (GenBank accession numbers for exon-containing sequences I, U29188; II and III, U29189).

B

\begin{center}
\begin{tabular}{cccccc}
 & & & & & \\
I & & & \textbf{CTCACCAG} & & \\
II & \textbf{GTCGAGC} & \textbf{GTGAAATTCG} & \textbf{GACACGTCAG} & & \\
III & & \textbf{GAGTACGA} & \textbf{actccttac} & \textbf{GACAGGAAA} & \\
\end{tabular}
\end{center}

\textbf{FIGURE 5} – Southern blot analysis of several human melanoma cell lines; 10 \textmu g of EcoRI digested chromosomal DNA were loaded in each lane. Lane A, MV1; Lane B, 530; Lane C, 1F6; Lane D, BLM; Lane E, MV3 DNA digested with EcoRI. The blot was hybridized to radiolabeled 1.5 \textmu m \textit{nma} cDNA. Hybridizing bands are indicated with arrows. The m.w. marker was HindIII digested \lambda DNA. As a control, a chromosome 18-specific centromeric hybridization is shown (3 bands of approximately 20, 1.3 and 0.6 \textmu b). Abnormalities involving chromosome 18 have not been described in relation to melanoma.

\textbf{FIGURE 6} – Determination of the 5' transcription start site of the \textit{nma} gene by S1 mapping. An antisense \textit{nma} ssDNA genomic subclone containing the 5' untranscribed region with putative TATA and CAAT boxes and flanking the first 115 nucleotides of the cDNA sequence was hybridized with 50 \textmu g of 530 total RNA or yeast tRNA. Upon treatment of the hybrid with nuclease S1, the product was analyzed under denaturing conditions (indicated with an arrow). Lane I, 530 total RNA; lane II, yeast tRNA; lane III, intact undigested ssDNA probe. A portion of the corresponding dideoxy sequencing reactions is shown at the left.

\textbf{Expression of \textit{nma} in human melanocytic lesions}

A Northern blot containing several human melanocytic lesions was screened for \textit{nma} expression (Fig. 7). Whereas \textit{nma} (indicated with an arrow) is highly expressed in melanocytes and in 3 out of 11 melanoma metastases, expression in the other metastases is low or absent. Remarkably, 3 out of 4 metastases with strong pigmentation (Lanes I, J, M) show high \textit{nma} expression levels. \textit{nma} does not seem to be expressed in normal skin tissue (Lane B). The upper 1.9 \textmu b band may be the result of cross-hybridization of \textit{nma} with the 1.9 \textmu b 18S rRNA (compare with control hybridization).

\textbf{Expression of \textit{nma} in human organs}

The expression of \textit{nma} in several human organs was tested using a Northern blot containing kidney cortex and kidney medulla, lung, muscle, liver, placenta, spleen, prostate and gut total RNA (Fig. 8). \textit{nma} is expressed at high levels in kidney
human melanoma cell lines 1F6, 530 and MV1 and derived xenografts, and completely absent in the highly metastatic melanoma cell lines BLM and MV3 (Fig. 1). The differences in RNA expression of nma between poorly and highly metastatic melanoma cell lines cannot be explained by major chromosomal rearrangements, as demonstrated by Southern blot analysis (Fig. 5). The observed differences in nma mRNA expression may, therefore, reflect differences in promoter activity of the nma gene.

Sequence analysis revealed that nma is a new gene. The presence of a signal sequence and a hydrophobic area of 25 amino acid residues (positions 151 to 175) bordered by charged residues indicates that the gene encodes a transmembrane protein.

The nma gene is located on human chromosome 10 in the region p11.2-p12.3 (results not shown). Loss of heterozygosity (LOH) of chromosome 10 in relation to malignant melanoma has already been described. Ishikii et al. (1993) concluded from their results that a tumor suppressor gene may be located on 10q, although allelic losses on 10p were also found.

Although its expression pattern in cell lines and derived xenografts offers the perspective that nma could be a potential marker for early stages of melanoma progression (Fig. 1), its presence in a considerable number of human melanoma metastasis lesions is not in line with this suggestion (Fig. 7). Other (potential) early progression markers, notably nm23 and also nm2b, display expression profiles similar to that of nma. Experimental evidence is available in support of a metastasis suppressor function for the nm23 gene (Leone et al., 1991) and an nm2b clone encoding an N-terminally truncated product (Weterman et al., 1995). One could speculate that genes like nm23, nm2b and also nma may be involved in attenuating metastatic properties of melanoma cells. Tumor progression may require that these genes are (temporarily) switched off in the course of metastasis but turned on again later in a secondary, distantly growing tumor. Alternatively, their expression may only partially inhibit the metastasis. Evidence for a transient role of a presumed suppressor of metastasis is given by the experiments of Florenes et al. (1992). They demonstrated that the level of nm23 mRNA was significantly lower in tumors from patients with a short interval between primary diagnosis and the appearance of metastases than in those with more prolonged relapse-free intervals. This observation was explained by assuming that the expression of nm23 in metastases is inversely correlated with aggressive behavior. This conclusion was strengthened by Xerri et al. (1994) and Culigo et al. (1994), who found a correlation between high expression of nm23 in patients with a high overall survival following metastasis resection and in cell lines derived from these metastases. It is possible that nma and nm2b follow the same pattern as nm23 does and, therefore, are found in some but not all metastases. Although clinical data were available on the melanoma metastases used in this study, no final conclusions can be drawn because of their small number.

Expression of nma in several human organs indicates that the expression is not melanocyte-specific: nma is expressed at variable levels in most organs tested, except in lung and muscle (Fig. 8).

Further characterization of nma, especially of its biological functions, should eventually clarify its role in melanoma metastasis.

ACKNOWLEDGEMENTS

The authors thank Ms. D. Olde Weghuis and Dr. D. de Bruijn (Department of Human Genetics, Nijmegen) for their help in the chromosomal localization of the gene. This work was supported by the Dutch Cancer Society.
REFERENCES

