The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/23776

Please be advised that this information was generated on 2021-05-15 and may be subject to change.
measured resting MBF with positron emission tomography using either O-15 water or N-13 ammonia and the myocardial response to Dob (2.5 to 40 μg/kg/min) with transesophageal echocardiography in 15 patients (14 men; age 61 ± 9 years) with resting ejection fraction < 45% (mean: 30 ± 10%). Systolic wall thickening (SWT) and MBF were measured quantitatively in 8 anatomically matched myocardial segments in each patient. A total of 115 segments were available for analysis. SWT at rest ranged from −11% to 71% (mean ± sem = 11 ± 18%) and MBF from 0.17 to 1.7 ml/min/g (normal ≥ 0.6). Segments with normal MBF had significantly greater contraction at rest compared to those with reduced MBF (SWT: 29.4 ± 19% vs. 14.8 ± 18%; P < 0.0001). Furthermore, the inotropic response to Dob was also significantly greater in regions with preserved MBF (increase in percent SWT > 20%) was more likely in segments with normal MBF (51 of 72 [71%] vs. 14 of 43 [33%]; P = 0.0001). Thus, both resting myocardial contraction and the inotropic response to Dob are related to MBF. These findings suggest that reduced coronary blood flow is a determinant of myocardial contractile reserve in patients with CAD and LV systolic dysfunction.

907-55 Effect of Low-Density-Lipoprotein Apheresis on Coronary Anatomy and Regional Myocardial Blood Flow

Wim R. Aangevener, Abraham A. Kroon, Anien F. Stalenhoef, Gerard J. Uijen, Tjeerd van der Werf. Departments of Cardiology and General Internal Medicine, University Hospital Nijmegen, The Netherlands

In patients with coronary artery disease (CAD) and hypercholesterolemia progression of the disease is common. Patients with normal coronary anatomy (LCA- and RCA-arteries < 50% stenosis) were included. LDL-Apheresis over dextran sulphate columns is a very effective lipid-lowering therapy which might have an beneficial effect on coronary anatomy and physiology. Methods: In a randomized study we compared the effect of biweekly LDL- apheresis and simvastatin versus simvastatin alone. Patients with total cholesterol ≥ 8 mmol/l and severe CAD were included in the study, 21 in the LDL-apheresis (L) group and 21 in the medication (M) group. Mean segment diameter (MSD) and minimal obstruction diameter (MOD) were assessed by QCA before and after 2 years of therapy. The regional myocardial blood flow was assessed by digital subtraction angiography after i.e. papaverin with video-densitometric calculation of the hyperemic mean transit time (HMTT), which is a direct measure of MBF. Results: LDL-cholesterol decreased from 7.7 ± 1.9 mmol/l to a time averaged level of 2.95 ± 1.13 (−63%) in the L group and from 7.85 ± 2.34 mmol/l to 4.13 ± 1.58 mmol/l (−43%) in the M group. QCA revealed no differences in coronary anatomy either on a patient based or on a segment based comparison. Paired HMTT measurements were assessed in 43 regions in the L group and 35 regions in the M group. Baseline values for M and L group were not significantly different. In the L group HMTT decreased over 2 years in all regions from 3.35 ± 1.18 to 2.87 ± 0.82 ± (p < 0.01) versus an increase in the M group from 2.95 ± 1.06 to 2.95 ± 0.90 (NS). The HMTTs of the LAD, RCA and LCA region contributed to the same extent in the final result. Conclusions: LDL-apheresis compared to simvastatin alone lowered LDL-cholesterol significantly more. Both groups showed no change in coronary anatomy. However, regional myocardial blood flow improved in the L group. This functional enhancement is in accordance with previous reported results of exercise tests and may be a marker of recovery of endothelial function.

907-56 Recovery of Function After Revascularization Is Dependent on Preservation of Myocardial Blood Flow

Anastasia N. Kitsiou, Stephen L. Bacharach, Arshed A. Quyyumi, Ronald J. Uijen, Tjeerd van der Werf. Departments of Cardiology and General Internal Medicine, University Hospital Nijmegen, The Netherlands

The utility of myocardial blood flow (MBF) for the evaluation of recovery of function after revascularization (rev) has not been well studied. In this study, we determined whether MBF differentiates asynergic regions that improve post-rev (viable) from those that remain abnormal post-rev (nonviable). We studied 9 pts with chronic CAD who underwent pre-rev positron emission tomography (PET) at rest using N-13 ammonia and F-18 deoxyglucose (FDG), pre- and post-rev cycled magnetic resonance (MRA) and radionuclide angiography. Mean LVEF at rest increased from 31 ± 8% pre-rev to 54 ± 12% post-rev (p < 0.01) to 54 ± 12% post-rev (p < 0.01). Moreover, the inotropic response to Dob was significantly greater in regions with preserved MBF (increase in percent SWT > 20%) was more likely in normal MBF (51 of 72 [71%] vs. 14 of 43 [33%]; P = 0.0001). Thus, both resting myocardial contraction and the inotropic response to Dob are related to MBF. These findings suggest that reduced coronary blood flow is a determinant of myocardial contractile reserve in patients with CAD and LV systolic dysfunction.