Effects of high glucose on the production of heparan sulfate proteoglycan by mesangial and epithelial cells

NICOLE F. VAN DEullet, JACOB VAN DEN BORN, JOUKE T. TAMSMA, NICOLE A.M. VERHAGEN, JO H.M. BERDEN, JAN A. BRUIJN, MOHAMED R. DAHA, and FOKKO J. VAN DER WOUD

Departments of Nephrology, Endocrinology, and Pathology, University Hospital Leiden, Leiden, and Department of Nephrology, University Hospital Nijmegen, Nijmegen, The Netherlands

Effects of high glucose on the production of heparan sulfate proteoglycan by mesangial and epithelial cells. Changes in heparan sulfate metabolism may be important in the pathogenesis of diabetic nephropathy. Recent studies performed on renal biopsies from patients with diabetic nephropathy revealed a decrease in heparan sulfate glycosaminoglycan staining in the glomerular basement membrane without changes in staining for heparan sulfate proteoglycan-core protein. To understand this phenomenon at the cellular level, we investigated the effect of high glucose concentrations on the synthesis of heparan sulfate proteoglycan by glomerular visceral epithelial cells in vitro. Human adult mesangial and glomerular visceral epithelial cells were cultured under normal (5 mM) and high glucose (25 mM) conditions. Immunofluorescence performed on cells cultured in 25 mM glucose confirmed and extended the in vivo histological observations. Using metabolic labeling we observed an altered proteoglycan production under high glucose conditions, with a predominately a decrease in heparan sulfate compared to dermatan sulfate or chondroitin sulfate proteoglycan. N-sulfation analysis of heparan sulfate proteoglycan produced under high glucose conditions revealed less di- and tetrasaccharides compared to larger oligosaccharides, indicating an altered sulfation pattern. Furthermore, with quantification of glomerular basement membrane heparan sulfate by ELISA, a significant decrease was observed when mesangial and visceral epithelial cells were cultured in high glucose conditions. We conclude that high glucose concentration induces a significant alteration of heparan sulfate production by mesangial cells and visceral epithelial cells. Changes in sulfation and changes in absolute quantities are both observed and may explain the earlier in vivo observations. These changes may be of importance for the altered integrity of the glomerular charge-dependent filtration barrier and growth-factor matrix interactions in diabetic nephropathy.

Diabetic nephropathy (DN) affects approximately 30 to 40% of patients with type 1 diabetes mellitus [1, 2]. Histological hallmarks of this complication include glomerular basement membrane (GBM) thickening, mesangial expansion and sclerosis due to increased production of extracellular matrix (ECM). This increase in ECM is mainly due to an increased amount of collagen type IV, laminin and fibronectin, while heparan sulfate proteoglycan (HSPG) is relatively or absolutely decreased [3]. A decrease in negatively charged molecules within the glomerular basement membrane is thought to be responsible for the albuminuria seen in diabetic nephropathy [4]. HSPGs are believed to be important in this respect, since they consist of sulfate groups distributed along glycosaminoglycan side chains and these may, among other molecules, maintain the negative charge in the GBM [5-7]. HSPG is also an inhibitor of mesangial proliferation, an effect which is dependent on the charge distribution along the glycosaminoglycan (GAG) chains of HSPG [8-10]. Vernier et al [4] showed a reduction of HS associated anionic sites in the lamina rara externa and interna of the GBM in advanced diabetic nephropathy by ultrastructural analysis with cupricin blue staining. Removal of HSPG by digestion with heparitinase leads to increased permeability for both ferritin [6] and albumin [5], and injection of antibodies to HS leads to an acute selective proteinuria in rats [11]. Recent immunofluorescence studies by our group on renal biopsies from patients with DN revealed a decrease in HS staining intensity in the GBM without changes in HSPG-core protein staining [3]. Several studies in humans [12, 13] and models of experimental diabetes [14-17] have revealed changes in, or a decrease of, HS production in glomeruli. However, it still remains unclear whether these changes of HS are absolute or relative. Furthermore, it is unknown whether changes concerning the glycosaminoglycan part of the molecule or its sulfation occur. Since the glomeruli in the kidney consist largely of three cell types, that is, endothelial, epithelial, and mesangial cells, cultures of these cells could provide for a useful tool to investigate the proteoglycan production under high glucose conditions in vitro. We have recently shown that glomerular visceral epithelial cells (GVEC) and mesangial cells (MC) each have their characteristic pattern of proteoglycan production and differ in heparan sulfate quantity [18]. Especially, GVEC are thought to be important in this respect, since these cells are most likely the major source of proteoglycans incorporated in the lamina externa of the glomerular basement membrane [19].

We hypothesize that high glucose induces changes in HS production, that could differ between different cell types within the glomerulus. Therefore, we cultured GVEC and MC from human adult kidneys and investigated their proteoglycan production under normal and high glucose conditions. These studies were performed using immunofluorescence and metabolic labeling of the cells with both Na³⁵S_O₄ and ³H-glucosamine or Na³⁵S_O₄ and ³H-leucine, followed by extensive purification steps. Qualitative HS alterations (N-sulfation) were assessed by

Received for publication June 19, 1995
and in revised form November 1, 1995
Accepted for publication November 2, 1995
© 1996 by the International Society of Nephrology

1079
analyzing G-25 gel filtration profiles after HNO₂ (pH 1.5) treatment. Furthermore, an inhibition ELISA using monoclonal antibodies directed against GBM HS was used to measure quantitative differences in HS production.

Methods

Cell culture

MC and GVEC were cultured from glomeruli obtained from normal adult human kidneys that could not be used for transplantation because of anatomical reasons. Methods used to culture MC and GVEC have been published previously [18, 20, 21]. The cells were characterized by their morphology and characteristic immunofluorescence staining. In brief, MC were subcultured from "hillocks," usually appearing after three weeks of outgrowth of the glomeruli, in 24 well plates (Greiner, Frickenhausen, Germany) in DMEM supplemented with 10% heat-inactivated fetal calf serum (Δ FCS; Hyclone Laboratories Inc., Logan, UT, USA), trypsinized, and seeded into T 25 or T 75 flasks. GVEC were passaged immediately after outgrowing from the glomeruli (one week) using PBS-20 mM EDTA into a T 25 or T 75 flask and grown in DMEM with 5% Δ FCS. Characterization of MC was done on the basis of: (a) their cell morphology (multilayer, spindle shaped); (b) uniform fluorescence with FITC-phalloidin for actin and positive staining with monoclonal antibodies against vimentin; (c) absence of staining using monoclonal antibodies TN9, TN10 [22] and anti-von Willebrand factor, anti-cytokeratin and anti-desmin. The monoclonal antibodies TN9 and TN10 specifically recognize proximal tubular epithelial cells and GVEC [22], respectively, and were a gift of Drs. G. Müller and M. Nesper (Medizinische Klinik, Tübingen, Germany). Characterization of GVEC was done on the basis of: (a) their cell morphology (confluent monolayer of polygonal cells); (b) positive staining with monoclonal antibodies TN9, TN10 [22] and anti-von Willebrand factor, anti-cytokeratin and anti-desmin. The monoclonal antibodies TN9 and TN10 specifically recognize proximal tubular epithelial cells and GVEC [22], respectively, and were a gift of Drs. G. Müller and M. Nesper (Medizinische Klinik, Tübingen, Germany). Characterization of GVEC was done on the basis of: (a) their cell morphology (confluent monolayer of polygonal cells); (b) positive staining with monoclonal antibodies TN9, TN10 [22] and anti-von Willebrand factor, anti-cytokeratin and anti-desmin. Experiments were performed in "normal" (5 mM D-glucose); (b) 25 mM glucose; and (c) 25 mM L-glucose (osmotic control). After 24 hours the cell media were separated from the cells. The cells were washed three times with cold PBS and these washes were added to the cell media fraction. Cells were scraped into an extraction buffer using 4 mM guanidine HCl at 4°C with the following protease inhibitor cocktail: 10 mM EDTA and 5 mM phenylmethyl sulfonyl fluoride (PMSF), 2 mM benzamide, 50 mM e-aminocaproic acid, 0.5 U/ml aprotinin and 5 mM iodoacetic acid (all from Sigma, St. Louis, MO, USA). Both the cell media and cell extracts were extensively dialyzed against 0.5 M sodium acetate pH 5.8 with protease inhibitor cocktail at 4°C. The fractions were finally dialyzed against DEAE buffer containing 6 M urea, 50 mM Tris, 0.2% chaps with protease inhibitors cocktail, pH 7.0, and first separated on a 5 ml DEAE anion exchange chromatography column. For the second and final purification the labeled material was separated using HPLC with a DEAE anion exchange column (Biorad, Richmond, CA, USA). The bound material was eluted with an increasing NaCl gradient in DEAE buffer (0.1 to 1.0 M), at a flow rate of 1 ml/min, with 1.0 ml fractions collected. The conductivity of each fraction was measured using a CDM3 radiometer conductivity meter (Copenhagen, Denmark) and the 35S and 3H radioactivity were measured by adding aliquots of the fractions to a fluorophore Ultima Gold (Packard). The separation protocol resulted in different proteoglycan peaks. These peaks were eluted against distilled water, freeze dried and stored at -20°C until use. Characterization of the different macromolecules was performed as described previously [18]. Briefly, each of the pooled fractions were treated with 0.75 M NaOH and 20 mM sodium borohydride (NaBH₄) (alkaline β elimination) for one hour at 72°C [24] followed by separation on a Q50 size separation column.
run in 0.5 m sodium acetate buffer containing 0.2% chaps and protease inhibitor cocktail, pH 7.0. The G50 column was presaturated with 1 mg/ml heparin and 10 mg/ml bovine serum albumin (BSA). The void volume was tested for its sensitivity to chondroitinase ABC (Ch-ABC; 2.5 mU), chondroitinase AC (Ch-AC; 2.5 mU) and nitrous acid pH 1.5 (HNO₂) [25-27]. Identification of the 35S/3H glycosaminoglycans was determined by the following criteria: (a) molecules with sensitivity to HNO₂ pH 1.5 without sensitivity to Ch-ABC or Ch-AC are designated as heparan sulfate; (b) molecules with sensitivity to Ch-ABC without sensitivity to Ch-AC were designated as dermatan sulfate; and (c) molecules equally sensitive to both Ch-ABC and Ch-AC were referred to as chondroitin sulfate.

Distribution of oligosaccharides formed by nitrous acid cleavage

HSPG isolated from the cell media and cell extracts of GVEC were treated with papain (1 mg/ml) for 18 hours at 55°C, and subsequently heat inactivated at 100°C [28]. The material was centrifuged (3000 rpm) to spin down the papain. The supernatant was cleaved with HNO₂ at pH 1.5, and separated into di-, tetra-, and higher oligosaccharides by gel filtration on a G25 sephadex size separation column (0.95 x 100 cm) in 0.5 mM NH₄HCO₃ (2 ml/hr) [29].

Heparan sulfate ELISA

HSPG were detected using an inhibition ELISA with mouse monoclonal antibodies that specifically recognize GBM HS [30]. Cells were cultured in 12 well plates and starved overnight using DMEM with 0.5% A FCS to induce quiescence of the cells and to minimize the background determination in ELISA. Before and after each experiment cell numbers were determined in triplicate using a Coulter Counter (Coulter Electronics, Mijdrecht, The Netherlands). Cells were cultured for three days in a) DMEM with 0.5% A FCS, b) 25 mM glucose or c) 25 mM L-glucose (osmotic control). HS production of four different cell lines was measured in triplicate and expressed as µg/10⁶ cells/72 hours. Since MC and GVEC produce the complement component factor H, this molecule was used as a control for "normal protein" synthesis using a sandwich ELISA [31].

Statistical analysis

The data of control and experimental groups were expressed as means ± sd. For statistical analysis we used the Student's t-test for unpaired samples, and a P value < 0.05 was considered significant.

Results

Immunofluorescence

Immunofluorescence performed on normal cultured MC resulted in a primarily intracellular staining with an filamentous pattern using both anti-HS and anti-HSPG antibodies. This staining could be inhibited by addition of HS. Intensity of HS staining decreased significantly (P < 0.002) (exposure time (in seconds) 1.4 ± 0.01 to 3.3 ± 1.1) after culturing cells in 25 mM glucose, when compared to cells cultured in 5 mM glucose or 25 mM L-glucose (Fig. 1 A, C). In contrast, no difference of staining intensity was observed in 5 mM glucose and 25 mM glucose treated cells using anti-HSPG core antibodies (exposure time 9.6 ± 0.6 to 10.6 ± 1.3; Fig. 1 B, D). GVEC showed predominately intracellular staining for both antibodies. The intensity of HS staining after culturing these cells under high glucose (25 mM glucose) conditions was reduced (P < 0.02) (exposure time 45.5 ± 4.2 to 89.6 ± 10.5) when compared to normal (5 mM glucose) conditions (Fig. 2 A, C). Staining of the cells grown in 25 mM L-glucose did not result in a change of intensity. Also, staining of cells with anti-HSPG core antibodies did not show any difference irrespective of the glucose concentration (exposure time 48.6 ± 1.9 to 41.5 ± 3.4; Fig. 2 B, D)

Metabolic labeling

MC and GVEC were labeled as described in Methods. The cell media and cell extracts were harvested and the proteoglycans were purified as described. The chemical characterization of the different proteoglycans obtained, has been described previously [18]. Briefly, cell media of MC (Fig. 3 A-C) contained one glycoprotein and the proteoglycans HS (I) (51% of the total 35S-proteoglycan production) and dermatan sulfate (II) (49%). The cell extracts of these cells consisted of I) HS (58%) and dermatan sulfate (42%) (II) (Fig. 3 D-F). The cell media of GVEC (Fig. 4 A,B) consisted of three glycoproteins and the proteoglycans HS (I) (62%) and a hybrid molecule of both chondroitin sulfate and HS (38%)/II). The cell extracts contained the proteoglycans HS (I) (79%) and chondroitin sulfate (II)(21%) (Fig. 4 C,D). The nature of HSPG produced by GVEC and MC was studied in detail [18] and are important for the interpretation of this study. In brief, by SDS-PAGE we found a 400 kD core protein of HSPG isolated from both the cell media and cell extracts of GVEC. This molecular weight of 400 kD correlated well with the molecular weight of perlecann, the large basement membrane HSPG. Furthermore, expression of this type of HSPG was found using RT-PCR. Peak fractions containing HSPG (as documented by sensitivity to HNO₂ treatment) reacted positive in an ELISA system using antibodies recognizing perlecann. Finally, HSPG isolated from both the cell media and cell extracts of GVEC and MC were subjected to size separation chromatography using a HR 200 sephadex column (HPLC). HSPG isolated from GVEC and MC eluted at a Kav of 0.047 and 0.058, respectively, at which molecules with a molecular weight around 400 kD normally elute.

Absolute differences in proteoglycan production cannot be given with the methods used for isolation since we had to employ two purification steps, first a 5 ml DEAE column and finally a HPLC-DEAE column. The first purification gave variable recoveries. Therefore, we compared production of HS to other proteoglycans. This was done by determining the ratio of proteoglycan production of HS (peak I) over other proteoglycans (peak II). Culturing MC under high glucose conditions resulted in the following changes:

1. HPLC profiles of the cell media were altered (Fig. 3 A, B), as reflected by decreased Na₃SO₄ ratios and 3H glucosamine (peak I/I). Mean ratios of three experiments showed a 2.2-fold decrease for the Na₃SO₄ (1.1 ± 0.3 to 0.5 ± 0.1) and 2.3-fold decrease for ³H glucosamine (1.3 ± 0.3 to 0.6 ± 0.1) ratios (Table 1).

2. The HPLC profiles of the cell extracts changed (Fig. 3 D, E). The mean Na₃SO₄ ratio (peak I/I) did not change (1.4 ± 0.1).
to 1.3 ± 0.1 (N = 3), whereas the 3H glucosamine ratio (peak I/II) decreased 1.8-fold (1.2 ± 0.1 to 0.7 ± 0.2; Table 1).

When GVEC were cultured under high glucose conditions we observed the following changes:

(1) HPLC profiles of the cell media were not altered (Fig. 4 A, B). No significant changes were observed for the mean Na$_2^{33}$SO$_4$ (peak I/II) ratios (1.7 ± 0.3 to 1.5 ± 0.2) and the 3H glucosamine ratios (peak I/II; 1.8 ± 0.5 to 1.8 ± 0.6; Table 2).

(2) Analysis of the cell extracts of these cells revealed an alteration of the HPLC profile (Fig. 4 C, D). The three different cell lines behaved differently in this respect since the Na$_2^{33}$SO$_4$ ratio changed from 3.7 to 0.7, 3.9 to 2.6 or 1.1 to 0.6, respectively (Table 2). The 3H glucosamine (peak I/II) ratios changed from 3.8 to 0.8, 3.9 to 2.8 and 1.1 to 0.6 in the three cell lines that were tested.

To compare the effects of high glucose on changes in HS to HSPG core protein synthesis, we metabolically labeled the cells with Na$_2^{33}$SO$_4$ and 3H-leucine. Unfortunately, GVEC hardly incorporated 3H-leucine in the proteoglycans they produced (data not shown) as has been published previously [25]. Therefore, the profiles obtained from these experiments are only depicted for MC. Compared to controls, exposure of MC (Fig. 3C) to 25 mM glucose resulted in a 1.4-fold decrease in ratio of 3H-leucine HS/DS (peak I/II) from 1.5 to 1.1. The cell extracts (Fig. 3F) analysis revealed no change in 3H leucine HS/DS (peak I/II) ratio (1.1 to 1.1).

Distribution of oligosaccharides formed by nitrous acid cleavage

HS isolated from the cell media and cell extracts of GVEC grown in 5 or 25 mM glucose media were separated as described in methods. Nitrous acid treatment at pH 1.5 separated HS in di-(peak III), tetra-(peak II) and larger (peak I) oligosaccharides (Fig. 5). Peaks I, II and III were combined as shown in Figure 5 and analyzed for 3H glucosamine (Table 3). When no discernible peak was obtained we calculated the cpm in the fraction which eluted at the same Kav as the original peak fraction (represents molecules with the same molecular weight).

Around 66% of the 3H labeled HS isolated from the cell media of GVEC grown in 5 mM glucose cleaved into di- and tetrasaccharides, whereas 34% was either not cleaved or cleaved into larger fragments. HS obtained from GVEC (cell media) grown with 25 mM glucose resulted in a different cleavage pattern that is, di- and tetrasaccharides (51%) and larger fragments (49%). Nitrous acid treatment of HS obtained from the cell extracts of GVEC (5 mM) resulted in 55% di- and tetrasaccharides and 45% of larger oligosaccharides. HS obtained from the extract of high

Fig. 1. Immunofluorescence pattern of mesangial cells cultured under normal or high glucose conditions. Cells were grown on sterile coverslips, fixed with acetone and subsequently stained with either anti-HS monoclonal antibodies (a, control; c, 25 mM glucose) or with anti-HSPG-core polyclonal antibodies (b, control; d, 25 mM glucose). GAM IgM-FITC (e) and RAG IgG-TRITC (f) were used as negative controls.
Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations

Discussion

Production by GEC and WC.

ELISA. Therefore, we cannot provide data about the HSP core.

ELISA. For this reason, we measure HSP in the former part of the standard curve of the measurement ELISA. However, we measured core antibodies (JW and B3) [30]. Furthermore, we attempted to measure HSP core antibodies using an ELISA.

5 or 25% glucose.

In this study we analyzed whether higher glucose concentrations
Cells were grown on sterile glass coverslips, fixed with acetone and subsequently incubated with antibody to vimentin before immunofluorescence analysis (Fig. 2).
Fig. 3. HPLC-DEAE chromatography of Na$_2^{35}$SO$_4$ (A, D), 3H-glucosamine (B, E), and 3H-leucine (C, F) labeled macromolecules synthesized by human mesangial cells cultured under normal (---, 5 mM glucose) or high (-----, 25 mM glucose) conditions. Cells were labeled as described and the cell media and cell layers were harvested and extracted. The Figure shows the profile of the macromolecules from the cell media (A, B, C) and cell extracts (D, E, F) that were eluted with a NaCl gradient. The salt gradient is expressed in milliSiemens (-----, mS).

Injection of antibodies to HS leads acutely to a selective proteinuria in rats [11]. Furthermore, HSPG is known to be important in the self assembly and organization of the matrix in the GBM and mesangium. Reduction in the glomerular HSPG content may lead to an increased synthesis of extracellular matrix and thickening of the GBM [32].

Our data support the hypothesis that the diabetic milieu can change renal HS metabolism since high glucose conditions induced an altered HS production by both adult human MC and GVEC in vitro. This phenomenon was found using three different methods: immunofluorescence, metabolic labeling and quantification by ELISA. Immunofluorescence clearly showed a decreased staining of HS, for both MC and GVEC when grown under high glucose conditions, whereas staining for the HSPG core protein remained unchanged. These results were consistent with the in vivo histological observations in kidneys with diabetic
nephropathy [3,32]. Using the same antibodies, a decreased GBM HS staining was observed in biopsies from patients with overt diabetic nephropathy, while the staining for HSPG core remained unchanged. No differences in staining for HS or HSPG core were observed when cells were cultured with 25 mM D-glucose instead of 25 mM L-glucose. L-glucose is not taken up by cells, but does create the same high osmotic environment. The (unchanged) staining intensity was similar to that of cells grown in 5 mM D-glucose, and indicates that the observed changes were not due to an osmotic effect.

Table 1. Influence of high glucose (25 mM) on the production of heparan sulfate (HS) and dermatan sulfate (DS) by human mesangial cells both excreted (media) and cell associated (extract)

<table>
<thead>
<tr>
<th></th>
<th>5 mM Na₂³⁵SO₄</th>
<th>25 mM Na₂³⁵SO₄</th>
<th>5 mM ³H glucosamine</th>
<th>25 mM ³H glucosamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.9</td>
<td>0.5 (1.1)</td>
<td>1.2</td>
<td>0.6 (1.0)</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.6</td>
<td>1.1</td>
<td>0.7</td>
</tr>
<tr>
<td>3</td>
<td>1.4</td>
<td>0.5</td>
<td>1.6</td>
<td>0.5</td>
</tr>
<tr>
<td>Extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
<td>1.1 (1.1)</td>
<td>1.0</td>
<td>0.6 (1.1)</td>
</tr>
<tr>
<td>2</td>
<td>1.3</td>
<td>1.1</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.3</td>
<td>1.7</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Results are expressed as HS/DS ratios as assessed by Na₂³⁵SO₄ and ³H-glucosamine labeling.

* Concentration of glucose in culture medium

Table 2. Influence of high glucose (25 mM) on the production of heparan sulfate (HS) and chondroitin sulfate (CS) by human glomerular epithelial cells both excreted (media) and cell associated (extract)

<table>
<thead>
<tr>
<th></th>
<th>5 mM Na₂³⁵SO₄</th>
<th>25 mM Na₂³⁵SO₄</th>
<th>5 mM ³H glucosamine</th>
<th>25 mM ³H glucosamine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
<td>1.6</td>
<td>1.9</td>
<td>1.8</td>
</tr>
<tr>
<td>2</td>
<td>1.6</td>
<td>1.5</td>
<td>2.3</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>1.3</td>
<td>1.2 (1.1)</td>
<td>1.3</td>
<td>1.2 (1.1)</td>
</tr>
<tr>
<td>Extract</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.7</td>
<td>0.7</td>
<td>3.8</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>3.9</td>
<td>2.6</td>
<td>3.9</td>
<td>2.8</td>
</tr>
<tr>
<td>3</td>
<td>1.1</td>
<td>0.6 (1.1)</td>
<td>1.1</td>
<td>0.6 (1.3)</td>
</tr>
</tbody>
</table>

Results are expressed as HS/CS ratios as assessed by Na₂³⁵SO₄ and ³H-glucosamine labeling.

* Concentration of glucose in culture medium

To further investigate the effects of high glucose on the HSPG production compared to HS-GAG, we performed metabolic dual labeling with Na₂³⁵SO₄ and ³H-glucosamine, to investigate the effect of "high glucose" conditions on Na₂³⁵SO₄ compared to ³H-labeled glycosaminoglycan side chains, or with ³⁵S-sulfate and ³H-leucine to compare ³⁵S-labeled glycosaminoglycan side chains
to the 3H-labeled core protein. After separation of the proteoglycans by DEAE-anion exchange chromatography, we calculated the ratio of both Na$_2$SO$_4$ and 3H incorporation in HS/CSHS or HS/CS for GVEC and HS/DS for MC. With this method we observed no changes in HS secreted in the cell media by GVEC, as compared to the hybrid molecule (CSHS) for the Na$_2$SO$_4$ or 3H glucosamine ratios. For MC we observed a decrease in both HS/CS for GVEC and HS/DS for MC. With this method we found decreased HS/DS and HS/CS 3H glucosamine ratios, respectively, when analyzing the cell extracts. This overall decrease in ratio of HS compared to either DS or CS may indicate either: (a) an absolute decrease in HS production without affecting the DS or CS production; or (b) a decrease in HS and an increase in DS or CS production; or (c) unchanged HS production and increased DS or CS production. The decrease in 3H leucine HS/DS ratio observed when analyzing the cell media of MC is difficult to interpret since the HS/DS and HS/CS 3H glucosamine ratios, respectively, when analyzing the cell extracts. This observation is therefore in agreement with the unchanged 3H leucine HS/DS ratio in the cell extract, which contains both intracellular and extracellular components. The unchanged Na$_2$SO$_4$ and decreased 3H glucosamine ratios observed when analyzing the cell extracts of MC could indicate either an oversulfation of HS or undersulfation of DS.

Table 3. Distribution of oligosaccharides formed by nitrous acid cleavage

<table>
<thead>
<tr>
<th>Size class</th>
<th>Peaka</th>
<th>Cell media</th>
<th>Cell extract</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Di-</td>
<td>III</td>
<td>35</td>
<td>27</td>
</tr>
<tr>
<td>Tetro-H</td>
<td>II</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>Higher</td>
<td>I</td>
<td>34</td>
<td>49</td>
</tr>
</tbody>
</table>

*Heparan sulfate isolated from the cell media and cell extract of GVEC were cleaved by nitrous acid pH 1.5. The obtained fragments were separated by G25 gel filtration chromatography.

a Figure 5

Table 4. Production of heparan sulfate in four different cell lines of mesangial cells (MC) and visceral epithelial cells (GVEC), cultured under normal (5 mM) or high glucose (25 mM) conditions

<table>
<thead>
<tr>
<th>Cell line #</th>
<th>5 mMd</th>
<th>25 mMd</th>
<th>5 mMf</th>
<th>25 mMf</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3.89 ± 2.7</td>
<td>18.7 ± 2.8b</td>
<td>282.3 ± 88.3</td>
<td>124.3 ± 28.4c</td>
</tr>
<tr>
<td>2</td>
<td>40.7 ± 5.4</td>
<td>11.3 ± 3.0b</td>
<td>276.4 ± 43.9</td>
<td>123.0 ± 70.8d</td>
</tr>
<tr>
<td>3</td>
<td>29.8 ± 8.0</td>
<td>5.1 ± 2.1b</td>
<td>225.6 ± 10.9</td>
<td>115.4 ± 9.2b</td>
</tr>
<tr>
<td>4</td>
<td>35.2 ± 8.8</td>
<td>8.1 ± 2.8b</td>
<td>216.7 ± 38.0</td>
<td></td>
</tr>
</tbody>
</table>

Heparan sulfate was measured in the cell media using the heparan sulfate inhibition ELISA. HS concentration was measured in triplicate and expressed in μg/106 cells/72 hr.

a P < 0.01, b P < 0.002, c P < 0.02, d P < 0.05, e undetectable, f glucose concentration in medium

Heparan sulfate synthesized HS by MC was significantly decreased when cells were cultured in high glucose containing media as compared to control media. This decrease was observed in four different cell lines. For GVEC we observed a less pronounced, but also significant reduction in HS synthesis, when cells were grown in the presence of 25 mM glucose as compared to control media (5 mM glucose). The observed effect was not due to changes in cell numbers, since these did not differ significantly between "normal" and "high" glucose conditions, and furthermore, all HS levels were corrected for cell number. There were no differences in overall protein production as was shown using "factor H" ELISA and viability of the cells (LDH release). A dose response of glucose concentrations revealed a significant decrease in HS production when MC or GVEC were cultured in 15 mM or 10 mM glucose, respectively. Metabolic labeling of GVEC demonstrated that incorporation and excretion of proteoglycans can differ between cell lines which became apparent when we analyzed the cell extracts of these cells. The problem of metabolic labeling lies in the isolation procedures necessary to obtain the different proteoglycans. This makes estimates of quantities in absolute terms rather imprecise. We therefore focused in the metabolic studies on relative changes comparing HS with other glycosaminoglycans. Changes in terms of absolute quantities were only studied by HS ELISA, whereas metabolic labeling not only served as a useful tool to identify the different proteoglycans independently from immunological characterization studies, but also allowed us to study (1) changes in HS production compared with other proteoglycans produced and (2) ratios of sulfate and ELISA [30]. De novo synthesized HS by MC was significantly decreased when cells were cultured in high glucose containing media as compared to control media. This decrease was observed in four different cell lines. For GVEC we observed a less pronounced, but also significant reduction in HS synthesis, when cells were grown in the presence of 25 mM glucose as compared to control media (5 mM glucose). The observed effect was not due to changes in cell numbers, since these did not differ significantly between "normal" and "high" glucose conditions, and furthermore, all HS levels were corrected for cell number. There were no differences in overall protein production as was shown using "factor H" ELISA and viability of the cells (LDH release). A dose response of glucose concentrations revealed a significant decrease in HS production when MC or GVEC were cultured in 15 mM or 10 mM glucose, respectively. Metabolic labeling of GVEC demonstrated that incorporation and excretion of proteoglycans can differ between cell lines which became apparent when we analyzed the cell extracts of these cells. The problem of metabolic labeling lies in the isolation procedures necessary to obtain the different proteoglycans. This makes estimates of quantities in absolute terms rather imprecise. We therefore focused in the metabolic studies on relative changes comparing HS with other glycosaminoglycans. Changes in terms of absolute quantities were only studied by HS ELISA, whereas metabolic labeling not only served as a useful tool to identify the different proteoglycans independently from immunological characterization studies, but also allowed us to study (1) changes in HS production compared with other proteoglycans produced and (2) ratios of sulfate and ELISA [30]. De novo synthesized HS by MC was significantly decreased when cells were cultured in high glucose containing media as compared to control media. This decrease was observed in four different cell lines. For GVEC we observed a less pronounced, but also significant reduction in HS synthesis, when cells were grown in the presence of 25 mM glucose as compared to control media (5 mM glucose). The observed effect was not due to changes in cell numbers, since these did not differ significantly between "normal" and "high" glucose conditions, and furthermore, all HS levels were corrected for cell number. There were no differences in overall protein production as was shown using "factor H" ELISA and viability of the cells (LDH release). A dose response of glucose concentrations revealed a significant decrease in HS production when MC or GVEC were cultured in 15 mM or 10 mM glucose, respectively. Metabolic labeling of GVEC demonstrated that incorporation and excretion of proteoglycans can differ between cell lines which became apparent when we analyzed the cell extracts of these cells. The problem of metabolic labeling lies in the isolation procedures necessary to obtain the different proteoglycans. This makes estimates of quantities in absolute terms rather imprecise. We therefore focused in the metabolic studies on relative changes comparing HS with other glycosaminoglycans. Changes in terms of absolute quantities were only studied by HS ELISA, whereas metabolic labeling not only served as a useful tool to identify the different proteoglycans independently from immunological characterization studies, but also allowed us to study (1) changes in HS production compared with other proteoglycans produced and (2) ratios of sulfate and ELISA [30].
Fig. 6. The possible heterogeneity of sulfation along the HS-GAG side chains. Molecules depicted in A, B, and C may all function as building blocks of the side chain. N-sulfation as outlined in A, B, and C would result in di-, tetra- or larger saccharides as shown in Figure 5 as fractions III, II, and I, respectively. R = SO$_3^-$/H; R1 = 6 or more saccharide residues; * either iduronic or glucuronic acid.

Fig. 7. The effect of increasing concentrations of glucose on the production of heparan sulfate by (A) mesangial cells and (B) glomerular visceral epithelial cells. MC and GVEC were cultured with a dose response of glucose for three days, cell media was harvested and assessed in the heparan sulfate ELISA in triplicate.

Glucosamine incorporation [18]. This last parameter is of interest, since it has been shown that sulfation patterns of GAG side chains may be of significance for the specific interactions of proteoglycans with growth factors [33–35].

Therefore we also studied the heterogeneity in N-sulfation of the oligosaccharides in HS. HS molecules obtained from the cell media and cell extracts of GVEC grown in 5 or 25 mM glucose were cleaved with nitrous acid pH 1.5. Nitrous acid at pH 1.5 specifically cleaves HS in GlcNSO$_3$ residues. To illustrate the underlying mechanisms, relevant chemical structures are given in Figure 6. Disaccharides are obtained from regions of the polymer chain with contiguous N-sulfated disaccharides units, and tetrasaccharides are obtained from regions containing HNO$_2$-resistant GlcNAc residues [36]. Peaks I, II and III were combined as shown in Figure 5 and analyzed for 3H glucosamine (Table 3). The size distribution of oligosaccharides of HS obtained from GVEC grown in 25 mM glucose was different from those obtained from GVEC grown in 5 mM glucose. Therefore, we conclude that there is an altered N-sulfation pattern of heparan sulfate produced by GVEC under high glucose conditions.

The biosynthesis of HS is dependent on a variety of processes. The initiating and rate-limiting steps of these processes are the N-deacetylation and subsequently N-sulfation of N-acetylgalactosamine; thus, C5 epimerization of D-glucuronic acid to iduronic acid and the many O-sulfation reactions cannot occur until N-sulfation has been initiated [37]. The differences in N-sulfation are compatible with the idea that high glucose induces a change in N-deacetylase activity, a hypothesis which has also been suggested...
by others [38, 39]. Unger et al [39] observed that hepatocytes from streptozotocin-diabetic rats expressed less N-deacylation activity than control rats. Recent studies from Ishihara et al [36] demonstrated that heparan sulfate-N-deacylase/N-sulfotransferase (NSNAdcNST) catalyzes both the N-deacylation and N-sulfation of glucosamine residues in HS. The level of HS-NdAcNST expression is important in regulating the formation of large fully N-sulfated, highly O-sulfated domains in HS. These domains have high affinity for basic fibroblast growth factor (bFGF) and changes in these domains may therefore be important for cell growth and matrix production. Our results are compatible with the hypothesis that the HS produced under high glucose conditions might interact differently with growth factors because of an altered sulfation pattern.

So far, in vitro studies using metabolic labeling, revealed only changes of total labeled proteoglycan production by human fetal MC [40] or rat MC [41]. Studies utilizing metabolic labeling of streptozotocin-induced diabetic rats [14] with Na235SO4 revealed 30 to 40% decreased incorporation into the glomerular extracellular matrix when compared to control animals. Slibiger et al [41] investigated the total production of proteoglycans by rat MC under normal and high glucose conditions and found no differences. However, these findings could be due to a relative decrease in HS production and a relative increase in DS production, since the production of the individual components was not studied. To our knowledge, no data are available concerning the negative charge of human GBM-HSPG from patients with diabetic nephropathy or diabetes. In vivo evidence for an altered GAG synthesis and normal rates of HSPG core protein were described by our group [3, 32]. Data from experimental animals were published by several authors. Klein, Brown and Oegema [42] studied GBM-HSPG isolated from metabolically labeled glomeruli obtained from streptozotocin induced diabetic rats. This group found less 35S-proteoglycans in diabetics compared to control. A decrease of HSPG was only found in the rapidly metabolized pool of HS. However, no changes were found in the hydrodynamic size or charge of these molecules. Evidence for decreased synthesis of basement membrane-specific proteoglycans in diabetes also came from work of Rohrbach et al [15] showing that less HSPG was synthesized by BM-producing tumors (EHS) grown in diabetic mice despite an unchanged protein synthesis. No data concerning increased de novo synthesis of glomerular proteoglycans in diabetes: An epidemiologic study. Diabetologia 25:496–501, 1983

Acknowledgments

This study was supported by the Nierstichting Nederland (C 91 1082). Dr. J. van den Born and Prof. Dr. J.H.M. Berden are participants in a concerted action on alterations in ECM components in diabetic nephropathy which is supported by a grant from the EU Biomed 1 program (BMH1-C1792-1799). The authors thank Prof. Dr. R.W. Leid (Depts. of Veterinary Microbiology and Pathology, Washington State Univ., Pullman, WA, USA) for carefully reading this manuscript.

References

5. ROSENZWEIG LJ, KANWAR YS: Removal of sulfated (heparan sulfate) or non-sulfated (hyaluron acid) glycosaminoglycans results in increased permeability of the glomerular basement membrane to 125I-albumin. Lab Invest 47:177–184, 1982

Abbreviations

HS, heparan sulfate; HSPG, heparan sulfate proteoglycan; GAG, glycosaminoglycan; DN, diabetic nephropathy; MC, mesangial cells; GVEC, glomerular visceral epithelial cells; DMBE, Dulbecco's modified Eagle's medium.
van Det et al: Heparan sulfate metabolism