The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/23836

Please be advised that this information was generated on 2021-06-05 and may be subject to change.
ESTIMATING THE CONTRIBUTION OF MUSCLES TO JOINT TORQUE BASED ON MOTOR-UNIT ACTIVITY

M. Theeuwen, C. C. A. M. Gielen and B. M. van Bolhuis
Department of Medical Physics and Biophysics, University of Nijmegen, Geert Grootplein Noord 21, NL 6525 EZ Nijmegen, The Netherlands

Abstract—Because most joints in the human arm are crossed by a number of muscles which exceeds the number of degrees of freedom for those joints, the motor system can use a variety of muscle activation patterns for the same torque in each joint. We have developed a model to estimate the contribution of individual muscles to the total torque in a joint based on intramuscular EMG recordings. EMG activity recorded with surface electrodes may be contaminated with cross-talk from other muscles. Moreover, it may not be representative for the activation of a muscle when there are several subpopulations of motor units in the muscle. We derive a relation between the recruitment threshold of a motor unit in a subpopulation for force in various directions and the relative contribution by that subpopulation to joint torque. A set of linear equations can then be constructed which relates the contribution of each subpopulation (and therefore of each muscle) to the total joint torque. If the activation of individual subpopulations is modulated differently for forces in various directions, the relative contribution of the individual subpopulations to the total joint torque can be estimated. Copyright © 1996 Elsevier Science Ltd.

Key words: EMG; Muscle; Force; Coordination; Motor unit.

INTRODUCTION

The force exerted at the end effector of a limb is the result of the torques in each of its joints. Since in general more than one single muscle is acting across a joint, it is hard to determine the individual contribution of each of the muscles to joint torque. However, there are several reasons why it is important to know the contribution of each single muscle to total joint torque. For example, there are various theories on the role of mono- and bi-articular muscles (see e.g. van Ingen Schenau, 1989; Jacobs and van Ingen Schenau, 1992) and about the role of muscles with parallel oriented muscle fibers and of muscles with a pennate structure (Otten, 1988; Woittiez et al., 1984). Knowledge of the contribution of individual muscles to joint torque in natural movements will make it possible to test these hypotheses and will contribute to a better understanding of muscle coordination in mechanically redundant limbs.

In addition to these reasons a quantitative method for this purpose would also be highly desirable since recent studies have shown that the relative activation of muscles for a particular joint torque is not constant, but dependent on the motor task (see e.g. Tax et al., 1989, 1990a,b). Quantitative information about the task-dependent contribution of muscles to joint torque may reveal more information on the particular role of mono- and bi-articular muscles (see e.g. Gielen and van Ingen Schenau, 1992; van Ingen Schenau, 1989).

Usually, surface EMG recordings have been used to estimate the activation of various muscles and to determine their role in various movements. However, the absolute value of EMG activity depends on a variety of factors such as the position of the surface electrodes relative to the active muscle fibres, the thickness of subcutaneous fat layers, blood vessels, etc. Therefore, EMG activity by itself can only provide a qualitative, not a quantitative measure of the contribution of a muscle to joint torque. Moreover, the EMG-force relationship is not fixed but task-dependent such that EMG is not a unique measure for muscle force (see e.g. Miller et al., 1992; Theeuwen et al., 1994b).

In the past several studies have tried to estimate the relative contribution of muscles to joint torque. Usually, several additional assumptions had to be made. For example, Jørgenson and Bankov (1971) based their predictions on the physiological cross-sectional area of muscles. Since each muscle may have several subpopulations of motor units, each with a different activation, only a limited set of motor units is active at the same time for force in a particular direction (see e.g. ter Haar Romeny et al., 1984; van Zuylen et al., 1988). Therefore, the physiological cross-sectional area of a muscle is not representative for the area of muscle which is involved in the production of force in a particular direction. More in general, it is very hard to estimate the reliability of results from approaches which are based on assumptions on muscle physiology and on biomechanical properties (see e.g. Challis and Kerwin, 1994).

Other approaches (e.g. Hatz, 1976; Pedotti et al., 1978; Penrod et al., 1974; Zajac et al., 1984) have used optimization techniques which minimized or maximized some objective function. However, for many movements it is not easy to identify an objective criterion for minimization or maximization and, if one is found, it is still an open question whether the central nervous system uses

Received in final form 27 September 1995.
Address correspondence to: C.C.A.M. Gielen.
the optimization of that particular criterion for the coordination of muscles. Other approaches have estimated the contribution of a muscle to joint torque by relating the EMG activity of a set of muscles to joint torque. When the EMG activity of the muscles is modulated independently, the contribution of each muscle can be calculated when the set of independent equations is at least equal to the number of muscles involved (see e.g. An et al., 1983; Crockaert et al., 1975).

Although this method seems to work well for relatively simple joints with a limited set of muscles acting across the joint (see e.g. An et al., 1983; Buchanan et al., 1993), it failed for the highly redundant muscle system of the human elbow (see Buchanan, 1986). It is not clear yet, whether this is due to the inevitable cross talk from other muscles or due to other noise in the measurements.

The aim of this paper is to present a method to determine the contribution of a muscle to joint torque, when several muscles act across that joint, based on motor-unit data. The advantage of single motor-unit activity above surface EMG recordings is that crosstalk from other muscles, a well-known problem with surface EMG which may corrupt estimates on the contribution of muscles to joint torque, is avoided. In a previous paper (Theeuwen et al., 1994a) we have shown how the recruitment threshold of a motor-unit from a particular subpopulation of motor units for forces at the limb in various directions can be related to variations of torque contributed by that subpopulation. However, the absolute value of the torque contribution could not be estimated in that study. From there on our approach is basically similar to that described by Crockaert et al. (1975) since we also make the assumption that there exists a unique scaling factor relating force generated by a specific subpopulation of motor units to joint torque contributed by that subpopulation. However, the absolute value of the torque contribution could not be estimated in that study.

In a previous paper (Theeuwen et al., 1994a) we have explained how variations in recruitment threshold of motor units for force in various directions can be related to variations in the amount of EMG activity recorded with surface electrodes. The same line of reasoning gives the relation between recruitment thresholds and the relative contribution to torque by that subpopulation for force in various directions.

First we assume that motor units of one subpopulation are recruited in an orderly manner according to the size principle described by Henneman (1981). This means that all motor units in that subpopulation have a recruitment behaviour which is modulated in the same way for forces in various directions. If for forces in a particular direction the recruitment threshold of one motor unit is raised by a certain factor, this is assumed to be representative for the behaviour of all other motor units in the same subpopulation. This is confirmed by the finding that recruitment thresholds of motor units for torques in several directions lie on straight parallel lines as reported by ter Haar Romeny et al. (1982), by van Zuylen et al. (1988) and by Theeuwen et al. (1994a,b).

Secondly, we assume that a line of recruitment thresholds represents a line of torques where the activation and torque contribution of the subpopulation of motor units is constant.

With these assumptions the precise contribution of a muscle to joint torque can be determined in the following way. It has been shown before that, when the direction of the external torque changes, the relative activation of muscles (and therefore also their relative contribution to torque in joint j) will change (see e.g. Buchanan et al., 1986; Miller et al., 1992; Theeuwen et al., 1994a) proportionally to the innerproduct of joint torque T_j and the normal $\tau_{nor,m}$ to the recruitment line of motor units in subpopulation m

$$T_{m,j} = \begin{cases} C_{m,j} (T_j \cdot \tau_{nor,m}) & \text{for } (T_j \cdot \tau_{nor,m}) \geq 0, \\ 0 & \text{for } (T_j \cdot \tau_{nor,m}) \leq 0. \end{cases}$$ (1)

In this equation $T_{m,j}$ represents the contribution by the (sub)population motor units m to torque in joint j. At a given activation level of the muscle $\tau_{nor,m}$ represents the recruitment threshold of the motor unit, which is just recruited at that activation level. Obviously, for larger activation levels, more motor units are recruited and $\tau_{nor,m}$ increases in size, not in direction. The direction of $C_{m,j}$ (i.e. $C_{m,j}/\|C_{m,j}\|$) is anatomically defined. For m. biceps, caput longum, for example, the component of C in flexion direction will be about 5 times larger than that in supination direction due to the fact, that the lever arm for flexion is about 5 times larger than that for supination (see ter Haar Romeny et al., 1984). The magnitude of $C_{m,j}$ is a proportionality constant which has to be determined in order to estimate $T_{m,j}$. Obviously, it is different for different joint angles.

Since the sum of the contributions of all muscles to total joint torque is uniquely defined

$$\sum_{m=1}^{M} T_{m,j} = T_j = r_j \times F_e,$$ (2)

with r_j the lever arm relative to joint j, then a set of linear equations relating the contribution by each muscle to total joint torque can be constructed for various directions of external force F_e. By varying the direction ϕ of the externally required force F_e the relative contribution from the active muscles across a joint j are modulated independently (see e.g. Buchanan et al., 1986; Miller et al., 1992; Theeuwen et al., 1994a; van Zuylen et al., 1988). When N different directions ϕ are tested, this allows the construction of a set of N linear equations from which the
Coefficients $|C_{m,j}|$ can be solved:

$$
\sum_{m=1}^{M} |C_{m,j}| \cdot \frac{C_{m,j}}{|C_{m,j}|} \cdot (T_j(\phi_i) \cdot T_{nor,m}) = T_j(\phi_i),
$$

$i \in \{1, 2, \ldots, N\}$. (3)

If these equations are linearly independent, which is the case if the relative recruitment thresholds of motor units in various muscles vary in a different way for various directions of force F_e, this set can be solved and the proportionality constants $|C_{m,j}|$ between muscle torque and externally required joint torque can be obtained for each single muscle. If N exceeds the number M of muscles or motor-unit subpopulations, this system is overdetermined and the set of equations will not be linearly independent. This set of equations can be considered as a matrix equation with the matrix coefficients $|C_{m,j}| / |C_{m,j}| \cdot (T_j(\phi_i) \cdot T_{nor,m})$ and the unknown variables $|C_{m,j}|$. A singular value decomposition, for example, can then be used to investigate how many independent equations exist in the set. It should be notified, that a solution for the coefficients $|C_{m,j}|$ is valid only for one single joint angle, since these coefficients depend on the force-length relationship and on the muscle mechanical advantage.

DATA

The motor-unit data were taken from van Zuylen et al. (1988). In this study averaged data are presented for recruitment thresholds of motor units in various subpopulations in m. biceps brachii, m. brachioradialis, m. brachialis, m. triceps (lateral head, medial head and long head), m. supinator, and pronator teres for isometric contractions. For m. pronator quadratus, the pure antagonist of m. supinator, no data were available. For this muscle, we simulated data based on the data of its antagonist m. supinator. The recruitment behaviour of subpopulation 3 is the same as that for subpopulation 1 in the (F/P)-quadrant, the recruitment thresholds fall along a straight line (such as in Fig. 1A) the torque contribution is given by a circle (see Theeuwen et al, 1994a). If the recruitment behaviour of a motor unit is described by a concatenation of different line segments, as for m. biceps subpopulation 2 (Fig. 1C), a transformation can be found for each of the line segments. With the requirement of continuity the concatenation of circle segments in Fig. 2C can be derived. Only the scaling constants $|C_{m,j}|$ representing the relative contribution of these subpopulations to the total torque T_j have to be determined. As described in the theory section, a matrix equation [equation (3)] can be constructed for these data to calculate the scaling constants.

Some muscles generate torques which have components both for flexion/extension and for supination/pronation. The ratio of the flexion/extension and supination/pronation torque components is defined by the anatomical lever arms of the muscles (see e.g. Fick, 1911; Lohman, 1976; Sobotta and Becher, 1972). This determines $|C_{m,j}| / |C_{m,j}|$. For each direction both the required flexion/extension torque and the supination/pronation torque have to be satisfied. This results in two equations per direction with just one unknown scaling parameter $|C_{m,j}|$ per muscle or subpopulation of motor units.

A singular value decomposition has been used to find the eigenvalues and eigenvectors of the matrix with coefficients $(|C_{m,j}| / |C_{m,j}|) \cdot (T_j(\phi_i) \cdot T_{nor,m})$ obtained with equation (3) in order to find the scaling constants $|C_{m,j}|$ necessary to relate the recruitment behaviour of individual muscles or of subpopulations of motor units to the total joint torque. The singular value decomposition revealed that $(M - 3)$ eigenvalues differed significantly from zero. This means that there exists a three-dimensional solution space instead of just one single unique solution. One dimension of this solution space comes from the three subpopulations in m. biceps. The activation pattern of subpopulation 3 of this muscle (see Fig. 1C) can be constructed by a linear combination of activation patterns of subpopulations 1 and 2 (see Fig. 1A and B). The recruitment behaviour of subpopulation 3 is the same as that for subpopulation 1 in the (F/P)-quadrant.
Fig. 1. The behaviour of the recruitment thresholds as a function of the combination of flexion (F), supination (S), extension (E) and pronation (P) for several elbow muscles and subpopulations of motor units within a muscle. In the panels are shown m. biceps subpopulation 1 (A), m. biceps subpopulation 2 (B), m. biceps subpopulation 3 (C), m. brachioradialis subpopulation 1 (D), m. brachioradialis subpopulation 2 (E), m. brachioradialis subpopulation 3 (F), m. supinator (G), m. triceps subpopulation 1 (H), m. triceps subpopulation 2 (I), m. triceps subpopulation 3 (J), m. pronator teres subpopulation 1 (K), m. pronator teres subpopulation 2 (L) and m. pronator quadratus (M). These data are taken from van Zuylen et al. (1988).
Fig. 2. The result of the estimation procedure to estimate the torque contribution of various subpopulations of motor units as a function of the combination of flexion (F), supination (S), extension (E) and pronation (P). The recruitment thresholds of these motor-units are shown in Fig. 1. In the panels are shown m. biceps subpopulation 1 (A), m. biceps subpopulation 2 (B), m. biceps subpopulation 3 (C), m. brachioradialis subpopulation 1 (D), m. brachioradialis subpopulation 2 (E), m. brachioradialis subpopulation 3 (F), m. supinator (G), m. triceps subpopulation 1 (H), m. triceps subpopulation 2 (I), m. triceps subpopulation 3 (J), m. pronator teres subpopulation 1 (K), m. pronator teres subpopulation 2 (L) and m. pronator quadratus (M).
the same as that for subpopulation 2 in the (S/E)-quadrant and the same as the combination of these subpopulations in the (F/S)-quadrant.

The second dimension of this solution space comes from the fact that the contribution from m. supinator can be exchanged by a contribution from m. biceps subpopulation 2 and 3 when supination torques are involved. Therefore, two subpopulations from m. biceps can be active when a torque with a component in supination direction is present. Because m. biceps has a mechanical contribution to flexion torque, this contribution to flexion torque, which is generated during supination, has to be canceled for pure supination torques and for combined supination and extension torques. This can be done by activating the subpopulations 2 and 3 in m. triceps (see Fig. 1I and 1J). For combinations of extension and supination torque, the activity of subpopulation 1 of m. triceps, which is activated for extension torques only (Fig. 1H), is then also determined because it has to contribute the remaining extension torque which is not provided by subpopulations 2 and 3.

The third dimension of this solution space comes from motor units labeled ‘m. pronator teres 2’ for pronation torques. In addition to m. pronator quadratus this muscle can contribute mechanically to torque in pronation direction. However, since m. pronator teres has also a mechanical component in flexion direction, the undesired flexion torques, when a pure pronation torque has to be generated, can be compensated by activation of m. triceps subpopulation 3, which is the only subpopulation of m. triceps which can be activated in the flexion/pronation-quadrant. The activation of m. pronator teres relative to the activation of m. pronator quadratus determines the relative contribution of the subpopulations 2 and 3 of m. triceps.

Given these three degrees of freedom in the solution space, the activation of the other pools of motor units is uniquely determined. The use of m. pronator teres subpopulation 2 determines the ratio between the activation of m. triceps subpopulation 2 and 3. Only subpopulation 3 can compensate the flexion torque of m. pronator teres. M. pronator quadratus generates the remainder of the pronation torque.

For torques with a supination component the activation of the subpopulations 1 and 3 in m. biceps is determined by the slope of the recruitment lines for m. supinator in the flexion/supination-quadrant. For joint torques with mainly a flexion component, activation of subpopulations 1 and 3 leads automatically to a contribution by these muscles to supination torques as well. Because the total joint torque already has a small supination component, which is now mainly generated by m. biceps, the contribution from m. supinator has to be small. The slope of the recruitment line for m. supinator determines to what extent the relative contribution by m. supinator to the total supination torque in the elbow changes for variations in flexion torque superimposed on a supination torque. For these joint torques, the relative contribution from m. biceps subpopulations 1 and 2 to the supination torque and hence to the flexion torque in the elbow can increase.

Similarly, the maximal activity of motor units in subpopulations 1 and 3 of m. biceps is also determined by the slope of recruitment lines of motor units in m. pronator quadratus in the (F/P)-quadrant. Here m. biceps generates a mechanical contribution to supination torque when it is activated for flexion torques. This undesired supination torque has to be compensated for by m. pronator quadratus, which gives a lower recruitment threshold for pronation when flexion torques are involved. The flexion torque can be provided by m. biceps, m. pronator teres and m. brachioradialis. Given the contribution from m. biceps and m. pronator teres, the flexion torque which is not generated by these muscles must be generated by m. brachioradialis.

Without additional constraints, except for the requirement that all muscles must have an activation which is not negative, the three degrees of freedom in the solution space cannot be removed and within the solution space each solution is equally probable. Therefore, only ranges of relative contributions can be given. The ranges of relative contributions of the individual muscles to torques in pure flexion, supination, extension and pronation torques are given in Table 1. The main contribution (57-80%) to a pure flexion torque comes from motor units from subpopulation 1 in m. brachioradialis and m. brachialis. Subpopulation 2 in these muscles provides less than 4% of the total torque. Subpopulation 3 is not used at all. The subpopulations 1 and 3 in m. biceps brachii contribute 20-43% to flexion torque. (Subpopulation 2 is not activated for a torque without a supination component.) Subpopulation 2 in m. pronator teres is predicted to provide at most 2% of the flexion torque. The subpopulation 1 in m. pronator teres is not used at all. Supination torque is mainly provided by m. supinator (87-100%) and for a small part by m. biceps subpopulations 2 and 3. M. pronator quadratus generates 88-100% of the pronation torque. M. pronator teres 2 generates no more than 12% of the pronation torque. Because the maximal activation of m. triceps subpopulations 2 and 3 is determined by the activation of pronator teres 2 and by the activation of m. biceps (subpopulations 2 and 3), the contributions from these subpopulations to extension torque is limited to at most 34%. Subpopulation 1 in m. triceps generates the remaining 66-100% of the extension torque.

The standard deviation of the results in Table 1 depends both on the accuracy of the data presented by van Zuylen et al. (1988) as well as on the accuracy on the data on the relative lever arms of the bi-articular muscles, like m. biceps brachii and m. pronator teres. Numerical simulations showed that given the standard deviation in the data by van Zuylen et al. (1988), the standard deviation in the data shown in Table 1 is less or equal than 10% of the value presented in Table 1. If the results in Table 1 are used to predict joint torques, the error in the estimates was about 5% which indicates that the results of our approach may be helpful in estimating both muscle forces and joint torques.
Table 1. The ranges for the relative contributions of individual muscles and subpopulations of motor units within a muscle to the total elbow torque for pure flexion (F), supination (S), extension (E) and pronation (P). These estimates are based on recruitment data reported in van Zuylen et al. (1989).

<table>
<thead>
<tr>
<th>Muscles</th>
<th>F</th>
<th>S</th>
<th>E</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. biceps 1 + 3</td>
<td>20–43%</td>
<td>-</td>
<td>0–13%</td>
<td>-</td>
</tr>
<tr>
<td>M. biceps 2 + 3</td>
<td>-</td>
<td>-</td>
<td>0–13%</td>
<td>-</td>
</tr>
<tr>
<td>M. brachioradialis 1 + 2</td>
<td>57–80%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. brachioradialis 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. supinator</td>
<td>87–100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. triceps 1</td>
<td>66–100%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. triceps 2 + 3</td>
<td>0–34%</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M. pronator teres 1</td>
<td>-</td>
<td>-</td>
<td>0–12%</td>
<td>-</td>
</tr>
<tr>
<td>M. pronator teres 2</td>
<td>-</td>
<td>-</td>
<td>0–2%</td>
<td>-</td>
</tr>
<tr>
<td>M. pronator quadratus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>88–100%</td>
</tr>
</tbody>
</table>

DISCUSSION

In order to understand the coordination of muscle activation patterns several studies have proposed constraints, which give rise to a reduction of degrees of freedom (see Dul et al. 1984; Gielen and van Ingen Schenau, 1992; Yeo 1976). In this study we have chosen another approach in which we started from the experimental data on motor-unit recruitment behaviour. Based on these data, we have tried to estimate the relative contribution of muscles to joint torque.

Several attempts to estimate the relative contribution of muscles to the total torque in a joint have been reported, see e.g. Cnockaert et al. (1975), Jørgenson and Bankov (1971) and van Zuylen et al. (1988). Jørgenson and Bankov (1971) estimated the relative contribution based on the physiological cross-sectional area of the muscles. Because of the existence of multiple subpopulations of motor units within one muscle with different activation patterns (see e.g. van Zuylen et al., 1988), the physiological cross-sectional area may not be a good criterion for the estimation of the relative contribution from individual muscles to total joint torque.

Our approach is basically similar to that proposed by Cnockaert et al. (1975), who based their estimates on a linear relationship between the EMG activity from m. biceps and m. brachioradialis and elbow torque. The EMG activity of these muscles was measured under three conditions: flexion, flexion with supination and flexion with pronation. From these three conditions they constructed a matrix equation similarly to ours. Our method for estimating the relative contribution of individual muscles to the total joint torque using motor-unit data has advantages above previous methods. For example, it is difficult to measure EMG accurately and without crosstalk. Moreover, it contributes to the reduction of the effect of noise to construct an overdetermined matrix equation. The estimation by Cnockaert et al. for the relative contributions to the total flexion torque, which was based on the necessary (not overdetermined) number of data to solve the matrix equation, could differ by more than 40% due to variability in noise. These variations are substantially larger than the 10% standard deviation which we typically find. Also the method proposed by Cnockaert et al. (1975) for estimating the relative contribution from individual muscles to the total torque in a joint based on surface EMG, is limited in use if multiple subpopulations of motor units are active, because then the same amount of EMG, even without noise, can correspond to different torques. To correctly incorporate the activity from these subpopulations, intramuscular EMG activity has to be measured.

A comparison of the results obtained in this study with predictions of various models argues against some of these models. For example, the principle of minimum total muscle force (Yeo, 1976) can be eliminated as a principle to reduce the number of degrees of freedom. If such a model were to be used, then m. biceps should not be used for supination and flexion torques, since these torques require the activation of an extensor or pronator muscle, respectively, in order to compensate for the 'undesired' flexion and supination components, respectively, of m. biceps. The activation of these additional muscles increases total muscle torque. Moreover, the principle of minimum fatigue would predict that the activation of muscles with a similar fibre-type composition is the same. Based on the scarce data on the distribution of type I and type II fibres in elbow flexor muscles, we expect that the relative contribution of the flexor muscles is more or less proportional to the product of the muscle cross-sectional area and the mechanical advantage of each muscle. The relative contributions for m. biceps and for m. supinator to supination in Table 1 are not in agreement with such a principle. The results of Bouisset et al. (1976) that m. brachialis if the flexor 'par excellence' also argues against this hypothesis. The data in this paper do not allow yet to explain the constraints which underlie the activation of muscles in flexion/extension and supination/pronation direction. Analysis of similar data in more experimental conditions will be necessary to achieve this purpose.

Estimates of the relative contributions from individual muscles or subpopulations of muscles based on intramuscular EMG activity have been reported by van Zuylen et al. (1988). They assumed that the number of recordings of motor units belonging to one of the subpopulations in m. biceps and triceps brachii from which they obtained recordings, was a reliable estimate for the distribution of muscle fibres over the individual subpopulations. Furthermore, they assumed that the contribution of subpopulations is proportional to the number of muscle fibres in each of the subpopulations. The first assumption may be heavily biased because recordings from motor units near the boundaries of the muscle, where two subpopulations of motor units are located (see ter Haar Romeny et al., 1984), are difficult to obtain. However, the estimate of 38% made by van Zuylen et al. for the contribution of m. biceps to flexion torque falls well in the range for the estimated contribution of m. biceps which is predicted by our method (see Table 1).
The recruitment behaviour of m. pronator quadratus has not been measured directly. From this deep muscle no surface EMG recordings can be obtained. Intramuscular recordings are difficult to obtain because this muscle is thin. Because scratching of the bone underneath this muscle with a needle, while inserting the intramuscular electrodes, would cause some discomfort to the subject, no attempts have been made to record from this muscle. Therefore, we made an initial guess of the recruitment behaviour for m. pronator quadratus based on the behaviour of its antagonist m. supinator. For several variations on this initial guess, we constructed a matrix equation as described in the Theory and Results sections to make estimations of the relative contributions of individual muscles and subpopulations of motor units to the joint torque. For the recruitment behaviour shown in Fig. 2M the discrepancy between the externally required elbow torque and the sum of the individual contributions from muscles and subpopulations of motor units was virtually absent. Any deviations from this behaviour resulted in an increased discrepancy. This suggests that our assumption about the recruitment behaviour of motor units in m. pronator quadratus was quite plausible.

The methods outlined above cannot separate the contributions from subpopulations or muscles with the same recruitment behaviour and with the same activation pattern unless they have a distinctly different mechanical effect. For m. brachioradialis and m. brachialis the relative contributions from the individual muscles cannot be distinguished, because they show similar activation patterns (see e.g. Jongen et al., 1989). Only the combined contribution from these muscles could be estimated.

Finally, it should be mentioned that the results obtained in this study are valid only for isometric contractions. For other motor tasks, such as shortening or lengthening contractions, the relative activation of muscles is different (see Theeuwen et al., 1994b) and, as a consequence, the relative contribution of muscles to torque in these motor tasks will be different too. If data on motor-unit recruitment behaviour are available for these conditions, the relative contribution of the subpopulation can be estimated in a similar way as described above for the isometric condition. Moreover, the assumptions on which our method for estimating the relative contribution of muscles is based, is not applicable for large joint torques, when rate modulation becomes the major mechanism for force gradation.

Acknowledgements—This research was supported by the European Community in the ESPRIT BASIC RESEARCH Program MUCOM, project number 6615. We also gratefully acknowledge the support by the Dutch Foundation for Biophysics.

REFERENCES
The contribution of muscles to joint torque

