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Abstract
AvectorialModica–Mortola functional is considered and the convergence to a sharp interface
model is studied. The novelty of the paper is that thewells of the potential are not constant, but
depend on the spatial position in the domain �. The mass constrained minimization problem
and the case of Dirichlet boundary conditions are also treated. The proofs rely on the precise
understanding of minimizing geodesics for the degenerate metric induced by the potential.
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1 Introduction

Phase transitions phenomena are ubiquitous in nature. Examples are the spinodal decom-
position in metallic alloys, the change in the crystallographic structure in metals, the
order-disorder transitions, and the alterations of the molecular structures. In view of the
wide range of physical and industrial applications where phase transitions are observed, it
is of primary interest to understand the different mechanisms that govern these complex
processes. Many physical models have been proposed over the years to capture the behavior
of these phenomena and an enormous amount of insight has been gained by performing
analytical studies. For this reason, the theoretical investigation of phase transitions is still
currently an active field of research in the mathematical community. In the particular case
of liquid-liquid phase transitions, the preferred model was proposed by van der Waals (see
[61]) and was later independently rediscovered by Cahn and Hilliard (see [18]). This theory
revolves around the study of the so called Modica–Mortola energy functional (often referred
to as the Ginzburg–Landau free energy in the physics literature), which is the foundation of
the model we consider in this paper.

The primary focus of this work is the study of the �-convergence of the family of func-
tionals

Fε(u):=
∫

�

[
1

ε
W (x, u(x)) + ε|∇u(x)|2

]
dx,

where u ∈ H1(�;RM ), with M ≥ 1, and W : � × R
M → [0,∞) is a locally Lipschitz

potential such that, for all x ∈ �, W (x, p) = 0 if and only if p ∈ {z1(x), . . . , zk(x)}.
Here � denotes an open bounded subset of RN with Lipschitz continuous boundary and, for
i ∈ {1, . . . , k}, the zi : � → R

M are given Lipschitz functions.
Our main contribution is the treatment of the case M ≥ 2 for x-dependent wells, thus

providing a first vectorial counterpart to some of the results in [14,58], where moving wells
were considered in the scalar case. For the precise statement of our results we refer the reader
to Sect. 1.2.

1.1 Previous works

Denote by � ⊂ R
N the container of the material, and assume that the system is described

by a scalar valued phase (or order) parameter u : � → R, which for instance, in the case of
a mixture of two or more fluids, represents the density. Stable equilibrium configurations are
local minimizers of the Gibbs free energy. Under isothermal conditions, consider∫

�

W0(u(x)) dx, (1)

where the free energy density W0 : R → [0,∞) is taken to be non-convex in order to support
a phase transitions. If the material has two stable phases, the typical form of W0 is depicted
in Fig. 1. In many situations, the physical interpretation of the phase parameter naturally
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W

Fig. 1 On the left: the typical profile of the potential W0 together with its convex envelope; the region where
the two do not coincide is highlighted in red. On the right: the potential W , obtained by subtracting a linear
term with slope W ′

0(α) from W0 (color figure online)

imposes a constraint on the class of admissible functions for the minimization problem for
(1). If u represents a density, this often takes the form of a volume constraint, i.e.,∫

�

u(x) dx = m, (2)

for some m ∈ R. For W0 as in Fig. 1, let (α, β) be the interval where W0 does not coincide
with its convex envelope. To be precise, α and β are chosen to satisfy

W0(β) − W0(α) = W ′
0(α)(β − α), W ′

0(α) = W ′
0(β).

The numbers α, β, μ, where μ:=W ′
0(α), are called Maxwells parameters (see [37]). Notice

that if

m ∈
(
−∞, αLN (�)

)
∪
(
βLN (�),∞

)

then there is no phase transitions, in that solutions to theminimization problem for (1) subject
to the constraint in (2) are constant. Here LN (�) denotes the volume of the set �. Therefore,
we assume that

m ∈
(
αLN (�), βLN (�)

)

and restrict our attention to admissible functions u taking values in the interval [α, β]. Define
W (u):=W0(u) − W ′

0(α)(u − β) − W0(β).

Notice that W (α) = W (β) = 0, that W > 0 otherwise, and that, in view of the mass
constraint (2), replacing W0 with W in (1) changes the free energy only by a constant.

As previously remarked by several authors, an energy of the form (1) cannot properly
describe the physics of phase transitions. Indeed, given any region A ⊂ � with

LN (A) = β − m

β − α
LN (�),

the phase variable which takes the value α in A and β in�\ A satisfies the mass constraint (2)
and is a minimizer of the energy (1). This is not what it is observed in experiments, where for
stable configurations the two phases are separated by an interface with minimal surface area.
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Therefore, in order to capture this behavior, a term that penalizes the creation of interfaces
has to be added to the energy. Indeed, in the van der Waals–Cahn–Hilliard theory of phase
transitions the following functional is considered∫

�

[
W (u(x)) + ε2|∇u(x)|2] dx . (3)

One can justify heuristically the choice of the singular perturbation in (3) by considering
the idealized situation where the transition between the two phases takes place in a layer �ε ,
representing the diffuse separating interface. This is assumed to be an ε-tubular neighborhood
of an (N − 1)-dimensional surface �. In this case∫

�

[
W (u(x)) + ε2|∇u(x)|2] dx =

∫
�ε

[
W (u(x)) + ε2|∇u(x)|2] dx

∼ εHN−1(�)

[
1 + ε2

|β − α|2
ε2

]
, (4)

where the last estimate is obtained by assuming that both u and |∇u| are bounded. Here with
HN−1(�) we denote the surface area of �. Therefore, in order to have an energy of order 1
we need to rescale the functional by a factor of 1/ε. Hence we consider

Eε(u):=
∫

�

[
1

ε
W (u(x)) + ε|∇u(x)|2

]
dx . (5)

It was conjectured by Gurtin (see [38]) that in the limit as ε → 0, minimizers {uε}ε>0 of
(5) subject to the constraint (2) converge to a piecewise constant function u that partitions
� into two regions separated by an interface with minimal surface area. This conjecture was
proved rigorously by Carr, Gurtin, and Slemrod for N = 1 (see [19]), and by Modica (see
[49]) and Sternberg (see [58]) for N ≥ 2 (see also [51,52]), thus showing that the sharp
interface limit of the phase field model (5) provides the minimal interface criterion observed
in experiments. The mathematical framework used was that of �-convergence, a notion of
convergence introduced by De Giorgi and Franzoni in [25]. To be precise, it was proved that
the energy of the sequence {uε}ε>0 converges, as ε → 0, to

σHN−1(�), (6)

where � is an interface having minimal area, separating two regions whose volume is deter-
mined by the mass constraint (2) (which is preserved in the limit), and

σ :=2
∫ β

α

√
W (t) dt .

Observe that the factor σ represents the energy needed in order to have a phase transition,
and it is independent of the position and of the orientation of the interface. The value of σ

can be also characterized as

inf

{∫ ∞

−∞

[
W (γ (t)) + |γ ′(t)|2

]
dt : γ ∈ W 1,∞((−∞,∞)), lim

t→−∞ γ (t) = α, lim
t→∞ γ (t) = β

}
. (7)

Functions achieving the minimum in (7) are called heteroclinic connections between α and
β.

Let us remark that solutions to the minimal area problem enjoy some regularity properties:
the interior regularity was studied byGonzales,Massari, and Tamanini in [35], the behavior at
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the boundary of � was investigated by Grüter in [36], while the connectivity of the interface
was the focus of the paper [60] by Sternberg and Zumbrun.

After the early works mentioned above, the mathematical study of phase transitions has
flourished. Since the literature on this problem and its variants is vast, here we limit ourselves
at recalling only themain contributions that are close to the problemwe consider in this paper:
the static problem for first order phase transitions.

The case where the material has more than two stable phases requires vector-valued phase
variables u : � → R

M . Indeed, even if one considers a potential W : R → [0,∞) having
more than two wells, minimizers of (3) will converge to piecewise constant functions taking
only twovalues,which are selected by themass constraint.Akey ingredient in the treatment of
the vectorial case is the study of the relation between the value in (7) where the minimization
problem is suitably adapted to the vectorial case, and the geodesic distance between two of
the wells αi , α j ∈ R

M with respect to the metric induced by the degenerate conformal factor
2
√

W , namely

dW (αi , α j ) := inf

{∫ 1

−1
2
√

W (γ (t))|γ ′(t)| dt : γ ∈ W 1,∞((−1, 1);RM ),

γ (−1) = αi , γ (1) = α j

}
. (8)

The importance of this relation was first observed by Sternberg in [58] for the case of a
potential W vanishing on two disjoint closed simple curves inR2. The case of a phase variable
u : � → R

M and a potential supporting k = 2 stable phases was treated by Sternberg in [59]
when M = 2 and by Fonseca and Tartar in [33] when M ≥ 2, while the general case k ≥ 2
was investigated by Baldo in [11]. In these works the limiting energy is shown to be of the
form

k−1∑
i=1

k∑
j=i+1

HN−1(∂∗�i ∩ ∂∗� j )dW (αi , α j ), (9)

where α1, . . . , αk ∈ R
M denote the wells of the potential W , and�i ⊂ � is the region where

the phase variable u ∈ BV (�;RM ) takes the value αi . Here ∂∗�i denotes the essential
boundary of the set of finite perimeter �i (see Definition 2.14).

A further generalization was studied by Barroso and Fonseca in [12], where the authors
considered singular perturbations of the form h(x, ε∇u(x)) and vector-valued phase vari-
ables. Moreover, the fully coupled singular perturbations, i.e., Gibbs free energies of the
form

1

ε

∫
�

f (x, u(x), ε∇u(x)) dx, (10)

were the main focus of the work [55] by Owen and Sternberg in the scalar case and of [32] by
Fonseca and Popovici for vector-valued phase variables. For functionals defined as in (10),
the sharp interface limiting energy was shown to be of the form

k−1∑
i=1

k∑
j=i+1

∫
∂∗�i ∩∂∗� j

σ(x, ν(x)) dHN−1(x). (11)

In this case, if x is in the interface separating �i and � j and ν ∈ S
N−1, the energy density

σ is given by the so called cell problem

σ(x, ν):= inf
s>0

inf
v

{
1

s

∫
Qν

f (x, v(y), s∇v(y)) dy

}
,
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where Qν ⊂ R
N is a unit cube centered at the origin having two faces orthogonal to ν, and

the function v ranges among all Lipschitz functions taking the value αi on one of these two
faces, α j on the other one, and it is 1-periodic in the directions orthogonal to every other face
of the cube Qν .

The boundary of the container � could enter into play either via an interaction energy, or
by forcing the phase variable to assume a specific value (not necessarily corresponding to a
stable phase). The first case was studied by Modica in [50] where he considered the energy

Eε(u) +
∫

∂�

τ(Tr u(x)) dHN−1(x).

Here Eε is defined as in (5), τ : R → [0,∞) is a 1-Lipschitz function, and Tr u denotes the
trace of u on ∂�. The author showed that the sharp interface limit is given by (see (6))

σHN−1(�) +
∫

∂�

τ̂ (Tr u(x)) dHN−1(x),

where τ̂ is a modified contact energy (for a precise definition see [50, Equation (6)]). Owen,
Rubinstein, and Sternberg treated the case where admissible functions for the minimization
problem for (5) are constrained to satisfy a Dirichlet boundary condition u = gε on ∂� (see
[54]). The limiting problem was shown to be

σHN−1(�) +
∫

∂�

dW (Tr u(x), g(x)) dHN−1(x),

where gε → g in a suitable sense and the distance dW is the one induced by the degenerate
metric as in (8).

The case where the zero level set of W has a more complicated topology was considered
by several authors. The particular situation in which the potential vanishes on two disjoint
C1 curves in R

2 was considered by Sternberg in [58]. The case where the set Z of zeros of
W is a generic compact set in R

M was studied by Ambrosio in [5], where by considering
the canonical quotient space F of (RM , dW ), together with the canonical projection map
π : RM → F , the author was able to prove that the family of functionals in (5) �-converges
to ∫

Jπ(u)

dW
(
π(u+(x)), π(u−(x))

)
dHN−1(x). (12)

More recently, Lin, Pan, and Wang (see [47]) characterized the asymptotic behavior of
sequences of minimizers satisfying a Dirichlet boundary condition in the specific case where
Z is the union of two smooth disjoint manifolds N+, N− ⊂ R

M , under the assumption that

W (p):= f
(
d2(p, N+ ∪ N−)

)
, (13)

whered denotes the distance function, and f is smooth andbehaves linearly in a neighborhood
of the origin. Their proofs rely on the fact that geodesics for dW are shown to be segments
joining two points of minimal distance between N+ and N−.

There are physically relevant cases where the phase variable u is not expected to possess
derivatives; thus a different singular perturbation is needed. An example is the continuum
limit of the Ising spin system on a lattice, where u represents the magnetization density. In
this case the appropriate energy to consider is

1

ε

∫
�

W (u(x)) dx + 1

ε

∫
�

∫
�

1

εN
K

(
y − x

ε

)
|u(y) − u(x)|2 dx dy,
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where K is a ferromagnetic Kac potential, which is assumed to be nonnegative and integrable.
This energy was studied by Alberti and Bellettini in [1,2], where they proved that the discrete
nature of the problem does not affect the form of the limiting energy, which in turn was
shown to still be an anisotropic perimeter functional as in (11). Notice that the integrability
assumption on the potential K excludes the classical seminorm for fractional Sobolev spaces
W s,p(�) for 0 < s < 1 and p > 1. The one dimensional case for s = 1

2 and p = 2
was considered by Alberti, Bouchitté, and Seppecher in [3], where the authors identified the
�-limit of the family of functionals

λε

∫
I

W (u(x)) dx +
∫

I

∫
I

∣∣∣∣u(y) − u(x)

y − x

∣∣∣∣
p

dx dy.

Here I ⊂ R is a bounded interval and ελε → l ∈ (0,∞). The one dimensional case for
p > 2 was considered by Garroni and Palatucci in [34]. The �-convergence for the nonlocal
perimeter functional
∫

�

W (u(x)) dx + ε2s

2

∫
�

∫
�

|u(y) − u(x)|2
|y − x |N+2s

dx dy + ε2s
∫
RN \�

∫
�

∣∣∣∣u(y) − u(x)

y − x

∣∣∣∣
2

dx dy

in the case N ≥ 2 and s ∈ (0, 1) was studied by Savin and Valdinoci in [57].
The Euler–Lagrange equation for minimizers of the functional (5) subject to the mass

constraint (2) was investigated by Luckhaus and Modica in [48] (see [21] for the anisotropic
case). The authors considered the equation

2ε�u + 1

ε
W ′(u) = λε

where λε ∈ R is the Lagrange multiplier associated to the mass constraint, and proved that

λε → σ H , (14)

as ε → 0. Here H denotes the mean curvature of the limiting interface. Formula (14) is
known in the physics literature as the Gibbs-Thomson relation.

The minimal area interface principle serves as a first selection criterion to choose which
of the (infinitely many) minimizers of (1) is physically relevant. More refined information
can be obtained by considering the �-convergence expansion (see [9,16]) of the energy (3):

Eε = E(0) + εE(1) + ε2E(2) + . . . ,

where each E(i) is the �-limit of the family of functionals

E(i)
ε = E(i−1)

ε − inf E(i−1)

ε

and E(0)
ε :=Eε . The characterization of the functional E(1) was carried out by [9,10,13,19,24,

45,46] in several cases of interest.
Variants of phase transitions models of the form (5) could also be used to investigate more

intricate situations. For instance, the interaction between phase transitions and homogeniza-
tion phenomena is described by the functional

∫
�

[
1

ε
W
( x

ε
, u(x)

)
+ ε|∇u(x)|2

]
dx .

Here the periodic structure of the material is modeled by the periodicity of the function W
in the first variable. The sharp interface model was derived by Braides and Zeppieri in [17]
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for the one dimensional case N = 1 and by Fonseca, Hagerty, Popovici, and the first author
in [22] (see also [20]) for N > 1. When the homogenization takes place at the level of the
singular perturbation we refer to [7,8,27,28].

All the previous works are based on (variants of) model (5), which describes phenomena
where the system is assumed to be under isothermal conditions. There are physically rele-
vant situations however, where this is not the case. For instance, consider a homogeneous
mixture of a binary system in thermal equilibrium. If we quench the system below a critical
temperature, then we would expect phase separation. Since the quenching takes place over a
finite amount of time, the assumption of isothermal conditions is not plausible. In addition,
there are situations where the phase separation process can be directed by using an external
thermal activation (see [4] and the references therein). In all of these cases, the model (5) is
not adequate to describe the physics of the phenomenon. A system of evolution equations
aimed at modelling phase transitions under nonisothermal conditions was proposed by Pen-
rose and Fife in [56] and by Alt and Pawlow in [4]. The free energy they considered reads
as

∫
�

[
1

ε
W (T (x), u(x)) + εK (T (x))|∇u(x)|2

]
dx,

where T : � → R represents the temperature of the material (or any external field), and
K is a given positive function. Here the unknowns of the problem are both the temperature
distribution T and the phase parameter u. In particular, it could be the case where the wells
of W depend themselves on the temperature, and thus are not necessarily the same for all
points x ∈ �. The dependence of W on both of the unknowns poses analytical challenges.

In order to get some insight we assume the distribution of the temperature T to be given
a priori and K to be constant. These simplifications allow us to consider a free energy of the
form

Fε(u):=
∫

�

[
1

ε
W (x, u(x)) + ε|∇u(x)|2

]
dx, (15)

where the potential W : � × R
M → [0,∞) is such that W (x, p) = 0 if and only if p ∈

{z1(x), . . . , zk(x)}, and the zi : � → R
M are given functions representing the stable phases

of the material at each point x ∈ �.
The functional (15) was considered by Ishige in [40] (see also [39]) in the vectorial case,

i.e. M > 1, when k = 2 and z1, z2 are constants. To the best of our knowledge, there are only
two papers that considered the case where the functions zi are nonconstant: [58] by Sternberg
and [14] by Bouchitté. They both treated the scalar case, i.e. M = 1, with two moving wells.
A specific kind of potential in two dimensions is considered in the former work, while fully
coupled singular perturbations in general dimension are treated in the latter. More precisely,
in [14] the author considered an energy of the form

Gε(u):=1

ε

∫
�

f (x, u(x), εDu(x)) dx,

where f (x, u, 0) = 0 if and only if u ∈ {z1(x), z2(x)}. The wells z1 and z2 are allowed to
coincide in a subset of �. The limiting functional was shown to be

G0(u):=
∫

Ju

h(x, νu(x)) dHN−1(x),
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for u ∈ BVloc(�0), where �0:={x ∈ � : z1(x) �= z2(x)}, and ∞ otherwise in L1(�). Here,
for x ∈ � and ν ∈ S

N−1, we define

h(x, νu):= lim
r→∞ inf

γ

{∫ r

0
f (x, γ (t), γ ′(t)ν) dt

}
,

where the infimum is taken over all Lipschitz curves γ connecting z1(x) and z2(x). The
scalar nature of the problem allows to implement techniques that are purely one dimensional
and that cannot be adapted to the vectorial case.

In this paper we consider for the first time the energy (15) in the vectorial case, with
k ≥ 2, and for functions zi which are possibly nonconstant. In particular, we prove that any
sequence {uεn }n∈N ⊂ H1(�;RM ) such that

sup
{Fεn (uεn ) : n ∈ N

}
< ∞,

where εn → 0, converges (eventually extracting a subsequence) to a function u ∈
BV (�;RM ) of the form

u =
k∑

i=1

zi1�i .

Here {�1, . . . , �k} is a Caccioppoli partition of �. Moreover, the limiting sharp interface
energy is

k−1∑
i=1

k∑
j=i+1

∫
∂∗�i ∩∂∗� j

dW (x, zi (x), z j (x)) dHN−1(x),

where, for p, q ∈ R
M , dW (x, p, q) is the geodesic distance induced by the degenerate

conformal factor 2
√

W (x, ·). Notice that if the wells zi are independent of x we recover (9).
We refer to the next section for the precise statement of the results and for all the assumptions
we require.

1.2 Statement of themain results

Let� ⊂ R
N , N ≥ 2, be a bounded open set with Lipschitz continuous boundary. Throughout

the paper we make the following assumptions on the potential W .

H.1 W : � × R
M → [0,∞) is locally Lipschitz continuous, i.e., Lipschitz continuous on

every compact subset of � × R
M . Moreover, for every x ∈ �, W (x, p) = 0 if and only

if p ∈ {z1(x), . . . , zk(x)}, where the functions zi : � → R
M are Lipschitz continuous;

H.2 There exists δ > 0 such that

min
{|zi (x) − z j (x)| : x ∈ � and i �= j

} ≥ δ;
H.3 There exists r > 0 such that if p ∈ B(zi (x), r) then

W (x, p) = αi |p − zi (x)|2,
where αi > 0, for all i = 1, . . . , k and x ∈ �;

H.4 There exist R, S > 0 such that W (x, p) ≥ S|p|, for all x ∈ � and all p with |p| > R.

123



142 Page 10 of 62 R. Cristoferi, G. Gravina

Definition 1.1 For ε > 0, let Fε : L1(�;RM ) → [0,∞] be the functional defined via

Fε(u):=

⎧⎪⎪⎨
⎪⎪⎩

∫
�

[
1

ε
W (x, u(x)) + ε|∇u(x)|2

]
dx if u ∈ H1(�;RM ),

∞ otherwise in L1(�;RM ).

In order to define the limiting functional, we need to introduce some notation.

Definition 1.2 For p, q ∈ R
M consider the class

A(p, q):=
{
γ ∈ W 1,1((−1, 1);RM ) : γ (−1) = p, γ (1) = q

}
(16)

and let dW : � × R
M × R

M → [0,∞) be the function defined via

dW (x, p, q):= inf

{∫ 1

−1
2
√

W (x, γ (t))|γ ′(t)| dt : γ ∈ A(p, q)

}
. (17)

It is immediate to verify that for all x ∈ �, the function dW (x, ·, ·) : RM × R
M →

[0,∞) defines a distance on R
M . The existence of solutions to the minimization problem

(17), referred to as minimizing geodesics throughout the paper, is a classical problem which
has been the subject of investigation of several studies. Since our proofs rely on a precise
understanding of the dependence of minimizing geodesics on the variable x , our approach
(see Proposition 3.2) requires more stringent assumptions on W than the ones required by
Zuniga and Sternberg in [62, Theorem 2.5] (see also [53]), and is in spirit closer to the work
of Sternberg [59].

We can now define our limiting functional. For all the relevant definitions we refer the
reader to Sect. 2 (see, in particular, Definition 2.9).

Definition 1.3 Set

BV (�; z1, . . . , zk):=
{

u ∈ BV (�;RM ) : u(x) ∈ {z1(x), . . . , zk(x)} for LN -a.e. x ∈ �
}

,

and let F0 : L1(�;RM ) → [0,∞] be the functional defined via

F0(u):=

⎧⎪⎪⎨
⎪⎪⎩

∫
Ju

dW (x, u+(x), u−(x)) dHN−1(x) if u ∈ BV (�; z1, . . . , zk),

∞ otherwise in L1(�;RM ).

Throughout the rest of the paper we fix {εn}n∈N ⊂ (0,∞) with εn → 0 as n → ∞, and
we write Fn for Fεn . We are now in position to state our main result.

Theorem 1.4 Let W be given as in (H.1)–(H.4) and let {un}n∈N ⊂ H1(�;RM ) be such that

sup {Fn(un) : n ∈ N} < ∞.

Then, eventually extracting a subsequence (not relabeled), we have that un → u in
L1(�;RM ), where u ∈ BV (�; z1, . . . , zk) is such that F0(u) < ∞. Moreover, the sequence
of functionals Fn �-converges with respect to the L1-topology to F0.

The proofs we present are robust and can be adapted to work also for several variants of
the problem. In this paper we focus on two of these: the mass constrained problem and the
case of Dirichlet boundary conditions.
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Fix M = (m1, . . . , mM ) ∈ R
M in such a way that

min
1≤i≤k

∫
�

z j
i (x) dx ≤ m j ≤ max

1≤i≤k

∫
�

z j
i (x) dx

for every j = 1, . . . , M , where z j
i (x) denotes the j th component of zi (x).

Theorem 1.5 Let W be given as in (H.1)–(H.4) and let M ∈ R
M be as above. For n ∈ N,

let

FM
n (u):=

⎧⎨
⎩

Fn(u) if u ∈ H1(�;RM ) with
∫
�

u(x) dx = M,

∞ otherwise in L1(�;RM ).

Then the followings hold:

(i) if {un}n∈N ⊂ H1(�;RM ) is such that

sup{FM
n (un) : n ∈ N} < ∞,

then, eventually extracting a subsequence (not relabeled), we have that un → u in
L1(�;RM ), where u ∈ BV (�; z1, . . . , zk) is such that FM

0 (u) < ∞. Here the func-
tional FM

0 is defined via

FM
0 (u):=

⎧⎨
⎩

F0(u) if u ∈ BV (�; z1, . . . , zk) with
∫
�

u(x) dx = M,

∞ otherwise in L1(�;RM ).

(ii) The sequence of functionals FM
n �-converges with respect to the L1-topology to FM

0 .

Using the results in [41], we deduce the following corollary.

Corollary 1.6 Under the assumptions of Theorem 1.5, let u0 ∈ BV (�; z1, . . . , zk) be an
L1-isolated local minimizer for FM

0 , namely there exists λ > 0 such that

FM
0 (u0) < FM

0 (v)

for all v ∈ L1(�;RM ) with 0 < ‖v − u0‖L1(�;RM ) < λ. Then there exists {un}n∈N ⊂
H1(�;RM ) where each un is an L1-local minimizer for FM

n , such that un → u0 in
L1(�;RM ).

Next, we consider the case where a Dirichlet condition is imposed on the boundary of �.

Theorem 1.7 Let W be given as in (H.1)–(H.4) and fix g ∈ Lip(∂�;RM ) with

min{|zi (x) − g(x)| : x ∈ ∂�, i ∈ {1, . . . , k}} ≥ δ.

For n ∈ N define

FD
n (u):=

⎧⎨
⎩

Fn(u) if u ∈ H1(�;RM ) with Tr u = g on ∂�,

∞ otherwise in L1(�;RM ).

Then the followings hold:
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(i) if {un}n∈N ⊂ H1(�;RM ) is such that

sup
{
FD

n (un) : n ∈ N

}
< ∞,

then, eventually extracting a subsequence (not relabeled), we have that un → u in
L1(�;RM ), where u ∈ BV (�; z1, . . . , zk) is such thatFD

0 (u) < ∞. Here the functional
FD
0 is defined via

FD
0 (u):=F0(u) +

∫
∂�

dW (x,Tr u(x), g(x)) dHN−1(x).

(ii) The sequence of functionals FD
n �-converges with respect to the L1-topology to FD

0 .

1.3 Sketch of the strategy

Despite the fact that the strategy we have to follow is clear, the path to the proof of the main
result (Theorem 1.4) is studded with technical difficulties.

First of all, we comment on the compactness result. For clarity of exposition, assume that
k = 2, i.e., there are only two wells, namely z1, z2. From the energy bound and Young’s
inequality we get

sup
n∈N

∫
�

2
√

W (x, un(x))|∇un(x)| dx ≤ sup
n∈N

Fn(un) < ∞.

In the case where W is independent of x , and thus z1, z2 are constant, the proof originally
proposed by Modica in [49] (see also [33]) proceeds as follows: it can be checked that

sup
n∈N

|D(w ◦ un)|(�) ≤ sup
n∈N

∫
�

2
√

W (x, un(x))|∇un(x)| dx, (18)

where w(p):=dW (p, z1), and therefore the BV -compactness implies that w ◦ un → w ◦ u
in L1(�), where w ◦ u ∈ BV (�). From this, one can then deduce that u ∈ BV (�) and that
it only takes the values z1, z2. In our case, since W depends on x , instead of (18) we get

sup
n∈N

∫
�

∣∣∇y gn(x, x)
∣∣ dx ≤ sup

n∈N

∫
�

2
√

W (x, un(x))|∇un(x)| dx,

where

gn(x, y):=dW (x, z1(x), un(y)) .

Therefore, in order to apply BV -compactness for the sequence of functions {gn}n∈N, we
need a control on the other derivatives as well. Notice that this does not come from the
energy bound, and is achieved by showing that the function x �→ dW (x, p, q) is Lipschitz
continuous for every p, q ∈ R

M (see Corollary 3.5).We prove this by first deriving a uniform
upper bound on the Euclidean length of minimizing geodesics for our degenerate metric (see
Proposition 3.2); we discuss this at the end of this section.

Here a note is a must. To the best of our knowledge, the strategy that we summarized
above is the way to get compactness for this kind of problems. Indeed, in every papers that
treated the issue (see, for example, [12,32,33]), suitable assumptions are required in order to
use the argument described above.

We remark that in [11] it was assumed that (for a potential W independent of x)

W (p) ≥ sup
K

W (19)
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for every p /∈ K , where K :=[k1, k2]M . SinceW is continuous, (19) implies thatW is constant
on ∂K , which is a rather restrictive assumption on W . Moreover, since for M > 1 the space
H1(�;RM ) is not closed under truncation, we instead replace (19) with (H.4) and consider
projections rather than truncations in order to reduce to a sequence {un}n∈N bounded in
L∞(�;RM ) (see Step 2 in Proposition 4.1).

The strategy we use to prove the liminf inequality is the blow-up method introduced
by Fonseca and Müller in [31]. To summarize the argument it is not restrictive to assume
that � = Q ⊂ R

N is the unit cube with faces orthogonal to the coordinate axes and that
u ∈ BV (�;RM ) is defined via

u(x):=
{

z1(x) if xN < 0,
z2(x) if xN ≥ 0.

Let {ρm}m∈N ⊂ (0, 1) be such that ρm → 0, and consider the rescaled cubes Qρm :=ρm Q.
Let {un}n∈N be a sequence of functions in H1(�;RM ) such that un → u in L1(�;RM ). For
the sake of the argument, assume in addition that un(x) = z1(x) if xN = −ρm/2, and that
un(x) = z2(x) if xN = ρm/2. Our aim is to show that

lim
m→∞ lim inf

n→∞
1

ρN−1
m

∫
Qρm

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx ≥ dW (0, z1(0), z2(0)).

(20)
Since the map x �→ W (x, p) is continuous, by an application of Young’s inequality and
Tonelli’s theorem one expects to obtain

1

ρN−1
m

∫
Qρm

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx

≥ 1

ρN−1
m

∫
Qρm

2
√

W (x, un(x))|∇un(x) · eN | dx

∼
∫ 1

−1
2
√

W (0, un(0′, t))|∇un(0′, t) · eN | dt

≥ dW (0, z1(0), z2(0)),

where in the previous to last line we used the notation (0′, t) = (0, . . . , 0, t) ∈ R
N , for

t ∈ R. One possible way make this heuristics rigorous is the following:

1

ρN−1
m

∫
Qρm

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx

≥ 2

ρN−1
m

∫
Q′

m

∫ 1

−1

√
W ((x ′, ρms), ũn(x ′, s))|∇ũn(x ′, s) · eN | ds dx ′

where Q′
ρm

:={x ′ : (x ′, 0) ∈ Qρm } and ũn(x ′, s):=un(x ′, ρms). To conclude, one would need
to prove that the function

x ′ �→ inf

{∫ 1

−1
2
√

W ((x ′, ρms), γ (s))|γ ′(s)| ds : γ ∈ A(z1(0), z2(0))

}
(21)

is continuous. Notice that the minimization problem on the right-hand side of (21) is signifi-
cantly different from the geodesic problem (17), in that in (21) the conformal factor depends
also on the variable of integration s. One way to prove the continuity is to show that curves
solving that minimization problem have uniformly finite Euclidean length (or at least that
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there exists one such curve enjoying this property) and then exploit the Lipschitz continuity
of W . However, in the present work we choose to reason as follows. Define

Fm(p):=min
{
2
√

W (x, p) : x ∈ Qρm

}
.

Then one can show that

1

ρN−1
m

∫
Qρm

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx ≥ dFm (z1(0), z2(0)),

where

dFm (p, q):= inf

{∫ 1

−1
Fm(γ (t))|γ ′(t)| dt : γ ∈ A(p, q)

}
. (22)

With this in hand, to conclude (see (20)) it is sufficient to show that

lim
m→∞ dFm (z1(0), z2(0)) = dW (0, z1(0), z2(0)).

Notice that the function Fm vanishes on the set

Z =
k⋃

i=1

zi (Qrm ).

In view of (H.2), we can assume m large enough so that the sets zi (Qrm ) are pairwise
disjoint. Let us remark that the advantage to work with (22) instead of (21) is that the
latter is a purely geometric problem, i.e., the functional that we aim at minimizing does not
depend on the specific choice of the parametrization. We are able to prove an explicit upper
bound on the Euclidean length of certain solutions to the minimization problem in (22) (see
Proposition 3.2). Furthermore, since the only property of Z that is needed in the proof is
that it is the union of the images of a compact convex set through the zi ’s, the argument also
works for the case where Z = {z1(x), . . . , zk(x)} for some x ∈ �. The strategy we use is the
following. First of all, we show that the specific behavior of the potential in a neighborhood
of the wells yields

Fm(z) = 2
√

αi di (z) (23)

if z ∈ R
M is sufficiently close to Z , where di (z) denotes the distance between z and zi (Qρm ).

Given p, q ∈ R
M we want to show that solutions to (22) have uniformly finite Euclidean

length. We only discuss the case where p and q belong to a neighborhood of zi (Qρm ) for
some i ∈ {1, . . . , k} since the general case will be obtained by using the upper bound for
each i ∈ {1, . . . , k} and (H.4) to get an upper bound of the length of geodesics outside of
these neighborhoods. We consider three cases:

(i) If p, q ∈ zi (Qρm ), then a minimizing geodesic is simply given by the image through
zi of a segment connecting two points in z−1

i ({p}) and z−1
i ({q}) respectively;

(i i) If p ∈ zi (Qρm ) and q /∈ zi (Qρm ), let us denote by q ′ one projection of q on zi (Qρm ).
Then the curves obtained by first connecting q and q ′ with a segment and then q ′
and p with a curve in zi (Qρm ) is a solution to the minimization problem in (22). The
proof of this uses the co-area formula and that each curve connecting p and q must
traverse every level set of di lower than di (q). This latter fact follows by using (23);

(i i i) If p, q /∈ zi (Qρm ) we are able to prove the existence of a minimizing geodesic
γ ∈ A(p, q) with the property that

L(γ ) ≤ |p − p′| + |q − q ′| + Lip(zi )diam(Qρm ).
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Here L(γ ) is the Euclidean length of γ , and p′ and q ′ denote projections on zi (Qρm )

of p and q , respectively.

Next, we would like to comment on a hypothesis used to get the liminf inequality in the
work [40] by Ishige. There the author considered potentials W : � × R

M → [0,∞) such
that, for all x ∈ �, W (x, p) = 0 if and only if p ∈ {α, β}, for fixed α, β ∈ R

M and satisfy
the following property: for each λ1 > 0 there exists λ2 > 0 such that for all p ∈ R

M it holds

∣∣∣√W (x, p) −√
W (y, p)

∣∣∣ ≤ λ1
√

W (x, p) (24)

whenever |x − y| ≤ λ2. As remarked in [40], (24) is satisfied if, for example, W (x, p) =
h(x)U (p), with h > 0. We notice that assumption (24) does not hold even in the simple case
of a single moving well. For this reason one cannot immediately adapt the proof in [40] to
our case.

The construction of the recovery sequence is carried out as follows. Thanks to Lemma 4.4
we can assume

u =
k∑

i=1

zi1�i

where {�1, . . . , �k} is a Caccioppoli partition of � and ∂�i ∩ � is contained in a finite
union of hyperplanes, for each i = 1, . . . , k. For the sake of exposition, we just discuss how
to build the recovery sequence in a neighborhood of a connected component � of ∂�i ∩ �

contained in an hyperplane. Without loss of generality, we can assume that � ⊂ {xN = 0}.
The quantity we want to approximate is

∫
�

dW (x, u−(x), u+(x)) dHN−1(x).

Tofix the ideas, let us assume that u−(x) = z1(x), and u+(x) = z2(x) for all x ∈ �. Consider
a grid of (N − 1)-dimensional cubes Q′(yi , rn) ⊂ {xN = 0} ∼ R

N−1 of side length rn > 0
and center yi ∈ {xN = 0}. Identify a point x ∈ R

N with the pair (y, t) where y ∈ R
N−1

and t ∈ R. Since the map x �→ dW (x, z1(x), z2(x)) is continuous (see Corollary 3.5), it is
enough to approximate

∑
i

dW (yi , z1(yi ), z2(yi ))HN−1(Q′(yi , rn)).

The advantage of considering this discretization is the following: for each (y, t) ∈
Q′(yi , rn) × (0, τn), for some τn > 0 with τn → 0 as n → ∞, we can simply consider
a suitable reparametrization of a geodesic γi ∈ A(z1(yi ), z2(yi )) for dW , instead of taking
a different geodesic for each x ∈ Q′(yi , rn). This comes at the cost of having to perform
two gluing constructions in order for the function we define to have the required regularity
H1(�;RM ). The first one is to use cut-off functions to transition between the geodesics
considered in each adjacent cube. The second one is to match the value zi (yi ) with zi (y, τn).
This will be done by using a linear interpolation. The technical difficulty is to show that the
energy contribution of these gluing constructions is asymptotically negligible.
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1.4 A discussion on the assumptions

It is immediate to verify that in view of (H.1), (H.3), and (H.4), there exists a positive number
η such that

W (x, p) ≥ η for all (x, p) ∈ � ×
(
R

M \
k⋃

i=1

B(zi (x), r/2)

)
. (25)

Let us mention here that while assumption (H.4) is required in order to obtain compactness
of sequences with uniformly bounded energies, it is possible to prove the �-convergence
results of Sect. 1.2 by assuming (H.1)–(H.3), and (25) in place of (H.4). We refer the reader
to Sect. 5.4 for more details.

Finally, we notice that (H.2), (H.3), and (25) are only needed in oder to obtain the results
of Sect. 3 (see Proposition 3.2 and Corollary 3.5). If the results of Sect. 3 could be obtained
with weaker assumptions than (H.2) and (H.3), then the statements and the proofs of the
main results would require a few adjustments, as we explain below. First of all, we notice
that (H.2), (H.3), and (25) imply that

dW (x, zi (x), z j (x)) ≥ C > 0

for all i �= j ∈ 1, . . . , k and x ∈ �. Therefore, the functional F̃0 : L1(�;RM ) → [0,+∞]
defined as

F̃0(u):=

⎧⎪⎪⎨
⎪⎪⎩

∫
Ju

dW (x, u+(x), u−(x)) dHN−1(x) if u(x) ∈ {z1(x), . . . , zk(x)} for LN -a.e.x ∈ �,

∞ otherwise in L1(�;RM ),

is finite only if u ∈ BV (�; z1, . . . , zk) withHN−1(Ju) < ∞. In particular, it coincides with
F0 (see Definition 1.3). Notice that F̃0 is well defined since Ju is countablyHN−1-rectifiable
for all u ∈ L1

loc(�;RM ) (see [26]). On the other hand, if (H.2) does not hold, i.e., if

min
{|zi (x) − z j (x)| : x ∈ �, i �= j

} = 0,

then there could exist u ∈ L1(�;RM ) such that F̃0(u) < ∞, but u is not of bounded
variation, as the following remark shows.

Remark 1.8 Take N = M = k = 2, � = (−1, 1)2, W (x, p):=|p − z1(x)|2|p − z2(x)|2,
where

z1(x1, x2):=(x1, 0), z2(x1, x2):=
{

(x1, x21 ) if x1 ≥ 0,
(x1, 0) if x1 < 0.

Notice that W satisfies (H.1), (H.3), and (H.4), but not (H.2). Let f (t):= sin
(
t−2

)
, and

consider the function

u(x1, x2):=
{

z1(x) if x2 < f (x1),
z2(x) if x2 ≥ f (x1).

Fix x = (x1, x2) ∈ � with x1 > 0 and let γ : [−1, 1] → R
2 be the curve given by

γ (t):=
(

x1,
t + 1

2
x21

)
.
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As one can readily check, γ ∈ A(z1(x), z2(x)) and

dW (x, z1(x), z2(x)) ≤
∫ 1

−1
2
√

W (x, γ (t))|γ ′(t)| dt ≤ x61 .

Therefore, by means of a direct computation we see that

F̃0(u) ≤
∫ 1

0
x61

√
1 + | f ′(x1)|2 dx1 < ∞,

while on the other hand we have

∫
Ju

|z1(x) − z2(x)| dH1(x) =
∫ 1

0
x21

√
1 + | f ′(x1)|2 dx1

≥
∫ 1

0
x21 | f ′(x1)| dx1 =

∫ ∞

1

| cos(t)|
t

dt ≥
∞∑

n=1

∫ 3π
4 +2πn

π
4 +2πn

1

2t
dt = ∞.

Consequently, F̃0(u) < ∞, but u is not of bounded variation. Moreover, notice that the jump
set of the function u is not the boundary of a partition of �.

Theorem 1.9 Let W be given as in (H.1) and (H.4), and assume that the conclusions of
Proposition 3.2 and Corollary 3.5 hold true. Then the following hold:

(i) if {un}n∈N ⊂ H1(�;RM ) is such that

sup {Fn(un) : n ∈ N} < ∞,

then, eventually extracting a subsequence (which we do not relabel), we have that un → u
in L1(�;RM ), where u is such that u(x) ∈ {z1(x), . . . , zk(x)} for LN -a.e. x ∈ �, and
F̃0(u) < ∞.

(ii) The sequence of functionals Fn �-converges with respect to the L1-topology to F̃0.

1.5 Outline of the paper

The paper is organized as follows. In Sect. 2 we introduce the notation and we recall the
definitions of themathematical objectswewill need for our analysis. The Lipschitz continuity
of the function x �→ dW (x, zi (x), z j (x)) is shown in Corollary 3.5. The proof makes use
of a result obtained in the first part of Sect. 3, namely the fact that geodesics for dW (and
also for more degenerate conformal factors) joining two points in a compact subset of RM

have uniformly bounded Euclidean lenght (see Proposition 3.2). The proof of Theorem 1.4 is
divided in three parts: in Sect. 4.1 we prove the compactness result, while Sects. 4.2 and 4.3
are devoted at obtaining the liminf and the limsup inequality, respectively. Finally, in Sect. 5
we discuss how to suitably modify the arguments we used to prove Theorem 1.4 in order to
obtain Theorems 1.5, 1.7, and 1.9.

2 Preliminaries

For the convenience of the reader, in this section we collect a few definitions and tools used
throughout the paper.
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2.1 Radonmeasures

Let M(�) be the space of finite Radon measures on �. We recall that in view of the Riesz
representation theorem (see, for example, [30, Theorem 1.200]), if we denote by C0(�) the
completion with respect to the L∞ norm of the space of continuous functions with compact
support in �, then the dual of C0(�) can be identified with M(�). The subset of M(�)

consisting of all finite nonnegative Radonmeasures on�will be denoted byM+(�). For the
sake of brevity, the results of this section are stated in the form that will be used in the paper;
for this reason we refer the reader to the monographs [29,30] for a more detailed treatment
of these topics.

Definition 2.1 We say that a sequence {μn}n∈N ⊂ M+(�) weakly-∗ converges to μ ∈
M+(�), and we write μn

∗
⇀ μ, if

lim
n→∞

∫
�

ϕ dμn →
∫

�

ϕ dμ

for all ϕ ∈ C0(�).

The first result of this section gives a simple criterion forweak-∗ compactness ofmeasures.
For a proof see [30, Proposition 1.202].

Theorem 2.2 Let {μn}n∈N ⊂ M+(�) be a sequence of finite nonnegative Radon measures
such that

sup {μn(�) : n ∈ N} < ∞.

Then there exist a subsequence (not relabeled) and a measureμ ∈ M+(�) such thatμn
∗
⇀ μ.

The following lemma is a key ingredient in the proof of the liminf inequality (see Propo-
sition 4.2). For a proof see [30, Theorem 1.203(iii)].

Lemma 2.3 Let {μn}n∈N ⊂ M+(�) be a sequence of finite nonnegative Radon measures

such that μn
∗
⇀ μ. Then

lim
n→∞ μn(A) = μ(A)

for every Borel set A ⊂ � with μ(∂ A) = 0.

Remark 2.4 For our purposes, the condition μ(∂ A) = 0 in Lemma 2.3 is not very restrictive.
Indeed, fix x ∈ � and let E be an open convex set that contains x . Consider the family
{Eρ}ρ>0 of rescaled copies of E , i.e., let Eρ :=x + ρ(E − x). Since by assumption μ is a
finite Radon measure, it is immediate to verify that the set

{ρ > 0 : μ(∂ Eρ) > 0}
is at most countable. Indeed, take ρ > 0 such that Eρ ⊂ �. Then, for each m ∈ N, consider
the set

Am :=
{
ρ ∈ (0, ρ) : 1

m + 1
< μ(∂ Eρ) ≤ 1

m

}
.

Then
∞∑

m=1

1

m + 1
L0(Am) ≤ μ(Eρ) < ∞,
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yielding that each Am is at most finite (and not all of them can be non-empty). In particular,

if μn
∗
⇀ μ, the argument above shows that

lim
n→∞ μn(Eρ) = μ(Eρ)

for all but at most countably many values of ρ < ρ.

In an approximation result needed for the limsup inequality (see Proposition 4.3) we will
also make use of another notion of convergence for measures.

Definition 2.5 Let {μn}n∈N ⊂ M+(�) be a sequence of finite nonnegative Radon measures.
We say that μn converges in (Cb(�))′ to μ ∈ M+(�) if

lim
n→∞

∫
�

ϕ dμn →
∫

�

ϕ dμ

for all ϕ ∈ Cb(�). Here Cb(�) denotes the space of continuous bounded functions on �.

Since C0(�) ⊂ Cb(�), if μn converges in (Cb(�))′ to μ, then μn
∗
⇀ μ. The opposite is

true if, in addition, we know that the limit measure does not charge the boundary of �, as
shown in the next result (for a proof see [30, Proposition 1.206]).

Lemma 2.6 Let {μn}n∈N ⊂ M+(�) be a sequence of finite nonnegative Radon measures

such that μn
∗
⇀ μ for some μ ∈ M+(�), and assume that

lim
n→∞ μn(�) = μ(�).

Then μn converges in (Cb(�))′ to μ.

We conclude this list of results on Radon measures with a well-known theorem from
measure theory. The result presented below allows to recover the absolutely continuous part
of a measure with respect to another via a differentiation process. For a proof we refer the
reader to [30, Theorem 1.153 and Remark 1.154].

Theorem 2.7 (Besicovitch derivation theorem). Let μ, ν ∈ M+(�), and write ν = νac +νs ,
where νac � μ, and νs ⊥ μ. Let C ⊂ R

N be an open convex set that contains the origin.
Then there exists a Borel set S ⊂ � with μ(S) = 0 such that

dνac

dμ
(x) = lim

ρ→0

ν(x + ρC)

μ(x + ρC)
∈ [0,∞),

and

lim
ρ→0

νs(x + ρC)

μ(x + ρC)
= 0,

for all x ∈ � \ S.

2.2 Functions of bounded variation

We start by recalling basic definitions and well known properties of functions of bounded
variation and sets of finite perimeter. We refer the reader to [6] for more details.
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Definition 2.8 Let u ∈ L1(�;RM ). We say that u is a function of bounded variation if its
distributional derivative Du is a finite matrix-valued Radon measure on �. In particular,

|Du|(�) = sup

{
M∑

i=1

∫
�

ui (x)divϕi (x) dx : ϕ ∈ C∞
c (�;RM×N ), ‖ϕ‖L∞ ≤ 1

}
.

In this case we write u ∈ BV (�;RM ).

Definition 2.9 Let u ∈ L1(�;RM ). We define Ju ⊂ �, the jump set of u, as the set of points
x ∈ � such that there exist distinct vectors a, b ∈ R

M and a direction ν ∈ S
N−1 for which

lim
ρ→0+

1

ρN

∫
B+(x,ν,ρ)

|u(y) − a| dy = lim
ρ→0+

1

ρN

∫
B−(x,ν,ρ)

|u(y) − b| dy = 0,

where

B+(x, ν, ρ):=ν+(x) ∩ B(x, ρ), B−(x, ν, ρ):=ν−(x) ∩ B(x, ρ),

and

ν+(x):={y ∈ R
N : (y − x) · ν ≥ 0}, ν−(x):={y ∈ R

N : (y − x) · ν ≤ 0}.
If x ∈ Ju , we denote the triple (a, b, ν) as (u+(x), u−(x), νu(x)). Notice that (u+(x), u−(x),

νu(x)) is unique up to replacing νu(x) with −νu(x) and interchanging u+(x) and u−(x).

Remark 2.10 Notice that using cubes instead of balls in Definition 2.9 yields an analogous
characterization of the jump set. In order to keep the notation as simple as possible, in the
proof of the liminf inequality (see Proposition 4.2) it will be convenient to consider cubes
with two faces orthogonal to the vector νu .

The next result concerns the structure of the jump set and the decomposition of the distri-
butional derivative of a function of bounded variation. For a proof see [6, Theorem 3.78].

Theorem 2.11 (Federer–Vol’pert). The jump set Ju of a function u ∈ BV (�;RM ) is count-
ably HN−1-rectifiable, i.e., there exist Lipschitz continuous functions fi : RN−1 → R

N such
that

HN−1

(
Ju \

∞⋃
i=1

fi (Ki )

)
= 0,

where each Ki is a compact subset of RN−1. Moreover,

Du = ∇uLN + (u+ − u−) ⊗ νuHN−1 ¬
Ju + Dcu,

where Dcu denotes the so called Cantor part of the distributional derivative.

We now focus on the special class of functions of bounded variations which consists of
characteristic functions of sets.

Definition 2.12 Let E ⊂ �. We say that E has finite perimeter in � if its characteristic
function 1E : � → {0, 1}, defined as

1E (x):=
{
1 if x ∈ E,

0 otherwise,

is of bounded variation in �.
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For sets of finite perimeter, we have two notions of boundary coming frommeasure theory.

Definition 2.13 Let E ⊂ R
N be a set of finite perimeter in �. We call reduced boundary of

E , denoted with FE , the set of points x ∈ supp|D1E | ∩ � for which the limit

νE (x):= lim
ρ→0

D1E (B(x, ρ))

|D1E |(B(x, ρ))

exists in R
N and is such that |νE (x)| = 1.

Definition 2.14 Let E ⊂ R
N be an LN -measurable set. For t ∈ [0, 1] we define

Et :=
{

x ∈ R
N : lim

ρ→0

LN (E ∩ B(x, ρ))

LN (B(x, ρ))
= t

}
,

the set of points of density t for E . The set ∂∗E :=R
N \ (E1 ∪ E0) is called the essential

boundary of E .

The relation between these two notions of measure theoretic boundary is specified in the
following theorem (see [6, Theorem 3.61]).

Theorem 2.15 (Federer). Let E ⊂ R
N be a set of finite perimeter in �. Then

FE ⊂ ∂1/2E ⊂ ∂∗E,

and

HN−1 (� \ (E0 ∪ FE ∪ E1)
) = 0.

In a similar fashion as the Federer–Vol’pert theorem, the reduced boundary enjoys some
structure properties (see [6, Theorem 3.59]).

Theorem 2.16 (De Giorgi). Let E ⊂ R
N be a set of finite perimeter in � and for all x0 ∈ FE

and ρ > 0 let Eρ := E−x0
ρ

. Then FE is countably HN−1-rectifiable and

1Eρ → 1H

locally in L1(�) as ρ → 0, where H :={x ∈ R
N : x · νE (x0) ≥ 0}. Moreover,

lim
ρ→0

HN−1(FE ∩ Q(x0, ρ))

ρN−1 = 1.

Finally, we define the notion of Caccioppoli partitions. This will be useful in the approx-
imation results in order to get the limsup inequality (see Sect. 4.3).

Definition 2.17 A partition {�i }i∈N of � is called a Caccioppoli partition if each �i is a set
of finite perimeter in �.

Remark 2.18 Notice that for every u ∈ BV (�; z1, . . . , zk) (see Definition 1.3) there exists a
Caccioppoli partition {�1, . . . , �k} of � such that u(x) = zi (x) for LN -a.e. x ∈ �i , for all
i ∈ {1, . . . , k}, and

HN−1 ¬
Ju =

k−1∑
i=1

k∑
j=i+1

HN−1 ¬
(∂∗�i ∩ ∂∗� j ).

Moreover, using [6, Theorem 3.84], it is possible to show that the distributional derivative of
each u ∈ BV (�; z1, . . . , zk) has no Cantor part.
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2.3 0-convergence

We now recall the basic definition and some properties of �-convergence that will be used
throughout the paper (for a reference see [15,23]).

Definition 2.19 Let (X , d) be a metric space. We say that a sequence of functions Fn : X →
R ∪ {∞} �-converges to F : X → R ∪ {∞}, and we write Fn

�−d−→ F , if the following hold:

(i) for every x ∈ X and every sequence {xn}n∈N of elements of X such that xn → x we
have

F(x) ≤ lim inf
n→∞ Fn(xn);

(ii) for every x ∈ X there exists a sequence {xn}n∈N of elements of X such that xn → x
and

lim sup
n→∞

Fn(xn) ≤ F(x).

A sequence {xn}n∈N as in (i i) is called a recovery sequence for x .

We recall that the definition of �-convergence is primarily motivated by seeking min-
imal conditions which guarantee the convergence of minima and minimizers for a family
of functionals (see, for example, [23, Corollary 7.20]). This is specified in the following
theorem.

Theorem 2.20 Let (X , d) be a metric space, let Fn, F : X → R ∪ {∞} and assume that

Fn
�−d−→ F. For each n ∈ N, let xn ∈ X be a minimizer of Fn on X. Then every cluster point

of {xn}n∈N is a minimizer of F and

lim
n→∞ Fn(xn) = min{F(x) : x ∈ X}.

3 Existence of minimizing geodesics

The purpose of this section is to collect some preliminary results concerning the existence of
minimizing geodesics for possibly degeneratemetricswith conformal factor F . To be precise,
given a continuous nonnegative function F and p, q ∈ R

M , we study the minimization
problem

dF (p, q):= inf

{∫ 1

−1
F(γ (t))|γ ′(t)| dt : γ ∈ A(p, q)

}
, (26)

where the class of admissible parametrizations A(p, q) is given as in Definition 1.2. Notice
that the value of the integral on the right-hand side of (26) is a purely geometric quantity,
i.e., it is independent of the choice of the parametrization. Throughout the rest of the paper,
we refer to any function γ ∈ A(p, q) for which the infimum on the right-hand side of
(26) is achieved as a minimizing geodesic. Moreover, we use the phrase sequence of almost
minimizing geodesics to denote a sequence in A(p, q) for which the infimum is achieved in
the limit.

Let us remark that the existence of minimizing geodesics for (26) has been previously
investigated bymany authors.Wemention here the work of Zuniga and Sternberg [62], where
existence of solutions to the minimization problem is shown under very general assumptions
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on the conformal factor F . Of particular interest for our analysis is the special case where
the conformal factor is given by

F(z):=2
√

W (x, z). (27)

Indeed, we observe that for a fixed value of x ∈ �, if F is given as above, the distance function
dF defined in (26) is identically equal to the function dW (x, ·, ·), introduced in Definition 1.2.

As the proofs of our main results rely on a precise understanding of minimizing geodesics
for (26), and in particular on their dependence on the variable x when F is chosen as in (27),
compared to [62] we require more stringent assumptions on the behavior of the potential
W near the wells (see (H.3)). In turn, our approach is in spirit closer to that of Sternberg
[59], where the author considered a singular perturbation of the conformal factor which
renders the associated Riemannian metric conformal to the Euclidean metric and proceeded
to prove a uniform boundwith respect to the perturbation parameter. Ourmethod, on the other
hand, consists of proving a uniform bound on the Euclidean length of a sequence of almost
minimizing geodesics. For technical reasons, we will need to consider conformal factors of
the form

F(z):= inf
{
2
√

W (x, z) : x ∈ R
}

,

where R ⊂ �.
In the following, given a function γ ∈ W 1,1(I;RM ), where I ⊂ R is an open interval,

we work with its representative in AC(I;RM ) and denote its Euclidean length by L(γ ), i.e.,

L(γ ):=
∫
I

|γ ′(t)| dt . (28)

For any two points p, q ∈ R
M , we let �p,q be a parametrization inA(p, q) of the line segment

that joins p to q . To be precise, for t ∈ [−1, 1] we let

�p,q(t):=1 − t

2
p + 1 + t

2
q. (29)

We begin by presenting a compactness criterion for almost minimizing geodesics. The
result states that the existence of a sequence of almost minimizing geodesic for (26) with a
uniform bound on the Euclidean length of each element in the sequence implies the existence
of a minimizing geodesic which enjoys the same bound. The proof is adapted from the
classical result on the existence of shortest paths, i.e., minimizers of the length functional
(28) (see, for example, [44, Theorem 5.38]).

Lemma 3.1 Given a continuous function F : RM → [0,∞) and p, q ∈ R
M , let dF (p, q) be

given as in (26), {γn}n∈N ⊂ A(p, q) be a sequence of almost minimizing geodesics, i.e.,

dF (p, q) = lim
n→∞

∫ 1

−1
F(γn(t))|γ ′

n(t)| dt,

and furthermore assume that L(γn) ≤ � for some positive constant � independent of n.
Then there exists γ ∈ A(p, q) with L(γ ) ≤ � such that

dF (p, q) =
∫ 1

−1
F(γ (t))|γ ′(t)| dt .

Proof Notice that if p = q then there is nothing to do. Thus, we can assume without loss
of generality that γn : [−1, 1] → R

M is a parametric representation of a continuous simple
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rectifiable curve. In turn, it can be parametrized by arclength, i.e., there exists a function
ϕn : [0, L(γn)] → [−1, 1] with the property that

vn(s):=γn(ϕn(s))

is Lipschitz continuous, and in particular |v′
n(s)| = 1 for L1-a.e. s ∈ (0, L(γn)). Eventually

extracting a subsequence (which we do not relabel), we can assume that L(γn) → λ for some
λ > 0. Let ψn : [−1, 1] → [0, L(γn)] be defined via

ψn(t):= (t + 1)L(γn)

2
,

and set wn(t):=vn(ψn(t)). Notice that the functions wn ∈ A(p, q) and satisfy

|w′
n(t)| = L(γn)

2
≤ λ + 1

2
(30)

for L1-a.e. t ∈ (−1, 1) and every n sufficiently large. Consequently, we are in a position
to apply the Ascoli-Arzelá theorem to find a function γ : [−1, 1] → R

M and a further
subsequence (not relabeled) such that wn → γ uniformly. Furthermore, since L(·) is lower
semicontinuous with respect to pointwise convergence, we also get

L(γ ) ≤ lim inf
n→∞ L(γn) = lim

n→∞ L(γn) = λ ≤ �.

Finally, in view of (30), we notice that for every s, t ∈ (−1, 1) we have

|γ (s) − γ (t)| = lim
n→∞ |wn(s) − wn(t)| ≤ lim

n→∞
L(γn)

2
|s − t | = λ

2
|s − t |,

and thus∫ 1

−1
F(γ (t))|γ ′(t)| dt ≤ λ

2

∫ 1

−1
F(γ (t)) dt =

(
lim

n→∞
L(γn)

2

)(
lim

n→∞

∫ 1

−1
F(wn(t)) dt

)

= lim
n→∞

∫ 1

−1
F(wn(t))|w′

n(t)| dt

= lim
n→∞

∫ 1

−1
F(γn(t))|γ ′

n(t)| dt = dF (p, q).

This concludes the proof. ��
With Lemma 3.1 in hand, we can turn our attention back to the minimization problem

(26).

Proposition 3.2 Let W be given as in (H.1)–(H.3), and assume that (25) holds for some
η > 0. Let R be a convex compact subset of �, and denote by zi (R) the set of points z ∈ R

M

such that z = zi (x) for some x ∈ R. Assume that

Nδ/2(zi (R)) ∩ Nδ/2(z j (R)) = ∅ (31)

whenever i �= j , where

Nρ(zi (R)):=
{

z ∈ R
M : |z − zi (x)| ≤ ρ for some x ∈ R

}
,

define

F(z):=min
{
2
√

W (x, z) : x ∈ R
}

,
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and let dF : RM ×R
M → [0,∞) be given as in (26). Then for every p, q ∈ R

M there exists
a minimizing geodesic γ ∈ A(p, q) for dF (p, q) such that

L(γ ) ≤ kσ + diam(R)

k∑
i=1

Lip(zi ) + dF (p, q) + 1

�σ (R)
, (32)

where, for η as in (25),

σ :=1

2
min

{
r , δ,

mini αi

maxi αi
δ,

√
η

maxi αi

}
(33)

and

�σ (R):=min

{
F(z) : z /∈

k⋃
i=1

Nσ/2(zi (R))

}
. (34)

Proof In the following we let di (z) denote the distance from a point z ∈ R
M to the set zi (R).

We recall that the functions di : RM → [0,∞) are Lipschitz continuous with Lipschitz
constant at most 1. We divide the proof into several steps.
Step 1:We begin by showing that for σ as in (33), if z ∈ Nσ (zi (R)) then

F(z) = 2
√

αi di (z). (35)

To this end, for z ∈ Nσ (zi (R)) define A:={x ∈ R : |z − zi (x)| ≤ σ } and B:={y ∈ R :
|z − zi (y)| > σ }. We claim that

sup {W (x, z) : x ∈ A} ≤ inf {W (y, z) : y ∈ B} . (36)

Indeed, for every x ∈ A we have

W (x, z) = αi |z − zi (x)|2 ≤ αiσ
2, (37)

while for y ∈ B, by (31) we obtain

W (y, z) = α j |z − z j (y)|2 ≥ α j d j (z)
2 ≥ α j

δ2

4
, (38)

provided that |z − z j (y)| ≤ r for some j �= i , and W (y, z) ≥ η otherwise, where η > 0
is the constant introduced in (25). In turn, inequality (36) follows from (33), (37), and (38).
Notice in particular that (36) implies that

F(z) = min
{
2
√

W (x, z) : x ∈ A
}

= min
{
2
√

αi |z − zi (x)| : x ∈ A
}
,

and (35) readily follows.
Step 2: In this step we show that if p ∈ Nσ (zi (R)), and q ∈ zi (R) realizes the distance,
i.e., di (p) = |p − q|, then the line segment that joins p and q is a minimizing geodesic for
dF (p, q). To see this, let γ ∈ A(p, q) and notice that the map t �→ di (γ (t)) is continuous,
di (γ (−1)) = |p − q|, and di (γ (1)) = 0. Thus, by the mean value theorem, for every
y ∈ (0, |p −q|) there exists t ∈ (−1, 1) such that di (γ (t)) = y. We recall that the composite
function di ◦ γ belongs to the space W 1,1((−1, 1)) and that∣∣∣∣ d

dt
di (γ (t))

∣∣∣∣ ≤ |γ ′(t)| (39)

for L1-a.e. t ∈ (−1, 1). Indeed, as remarked above, the function di is Lipschitz continuous
with Lipschitz constant at most 1. Moreover, the composite function di ◦ γ : (−1, 1) → R
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is absolutely continuous and therefore it is also differentiable for L1-a.e. t ∈ (−1, 1). If we
now let t ∈ (−1, 1) be a point where both γ and di ◦ γ are differentiable we see that∣∣∣∣ d

dt
di (γ (t))

∣∣∣∣ =
∣∣∣∣ lim|h|→0

di (γ (t + h)) − di (γ (t))

|h|
∣∣∣∣

= lim|h|→0

|di (γ (t + h)) − di (γ (t))|
|h| ≤ lim sup

|h|→0

|γ (t + h) − γ (t)|
|h| = |γ ′(t)|,

which gives (39). By (35), (39), and by an application of the co-area formula (see [6, Theorem
3.2.6]), we get

∫ 1

−1
F(γ (t))|γ ′(t)| dt ≥ 2

√
αi

∫
{0<di (γ (t))<|p−q|}

di (γ (t))|γ ′(t)| dt

≥ 2
√

αi

∫
{0<di (γ (t))<|p−q|}

di (γ (t))

∣∣∣∣ d

dt
di (γ (t))

∣∣∣∣ dt

= 2
√

αi

∫ |p−q|

0
yH0({t : di (γ (t)) = y}) dy

≥ 2
√

αi

∫ |p−q|

0
y dy = √

αi |p − q|2.

On the other hand, if we let �p,q be given as in (29), as one can readily check, we have that
di (�p,q(t)) = |�p,q(t) − q| for every t ∈ [−1, 1] and H0({t : |�p,q(t) − q| = y}) = 1 for
every y ∈ (0, |p − q|). In turn, by the co-area formula we conclude that

∫ 1

−1
F(�p,q(t))|�′

p,q(t)| dt = 2
√

αi

∫ 1

−1
di (�p,q(t))|�′

p,q(t)| dt

= 2
√

αi

∫ 1

−1
|�p,q(t) − q||�′

p,q(t)| dt

= 2
√

αi

∫ |p−q|

0
yH0({t : |�p,q(t) − q| = y}) dy

= √
αi |p − q|2. (40)

This proves our claim.
Step 3: If p, q ∈ zi (R) then there are x1, x2 ∈ R such that zi (x1) = p and zi (x2) = q . Let

ψ(t):=1 − t

2
x1 + 1 + t

2
x2,

and notice that ψ(t) ∈ R for every t ∈ [−1, 1] since R is convex by assumption. Let
γ : [−1, 1] → R

M be defined via γ (t):=zi (ψ(t)). Then γ ∈ A(p, q) is a minimizing
geodesic for dF (p, q), and furthermore

L(γ ) ≤ Lip(zi )diam(R).

Consequently, we see that if p ∈ Nσ (zi (R)) and q ∈ zi (R) then any parametrization in
A(p, q) of the line segment from p to a closest point on zi (R), namely p′, together with any
curve with support contained in zi (R) that connects p′ to q gives a minimizing geodesic for
dF (p, q).
Step 4: This step is concerned with the proof of the more delicate case where p and q
are distinct points in Nσ/2(zi (R)), neither of which lies on zi (R). Throughout the step, we

123



Sharp interface limit of a multi-phase transitions model… Page 27 of 62 142

assume without loss of generality that di (p) ≥ di (q). Let {γn}n∈N ⊂ A(p, q) be a sequence
of almost minimizing geodesics for dF (p, q) and observe that it is possible to assume that

γn(t) ∈ Nσ (zi (R)) (41)

for every (n, t) ∈ N × [−1, 1]. Indeed, if this is not the case then we can find two disjoint
subintervals of (−1, 1), namely I1:=(s1, t1) and I2:=(s2, t2), such that

2di (γn(s1)) = 2di (γn(t2)) = di (γn(t1)) = di (γn(s2)) = σ

and
σ

2
≤ di (γn(t)) ≤ σ

for all t ∈ I1 ∪ I2. In turn, we have
∫ 1

−1
F(γn(t))|γ ′

n(t)| dt ≥ 2
√

αi

∫
I1∪I2

di (γ (t))|γ ′(t)| dt ≥ √
αiσ

2. (42)

On the other hand, let p′, q ′ ∈ zi (R) be such that di (p) = |p − p′| and di (q) = |q − q ′|,
and for x1, x2 ∈ R such that p′ = zi (x1) and q ′ = zi (x2) define

γ (t):=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − 2t − 2)p + (2t + 2)p′ if − 1 < t < −1/2,

zi

((
1

2
− t

)
x1 +

(
t + 1

2

)
x2

)
if − 1

2 ≤ t < 1
2 ,

(2 − 2t)q ′ + (2t − 1)q if 1
2 ≤ t < 1.

(43)

Then γ ∈ A(p, q) is a parametric representation of the curve whose support constitutes of
the line segments that join p to p′ and q ′ to q , together with an arc in zi (R) that connects p′
and q ′. By means of a direct computation we see that

∫ 1

−1
F(γ (t))|γ ′(t)| dt = √

αi
(
di (p)2 + di (q)2

)
. (44)

Comparing (42) and (44) shows that we can replace every γn for which (41) does not hold
with the function γ defined in (43) and thus obtain a sequence of almostminimizing geodesics
with the desired properties.

Next, we claim that there exists a minimizing geodesic for dF (p, q)with Euclidean length
bounded from above by

di (p) + di (q) + Lip(zi )diam(R). (45)

In view of Lemma 3.1, if the sequence {γn}n∈N admits a subsequence {γnk }k∈N such that
L(γnk ) ≤ di (p) + di (q) + Lip(zi )diam(R) then there is nothing to do. Notice also that if
there exists a subsequence {γn j } j∈N with the property that

min
{
di (γn j (t) : t ∈ [−1, 1])} = di (γn j (t j )) = 0,

then an application of the co-area formula yields

∫ t j

−1
F(γn j (t))|γ ′

n j
(t)| dt ≥ 2

√
αi

∫ t j

−1
di (γn j (t))

∣∣∣∣ d

dt
d(γn j (t))

∣∣∣∣ dt

= 2
√

αi

∫ di (p)

0
yH0({t ∈ (−1, t j ) : di (γn j (t) = y)}) dy ≥ √

αi di (p)2,
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and with similar computations in the interval (t j , 1) we arrive at

∫ 1

−1
F(γn j (t))|γ ′

n j
(t)| dt ≥ √

αi
(
di (p)2 + di (q)2

) =
∫ 1

−1
F(γ (t))|γ ′(t)| dt

where γ is the function defined in (43) and the last equality follows from (44). In turn, γ is
a minimizing geodesic and the claim would follow in this case. Thus, throughout the rest of
the step we assume that

min {di (γn(t)) : t ∈ [−1, 1]} = di (γn(tn)) > 0 (46)

for every n ∈ N. In particular, eventually passing to a subsequence (which we do not relabel),
we can assume without loss of generality that γn : [−1, 1] → R

M is a parametric represen-
tation of a continuous simple rectifiable curve. Hence, it can be parametrized by arclength,
i.e., there exists a function ϕn : [0, L(γn)] → [−1, 1] with the property that

vn(s):=γn(ϕn(s)) (47)

is Lipschitz continuous, and in particular |v′
n(s)| = 1 for L1-a.e. s ∈ (0, L(γn)), where

L(γn) = di (p) + di (q) + an, an ≥ 0. (48)

Our aim is to show that if (46) and (48) hold, then the function γ in (43) is a minimizing
geodesic for dF (p, q). We prove this claim in two substeps.
Substep 1: If di (p) = di (γn(tn)), then di (p) = di (q), and so

∫ 1

−1
F(γn(t))|γ ′

n(t)| dt ≥ 2
√

αi di (p)

∫ 1

−1
|γ ′

n(t)| dt = 4
√

αi di (p)2 + 2an
√

αi di (p), (49)

where in the last equality we have used (48). In this case the claim readily follows by
comparing (44) and (49).
Substep 2: If di (p) > di (γn(tn)), let p′ ∈ zi (R) be given as above, let pn be the point on the
line segment that joins p to p′ with the property that di (pn) = di (γn(tn)), and define

Qn :=B

(
pn,

di (pn)

2

)
∩
{

z ∈ R
M : di (pn)

2
≤ di (z) ≤ di (pn)

}
. (50)

Let wn : [0, an + 2di (pn)] → R
M be a parametrization by arclength of a simple closed arc

of length an + 2di (pn) with the following properties:

wn(0) = wn(an + 2di (pn)) = pn, wn(t) ∈ Qn for all t ∈ (0, an + 2di (pn)). (51)

Letqn be the point on the line segment that joins p and p′ with the property thatdi (qn) = di (q)

and define fn : [0, di (p)−di (pn)] → R
M and gn : [di (p)+di (pn)+an, L(γn)] → R

M via

fn(t):=
(
1 − t

di (p) − di (pn)

)
p + tpn

di (p) − di (pn)
,

gn(t):=
(
1 + di (p) + di (pn) + an − t

di (q) − di (pn)

)
pn + t − (di (p) + di (pn) + an)

di (q) − di (pn)
qn .
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zi(R)

p

q

γn(tn)

zi(R)

p

q

qn

pn

zi(R)

p

q

γn Wn γ

Fig. 2 From left to right, the figure depicts the curves parametrized by: an element of the sequence of almost
minimizing geodesics, the function Wn constructed to estimate the energy of γn , and the competitor γ

Notice that if di (q) = di (γn(tn)) then qn = pn and the interval of definition of gn trivializes
to a single point. Finally (see Fig. 2), we set

Wn(t):=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fn(t) if 0 ≤ t < di (p) − di (pn),

wn(t + di (pn) − di (p)) if di (p) − di (pn) ≤ t < di (p) + di (pn) + an,

gn(t) if di (p) + di (pn) + an ≤ t ≤ L(γn).

(52)

As one can readily check, when restricted to the interval (0, di (p) + di (pn) + an) the
functionWn gives a parametrization by arclength of a simple arc of length di (p)+di (pn)+an .
Moreover, if di (p)+di (pn)+an < L(γn), thenWn restricted to the interval (di (p)+di (pn)+
an, L(γn)) gives a parametrization by arclength of a segment of length

L(γn) − di (p) − di (pn) − an = di (q) − di (pn).

We claim that
di (Wn(t)) ≤ di (vn(t)) (53)

for every t ∈ [0, L(γn)], where vn is the reparametrization of γn introduced in (47). To prove
claim, we argue by contradiction by assuming first that there exists t ∈ (0, di (p) − di (pn))

for which (53) does not hold, so that by (52)

di (p) − di (vn(t̄)) > di (p) − di (Wn(t̄)) = |p − fn(t̄)| = t̄ |p − pn |
di (p) − di (pn)

= t̄ . (54)

Recalling that di is Lipschitz continuous with Lipschitz constant at most 1, and in view of
(47), we see that

di (p) − di (vn(t̄)) ≤ |vn(0) − vn(t̄)| ≤ t̄ . (55)

Combining (54) and (55) we arrive at a contradiction. Notice that for t ∈ (di (p) −
di (pn), di (p) + di (pn) + an) inequality (53) is satisfied in view of (50)–(52), while for
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all the remaining values of t we can argue as above. Hence the claim is proved and therefore

F(Wn(t)) = 2
√

αi di (Wn(t)) ≤ 2
√

αi di (vn(t)) = F(vn(t)) (56)

for every t ∈ (0, L(γn)). Moreover, in view of (51) and by means of a direct computation
which uses the co-area formula, we see that

∫ di (p)−di (pn)

0
F(Wn(t)) dt = √

αi
(
di (p)2 − di (pn)2

)
,

∫ di (p)+di (pn)+an

di (p)−di (pn)

F(Wn(t)) dt ≥ √
αi di (pn)(an + 2di (pn)),

∫ L(γn)

di (p)+di (pn)+an

F(Wn(t)) dt = √
αi
(
di (q)2 − di (pn)2

)
.

In particular, combining the inequalities above with (44) and (56) we obtain
∫ 1

−1
F(γn(t))|γ ′

n(t)| dt =
∫ L(γn)

0
F(vn(t)) dt ≥

∫ L(γn)

0
F(Wn(t)) dt

≥ √
αi
(
di (p)2 + di (q)2

)+ √
αi di (pn)an

≥
∫ 1

−1
F(γ (t))|γ ′(t)| dt + √

αi di (pn)an

≥
∫ 1

−1
F(γ (t))|γ ′(t)| dt .

Letting n → ∞ in the previous inequality shows that γ is a minimizing geodesic, thus
proving our claim.
Step 5: Finally, we show the existence of a minimizing geodesic for any two distinct points
p, q ∈ R

M . Given v ∈ A(p, q) such that
∫ 1

−1
F(v(t))|v′(t)| dt ≤ dF (p, q) + 1,

let

s1:=min

{
inf

{
t ∈ (−1, 1) : v(t) ∈

k⋃
i=1

Nσ/2(zi (R))

}
, 1

}
.

If s1 < 1, let i1 be such that v(s1) ∈ Nσ/2(zi1(R)), and define

t1:=max
{
sup

{
t ∈ (−1, 1) : v(t) ∈ Nσ/2(zi1(R))

}
, s1
}
.

Notice that if s1 < 1, then s1 and t1 denote the first and last instance for which the support of
the curve parametrized by v can be found in the σ/2-neighborhood of zi1(R), respectively.
Similarly, for j > 1, if t j−1 < 1, we define s j , i j , and t j inductively as follows:

s j :=min

⎧⎨
⎩inf

⎧⎨
⎩t ∈ (t j−1, 1) : v(t) ∈

⋃
i �=i1,...,i j−1

Nσ/2(zi (R))

⎫⎬
⎭ , 1

⎫⎬
⎭ ,

if s j < 1 then the index i j is such that v(s j ) ∈ Nσ/2(zi j (R)), and

t j :=max
{
sup

{
t ∈ (t j−1, 1) : v(t) ∈ Nσ/2(zi j (R))

}
, s j
}
.
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For every j ∈ {1, . . . , k}, let v j : [s j , t j ] → R
M be the reparametrization of the minimizing

geodesic which connects v(s j ) to v(t j ) found as in the previous steps, and let V : [−1, 1] →
R

M be defined via

V (t):=
⎧⎨
⎩

v j (t) if t ∈ [s j , t j ],

V (t) otherwise.

Then V ∈ A(p, q),
∫ 1

−1
F(V (t))|V ′(t)| dt ≤

∫ 1

−1
F(v(t))|v′(t)| dt,

and furthermore, we see from (45) that

L(V ) ≤
k∑

j=1

∫ t j

s j

|v′
j (t)| dt +

∫
(−1,1)\∪ j (s j ,t j )

|v′(t)| dt

≤
∑
j∈J

(
d j (v(s j )) + d j (v(t j ) + Lip(zi )diam(R)

)+ 1

�σ (R)

∫ 1

−1
F(v(t))|v′(t)| dt

≤ kσ + diam(R)

k∑
i=1

Lip(zi ) + dF (p, q) + 1

�σ (R)
,

where J denotes the set of indices for which s j �= t j and �σ (R) is defined as in (34).
Let {γn}n∈N ⊂ A(p, q) be a sequence of almostminimizing geodesics for dF (p, q). Then,

for every n sufficiently large we can find a function Vn ∈ A(p, q) such that

L(Vn) ≤ kσ + diam(R)

k∑
i=1

Lip(zi ) + dF (p, q) + 1

�σ (R)
.

Thus, we are in a position to apply Lemma 3.1. This concludes the the proof. ��
Remark 3.3 In viewof (H.2), condition (31) is satisfied if, for example, diam(R) is sufficiently
small. Moreover, the convexity assumption on R can be easily relaxed by requiring that for
any two points x1, x2 ∈ R there exists a path in R with finite Euclidean length from one to
the other. One must then change the constant on the right-hand side of (32) accordingly.

Remark 3.4 Notice that the right-hand side of (32) depends continuously on p and q . In
particular, given λ > 0, set

W(λ):=max
{
2
√

W (x, z) : (x, z) ∈ � × B(0, λ)
}

(57)

and observe that for every p, q ∈ B(0, λ), if �p,q is defined as in (29), we have

dF (p, q) ≤
∫ 1

−1
F(�p,q)|�′

p,q(t)| dt ≤ 2λW(λ).

Consequently, if we let

�(λ,R):=kσ + diam(�)

k∑
i=1

Lip(zi ) + 2λW(λ) + 1

�σ (R)
,
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then for every p, q ∈ B(0, λ), Proposition 3.2 yields the existence of a minimizing geodesic
γ ∈ A(p, q) for dF (p, q) such that

L(γ ) ≤ �(λ,R),

‖γ ‖L∞((−1,1);RM ) ≤ �(λ,R) + λ.

Finally, observe that if S ⊂ R then �σ (R) ≤ �σ (S) (see (34)) and that in view of assump-
tions (H.1)–(H.3) and (25),

inf {�σ ({x}) : x ∈ �} > 0.

Therefore, the following hold:

(i) �(λ,R) ≥ �(λ,S),
(i i) sup {�(λ, {x}) : x ∈ �} =:�W (λ) < ∞.

Corollary 3.5 Under the assumptions of Proposition 3.2, the function dW introduced in Def-
inition 1.2 is Lipschitz continuous in x and locally Lipschitz continuous with respect to the
variables p and q. In particular, dW is locally Lipschitz continuous, i.e., Lipschitz continuous
on every compact subset of � × R

M × R
M .

Proof Fix p, q ∈ R
M and let x1, x2 be any two points in�. Let λ be such that p, q ∈ B(0, λ)

and notice that we can assume without loss of generality that dW (x1, p, q) ≥ dW (x2, p, q)

since in the other case the result follows from similar computations. It follows from an
application of Proposition 3.2 with R = {x2}, together with Remark 3.4, that there exists a
minimizing geodesic for dW (x2, p, q), namely γ , such that L(γ ) ≤ �W (λ).

Since by assumption W is locally Lipschitz continuous, behaves quadratically near the
wells, and is bounded away from zero away from the wells (see (H.1)–(H.3), (25)), we have
that

√
W is also locally Lipschitz continuous. Thus there exists a constant Lip(

√
W ; λ),

which also depends on �W (λ), such that∣∣∣√W (x1, γ (t)) −√
W (x2, γ (t))

∣∣∣ ≤ Lip(
√

W ; λ)|x1 − x2|, (58)

for all t ∈ (−1, 1). Consequently, using (58), we can estimate

dW (x1, p, q) − dW (x2, p, q) ≤ 2
∫ 1

−1

∣∣∣√W (x1, γ (t)) −√
W (x2, γ (t))

∣∣∣ |γ ′(t)| dt

≤ 2 Lip(
√

W ; λ)|x1 − x2|
∫ 1

−1
|γ ′(t)| dt

≤ 2 Lip(
√

W ; λ)�W (λ)|x1 − x2|.
On the other hand, for fixed x ∈ � and p ∈ R

M and for every q, q ′ ∈ B(0, λ) with q �= q ′,
if we let �q,q ′ ∈ A(q, q ′) be defined as in (29), then we have

|dW (x, p, q) − dW (x, p, q ′)|
|q − q ′| ≤ dW (x, q, q ′)

|q − q ′| ≤ 1

|q − q ′|
∫ 1

−1
2
√

W (x, �q,q ′(t))|�′
q,q ′(t)| dt

=
∫ 1

−1

√
W (x, �q,q ′(t)) dt ≤ W(λ),

where W(λ) is given as in (57). The rest of the proof follows from similar considerations;
we omit the details. ��
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4 Proof of Theorem 1.4

4.1 Compactness

In this section we show that any sequence with bounded energy is precompact in L1(�;RM ).

Proposition 4.1 Let W be given as in (H.1)–(H.4) and let {un}n∈N ⊂ H1(�;RM ) be such
that

sup {Fn(un) : n ∈ N} =:C < ∞. (59)

Then, eventually extracting a subsequence (not relabeled), we have that un → u in
L1(�;RM ), where u ∈ BV (�; z1, . . . , zk) is such that F0(u) < ∞.

Proof We divide the proof into several steps.
Step 1: In this first step we prove that the sequence {un}n∈N is bounded in L1(�;RM ) and
equi-integrable. The proof is standard, but we report it here for the reader’s convenience.
The proof we present is adapted from [11, Proposition 4.1] (see also [42, Theorem 1.6 and
Theorem 2.4]). To this end, notice that in view of (H.4) and (59) we have that

S
∫

{|un |>R}
|un(x)| dx ≤

∫
�

W (x, un(x)) dx ≤ Cεn . (60)

Consequently, if we let E ⊂ � be a measurable set, then∫
E

|un(x)| dx =
∫

E∩{|un |≤R}
|un(x)| dx+

∫
E∩{|un |>R}

|un(x)| dx ≤ RLN (E)+ C

S
εn, (61)

where in the last stepwe used (60). In particular, by taking E = �we obtain that the sequence
{un}n∈N is bounded in L1(�;RM ). Moreveor, for every fixed s > 0, setting

n:= inf

{
n ∈ N : C

S
εm ≤ s

2
for all m ≥ n

}

and

t := 1

R

(
s − C

S
εn

)
,

as a consequence of (61) we obtain that for every n ≥ n and every measurable set E ⊂ �∫
E

|un(x)| dx ≤ s

provided that LN (E) ≤ t . This shows that the sequence {un}n∈N is equi-integrable.
Step 2: For R as in (H.4) and using the notation introduced in Remark 3.4, set

R′:=R + �W (R) (62)

and let ϕ : [0,∞) → [0, 1] be a smooth cut-off function such that ϕ(ρ) = 1 for ρ ≤ R′ and
ϕ(ρ) = 0 for ρ ≥ 2R′. Let

W1(x, z):=ϕ(|z|)W (x, z) + (1 − ϕ(|z|))S|z|.
Then W1 : � × R

M → [0,∞) satisfies (H.1)–(H.4) and moreover

W1(x, z) ≤ W (x, z) (63)
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for every x ∈ � and z ∈ R
M . For every n ∈ N, define the function vn : � → R

M via

vn(x):=

⎧⎪⎪⎨
⎪⎪⎩

un(x) if un(x) ∈ B(0, 2R′),

2R′ un(x)

|un(x)| otherwise.
(64)

Notice that vn ∈ H1(�;RM )∩L∞(�;RM )with ‖vn‖L∞(�;RM ) ≤ 2R′, and that |∇vn(x)| ≤
|∇un(x)| for LN -a.e. x ∈ �. We claim that

W1(x, vn(x)) ≤ W1(x, un(x)) (65)

for LN -a.e. x ∈ �. Indeed, equality holds for LN -a.e. x such that un(x) ∈ B(0, 2R′), while
if this is not the case then

W1(x, vn(x)) = S|vn(x)| ≤ S|un(x)| = W1(x, un(x)).

Thus, by (59), (63), and (65) we see that

∫
�

[
1

εn
W1 (x, vn(x)) + εn |∇vn(x)|2

]
dx ≤

∫
�

[
1

εn
W1 (x, un(x)) + εn |∇un(x)|2

]
dx

≤
∫
�

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx ≤ C .

(66)

We conclude this step by remarking that R′ (see (62)) is chosen in such a way that

dW1(x, zi (x), z j (x)) = dW (x, zi (x), z j (x)) (67)

for every x ∈ � and every i, j ∈ {1, . . . , k}.
Step 3: For i ∈ {1, . . . , k} and n ∈ N, let f i

n : � → R be the function defined via

f i
n (x):=dW1(x, zi (x), vn(x)).

The purpose of this step is to show that, up to the extraction of a subsequence (which we do
not relabel), f i

n → f i in L1(�) as n → ∞, for some f i ∈ BV (�). To prove the claim, it is
enough to show that∫

�

|∇ f i
n (x)| dx ≤ Lip(dW1; 3R′) (1 + Lip(zi ))LN (�) +

∫
�

2
√

W1(x, vn(x))|∇vn(x)| dx,

(68)
where by Lip(dW1; λ) we denote the Lipschitz constant of dW1 on � × B(0, λ) × B(0, λ)

(see Corollary 3.5). Indeed, (66) implies that
∫

�

2
√

W1(x, vn(x))|∇vn(x)| dx ≤
∫

�

[
1

εn
W1 (x, vn(x)) + εn |∇vn(x)|2

]
dx ≤ C, (69)

and so it follows from (68) and (69) that∫
�

|∇ f i
n (x)| dx ≤ Lip(dW1; 3R′) (1 + Lip(zi ))LN (�) + C . (70)

Since, as one can readily check, the sequence { f i
n }n∈N is bounded in L1(�), (70) yields

that it is also bounded in W 1,1(�). In turn, the claim follows by the Rellich–Kondrachov
compactness theorem (see, for example, [44, Theorem 14.36]). The rest of the step is devoted
to the proof of (68), which is adapted from [11, Proposition 2.1].
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By the Meyer–Serrin approximation theorem, for every n ∈ N there exists a sequence
{vn,k}k∈N of functions in H1(�;RM ) ∩ C1(�;RM ) such that

vn,k → vn in H1(�,RM ),

vn,k → vn pointwise a.e. in �,

∇vn,k → ∇vn pointwise a.e. in �,

|vn,k(x)| ≤ 3R′ in �.

(71)

Moreover, eventually passing to a subsequence (which we do not relabel), for every n ∈ N

we can find a function hn ∈ L1(�) such that for LN -a.e. x ∈ �

|vn,k(x)|2 + |∇vn,k(x)|2 ≤ hn(x). (72)

Let f i
n,k : � → R be defined as

f i
n,k(x):=dW1(x, zi (x), vn,k(x)).

Then f i
n,k is Lipschitz continuous in � and therefore differentiable almost everywhere.

Observe that for x, y ∈ �

| f i
n,k(y) − f i

n,k(x)| ≤ |dW1 (y, zi (y), vn,k(y)) − dW1 (x, zi (y), vn,k(y))| + |dW1 (x, zi (y), vn,k(y))

−dW1 (x, zi (x), vn,k(y))| + |dW1 (x, zi (x), vn,k(y)) − dW1 (x, zi (x), vn,k(x))|,
so that

| f i
n,k(y)− f i

n,k(x)| ≤ Lip(dW1; 3R′) (1 + Lip(zi )) |x − y|+dW1(x, vn,k(x), vn,k(y)). (73)

Fix τ > 0, and set �τ :={x ∈ � : dist(x, ∂�) > τ }. Then, if x ∈ �τ , h ∈ R \ {0} is such
that |h| ≤ τ , and ν ∈ S

N−1, by setting y = x + hν in (73), we obtain

| f i
n (x + hν) − f i

n (x)|
|h| ≤ C1 + dW1(x, vn(x), vn(x + hν))

|h| , (74)

where the constant C1 is defined as

C1:=Lip(dW1; 3R′) (1 + Lip(zi )) .

Let �h
n,k ∈ A(vn,k(x), vn,k(x + hν)) be a parametrization of the line segment that joins

vn,k(x) and vn,k(x + hν) and notice that

dW1(x, vn,k(x), vn,k(x + hν))

|h| ≤ 1

|h|
∫ 1

−1
2
√

W1(x, �h
n,k(t))|(�h

n,k)
′(t)| dt

= |vn,k(x + hν) − vn,k(x)|
|h|

∫ 1

−1

√
W1(x, �h

n,k(t)) dt

≤ 1

|h|
∫ |h|

0
|∇vn,k(x + sν)| ds

∫ 1

−1

√
W1(x, �h

n,k(t)) dt .

(75)

If f i
n,k is differentiable at x ∈ �τ , by (74) and (75), and in view of the continuity of W1, it

follows that by letting h → 0 we get

|∇ f i
n,k(x) · ν| ≤ C1 + 2

√
W1(x, vn,k(x))|∇vn,k(x)|. (76)
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Taking the supremum over all ν ∈ S
N−1 in (76), we obtain that for LN -a.e. x ∈ �

|∇ f i
n,k(x)| ≤ C1 + 2

√
W1(x, vn,k(x))|∇vn,k(x)|. (77)

In turn, by (71), (72), (77), and Lebesgue’s dominated convergence theorem we see that
∫

�τ

|∇ f i
n,k(x)| dx ≤ C1LN (�τ ) +

∫
�τ

2
√

W1(x, vn,k(x))|∇vn,k(x)| dx

≤ C1LN (�) +
∫

�

2
√

W1(x, vn,k(x))|∇vn,k(x)| dx

→ C1LN (�) +
∫

�

2
√

W1(x, vn(x))|∇vn(x)| dx (78)

as k → ∞. Next, using the notation introduced in Remark 3.4 (see (57)), we observe that by
(72) and (77) we have that

∫
�τ

|∇ f i
n,k(x)|2 dx ≤ 2C2

1LN (�) + 8W(3R′)
∫

�

|∇vn,k(x)|2 dx

≤ 2C2
1LN (�) + 8W(3R′)

∫
�

hn(x) dx .

By themonotone convergence theorem, letting τ → 0 in the previous inequality, we conclude
that { f i

n,k}k∈N is bounded in H1(�;RM ). Therefore, eventually extracting a subsequence

(which we do not relabel), there exists gi
n ∈ H1(�;RM ) such that f i

n,k⇀gi
n in H1(�;RM )

and f i
n,k → gi

n in L2(�;RM ) as k → 0. Since f i
n,k → f i

n in L2(�;RM ), we obtain that f i
n

must coincide with gi
n almost everywhere in �, and therefore

∫
�τ

|∇ f i
n,k(x)| dx →

∫
�τ

|∇ f i
n (x)| dx . (79)

Combining (78) and (79), we arrive at (68) with an application of the monotone convergence
theorem, letting τ → 0.
Step 4:Without loss of generality, we can assume that f i

n → f i pointwise LN -a.e. in � for
every i . Next, let

�i :={x ∈ � : f i (x) = 0}
and set

u(x):=
k∑

i=1

zi (x)1�i (x). (80)

We claim that eventually extracting a subsequence, vn → u in L1(�;RM ). Notice that by
Vitali’s convergence theorem, together with the results of Step 1, it is enough to show the
existence of a subsequence which converges pointwise almost everywhere to u. To this end,
we observe that (66) implies that

LN
({

x ∈ � : lim sup
n→∞

W1(x, vn(x)) > 0

})
= 0.

Thus, for LN -a.e. x ∈ � we have that cluster points of the sequence {vn(x)}n∈N belong to
the set {z1(x), . . . , zk(x)}. For i �= j , let Bi j be the subset of �i consisting of all points x
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for which there exists a subsequence {vnm (x)}m∈N such that vnm (x) → z j (x). Arguing by
contradiction, assume that LN (Bi j ) > 0 for some j . Then we have

0 <

∫
Bi j

dW1(x, zi (x), z j (x)) dx = lim
m→∞

∫
Bi j

dW1(x, zi (x), vnm (x)) dx

= lim
m→∞

∫
Bi j

f i
nm

(x) dx

=
∫

Bi j

f i (x) dx = 0.

Thus we have arrived at a contradiction. In particular, since vn → u in L1(�;RM ), we
deduce that

f i (x) = dW1(x, zi (x), u(x)) = dW (x, zi (x), u(x)) (81)

for LN -a.e. x ∈ �, where in the last equality we have used (67) and (80). Finally, notice that
by (60) and (64) we have that

∫
�

|un(x) − vn(x)| dx ≤
∫

{|un |>2R′}
|un(x)| dx ≤ Cεn,

and therefore, eventually extracting a subsequence, un → u in L1(�;RM ) as it was claimed.
Step 5: This step is concerned with the proof of additional regularity properties of the
function u, defined in (80). Let us remark that in view of (81), throughout the rest proof we
can return to working with the potential W instead of W1.We begin by showing the following
characterization of the jump set of u (see Definition 2.9):

Ju =
k−1⋃
i=1

k⋃
j=i+1

Ui j , (82)

where the sets Ui j are defined via

Ui j :=
{

x ∈ J f i : ( f i (x)+, f i (x)−, ν f i (x)) = (0, dW (x, zi (x), z j (x)), ν f i (x))
}

. (83)

Notice that

Ju =
k−1⋃
i=1

k⋃
j=i+1

Vi j ,

where
Vi j :=

{
x ∈ Ju : (u+(x), u−(x), νu(x)) = (zi (x), z j (x), νu(x))

}
, (84)

so that to prove (82) it is enough to show that Ui j = Vi j . To this end, fix x ∈ Vi j and observe
that

dW (y, zi (y), u(y)) = dW (y, zi (y), u(y)) − dW (x, zi (x), u(y)) + dW (x, zi (x), u(y))

≤ Lip(dW ; 3R′) ((1 + Lip(zi ))|x − y| + |u(y) − zi (x)|) (85)

holds for LN -a.e. y ∈ �. Consequently, from (81), (84), and (85) we see that

0 ≤ 1

ρN

∫
B+(x,νu(x),ρ)

f i (y) dy
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≤ Lip(dW ; 2R′)
(

(1 + Lip(zi ))ρ

2
+ 1

ρN

∫
B+(x,νu(x),ρ)

|u(y) − zi (x)| dy

)
→ 0

as ρ → 0+. Similarly, one can show that

1

ρN

∫
B−(x,νu(x),ρ)

| f i (y) − dW (x, zi (x), z j (x))| dy → 0,

and thus we conclude that Vi j ⊂ Ui j . To prove the reverse inequality, we begin by noticing
that in view of (H.2) there exists a constant ω such that

inf
{
dW (x, zi (x), z j (x)) : x ∈ � and i �= j

} ≥ ω. (86)

In turn, if x ∈ Ui j (see (83)) and ε > 0 is given, there exists ρ > 0 such that if ρ ≤ ρ then

ρN ε ≥
∫

B+(x,ν f i (x),ρ)

f i (y) dy ≥ ω
∑
j �=i

LN
(

B+(x, ν f i (x), ρ) ∩ � j
)

.

Consequently, recalling that ‖zi‖L∞(�;RM ) ≤ R by (H.4), notice that for every such ρ we
have

∫
B+(x,ν f i (x),ρ)

|u(y) − zi (x)| dy =
k∑

j=1

∫
B+(x,ν f i (x),ρ)∩� j

|z j (y) − zi (x)| dy

≤ Lip(zi )ρ
N+1 + 2R

∑
j �=i

LN
(

B+(x, ν f i (x), ρ) ∩ � j
)

≤ Lip(zi )ρ
N+1 + 2RρN ε

ω
,

and therefore

lim sup
ρ→0+

1

ρN

∫
B+(x,ν f i (x),ρ)

|u(y) − zi (x)| dy ≤ 2Rε

ω
.

Finally, letting ε → 0+ yields the desired result. Notice that with similar computations one
can show that

lim
ρ→0+

1

ρN

∫
B−(x,ν f i (x),ρ)

|u(y) − z j (x)| dy = 0.

Hence x ∈ Vi j , and therefore we have shown that also Ui j ⊂ Vi j . The characterization of
the jump set in (82) readily follows.

Next, observe that for Ui j defined as in (83), if ω is the constant given in (86) then

HN−1(Ui j ) =
∫

Ui j

dHN−1(x) =
∫

Ui j

dW (x, zi (x), z j (x))

dW (x, zi (x), z j (x))
dHN−1(x)

≤ 1

ω

∫
Ui j

dW (x, zi (x), z j (x)) dHN−1(x)

= 1

ω

∫
Ui j

∣∣∣ f i (x)+ − f i (x)−
∣∣∣ dHN−1(x) < ∞, (87)
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where in the last equality we have used the fact that f i ∈ BV (�). Combining (80), (82),
and (87) we see that u ∈ BV (�; z1, . . . , zk). Finally, notice that

F0(u) =
∫

Ju

dW (x, u+(x), u−(x))) dHN−1(x) =
k−1∑
i=1

k∑
j=i+1

∫
Ui j

dW (x, zi (x), z j (x)) dHN−1(x)

≤
k−1∑
i=1

k∑
j=i+1

∫
Ui j

∣∣∣ f i (x)+ − f i (x)−
∣∣∣ dHN−1(x)

< ∞.

This concludes the proof. ��

4.2 Liminf inequality

The goal of this section is to prove the following result.

Proposition 4.2 Let W be given as in (H.1)–(H.4). For u ∈ L1(�;RM ), let {un}n∈N be a
sequence of functions in H1(�;RM ) such that un → u in L1(�;RM ). Then

F0(u) ≤ lim inf
n→∞ Fn(un).

Proof We divide the proof into several steps.
Step 1: Eventually extracting a subsequence (which we do not relabel), we can assume
without loss of generality that

lim inf
n→∞ Fn(un) = lim

n→∞Fn(un) < ∞. (88)

Consequently we are in a position to apply Proposition 4.1 for n large enough and conclude
that u ∈ BV (�; {z1, . . . , zk}) (see Definition 1.3). In order to prove the liminf inequality
we will use the blow-up method of Fonseca and Müller (see [31]). Let us consider the finite
positive Radon measures μn ∈ M+(�) given by

μn :=
(

1

εn
W (·, un(·)) + εn |∇un(·)|2

)
LN ¬

�.

In view of (88) we can further assume that sup {μn(�) : n ∈ N} < ∞, and therefore, up
to the extraction of a subsequence (which again we do not relabel), there exists a measure

μ ∈ M+(�) such that μn
∗
⇀ μ (see Theorem 2.2). Let λ:=HN−1 ¬

Ju and let x0 ∈ Ju be
such that

dμ

dλ
(x0) < ∞ and

dHN−1

dλ
(x0) = 1. (89)

Recall that (89) holds for HN−1-a.e. x0 ∈ Ju . Let Qν ⊂ R
N be a unit cube centered at

the origin with two faces orthogonal to ν:=νu(x0), where the direction νu(x0) is given as
in Definition 2.9, and for ρ > 0 write Q(x0, ν, ρ):=x0 + ρQν . Let b1, . . . , bN−1 ∈ R

N be
such that {b1, . . . , bN−1, ν} is an orthonormal bases for RN . Then, for every point x ∈ R

N

there are constants y1, . . . , yN−1, t ∈ R such that

x =
N−1∑
i=1

yi bi + tν.
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In the following we identify x with (x ′, t), where x ′ ∈ R
N−1 denotes the vector

(y1, . . . , yN−1). Let

Q′(x0, ν, ρ):=
{

x ′ = (y1, . . . , yN−1) :
N−1∑
i=1

yi bi + tν ∈ Q(x0, ν, ρ) for all t ∈
(
−ρ

2
,
ρ

2

)}
,

(90)
and notice that with this notation at hand we can write

Q(x0, ν, ρ) = {
x = (x ′, t) : x ′ ∈ Q′(x0, ν, ρ) and t ∈ (−ρ/2, ρ/2)

}
.

Moreover, we define

Q+(x0, ν, ρ):=
{

x = (x ′, t) : x ′ ∈ Q′(x0, ν, ρ) and t ∈
(
0,

ρ

2

)}
,

Q−(x0, ν, ρ):=
{

x = (x ′, t) : x ′ ∈ Q′(x0, ν, ρ) and t ∈
(
−ρ

2
, 0
)}

.

Since by assumption x0 ∈ Ju , there are two indices 1 ≤ i1 < i2 ≤ k such that for every
ε > 0 there exists ρ = ρ(ε) > 0 with the property that for every ρ ≤ ρ

1

ρN

∫
Q+(x0,ν,ρ)

|u(x) − zi1(x0)| dx ≤ ε and
1

ρN

∫
Q−(x0,ν,ρ)

|u(x) − zi2(x0)| dx ≤ ε.

(91)
In particular, if we let � j :={x : u(x) = z j (x)}, we see that

ε ≥ 1

ρN

∫
Q+(x0,ν,ρ)

|u(x) − zi1(x0)| dx

≥
∑
j �=i1

1

ρN

∫
Q+(x0,ν,ρ)∩� j

|z j (x) − zi1(x0)| dx

≥
∑
j �=i1

1

ρN

∫
Q+(x0,ν,ρ)∩� j

(|z j (x0) − zi1(x0)| − |z j (x) − z j (x0)|) dx

≥
∑
j �=i1

(
δ

ρN

∫
Q+(x0,ν,ρ)

1� j (x) dx − Lip(z j )c(N )ρ

)
. (92)

Notice that we can choose ρ in such a way that it also satisfies

c(N )ρ

k∑
j=1

Lip(z j ) ≤ ε. (93)

Combining (92) and (93) we obtain that for every j �= i1

2ε

δ
≥ 1

ρN

∫
Q+(x0,ν,ρ)

1� j (x) dx = 1

ρ

∫ ρ/2

0
G+

j (ρ, t) dt, (94)

where

G+
j (ρ, t):= 1

ρN−1

∫
Q′(x0,ν,ρ)

1� j (x ′, t) dx ′.

In view of (94), there exists a measurable set E+
j (ρ) ⊂ (0, ρ/2) with

L1(E+
j (ρ)) =

(
1

2
− 1

4(k − 1)

)
ρ (95)
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such that

G+
j (ρ, t) ≤ 8(k − 1)ε

(2k − 3)δ
for L1-a.e. t ∈ E+

j (ρ). (96)

Indeed, if we assume that (96) does not hold, then for every E ⊂ (0, ρ/2) with L1(E) =
(2k − 3)ρ/4(k − 1) we would have

2ε

δ
≥ 1

ρ

∫
E

G+
j (ρ, t) dt >

1

ρ

(2k − 3)ρ

4(k − 1)

8(k − 1)ε

(2k − 3)δ
= 2ε

δ
.

Let E+
ρ :=⋂ j �=i1 E+

j (ρ), and notice that by De Morgan’s law and (95)

L1(E+
ρ ) = ρ

2
− L1

⎛
⎝⋃

j �=i1

(E+
j (ρ))c

⎞
⎠ ≥ ρ

2
−
∑
j �=i1

L1((E+
j (ρ))c) = ρ

4
.

A similar argument yields the existence of a set E−
ρ ⊂ (−ρ/2, 0) with the property that

L1(E−
ρ ) ≥ ρ/4 and such the analogous statement to (96) holds for every j �= i2. Thus,

by letting ε = 1/m we can find two decreasing sequences {ρm}m∈N and {r+
m }m∈N and an

increasing sequence {r−
m }m∈N such that

ρm ∈ (0, ρ ( 1m
))

,

r+
m ∈ ( ρ

8 ,
ρ
2

)
, r+

m ∈ E+
ρm

,

r−
m ∈ (− ρ

2 ,− ρ
8

)
, r−

m ∈ E−
ρm

,

and with the property that μ(∂ Rm(x0, ν)) = 0 (see Remark 2.4), where

Rm(x0, ν):=Q′(x0, ν, ρm) × (r−
m , r+

m ).

Moreover, eventually extracting a subsequence (not relabeled), we can assume that forLN−1-
a.e. x ′ ∈ Q′(x0, ν, ρm) it holds

lim
n→∞ un(x ′, r±

m ) = u(x ′, r±
m ), (97)

and
u(x ′, r±

m ) ∈ {z1(x ′, r±
m ), . . . , zk(x ′, r±

m )}. (98)

Notice in particular that there are constants C, c such that

B(x0, cρm) ⊂ Rm(x0, ν) ⊂ B(x0, Cρm).

Therefore, by Besicovitch’s derivation theorem (see Theorem 2.7), Lemma 2.3, and (89) we
obtain that

dμ

dλ
(x0) = lim

m→∞
μ(Rm(x0, ν))

λ(Rm(x0, ν))
= lim

m→∞
μ(Rm(x0, ν))

ρN−1
m

= lim
m→∞ lim

n→∞
μn(Rm(x0, ν))

ρN−1
m

.

Thus, to prove the liminf inequality it is enough to show that

lim
m→∞ lim

n→∞
μn(Rm(x0, ν))

ρN−1
m

≥ dW (x0, zi1(x0), zi2(x0)). (99)

Step 2: Using the notation introduced in the previous step, we begin by noticing that

μn(Rm(x0, ν)) ≥
∫

Rm (x0,ν)

2
√

W (x, un(x))|∇un(x)| dx
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≥
∫

Q′(x0,ν,ρm )

∫ r+
m

r−
m

2
√

W ((x ′, t), un(x ′, t))|∇un(x ′, t) · ν| dt dx ′

=
∫

Q′(x0,ν,ρm )

∫ 1

−1
2
√

W (x ′, gm(t), γm,n(x ′, t))|γ ′
m,n(x ′, t)| dt dx ′,

where

gm(t):=
⎧⎨
⎩

tr+
m if t ∈ (0, 1),

tr−
m if t ∈ (−1, 0),

and γm,n(x ′, t):=un(x ′, gm(t)). Then, if we set

Fm(z):=min
{
2
√

W (x, z) : x ∈ Rm(x0, ν)
}

(100)

we obtain

μn(Rm(x0, ν)) ≥
∫

Q′(x0,ν,ρm )

∫ 1

−1
Fm(γm,n(x ′, t))|γ ′

m,n(x ′, t)| dtdx ′

≥
∫

Q′(x0,ν,ρm )

dFm (γm,n(x ′, 1), γm,n(x ′,−1)) dx ′, (101)

where for p, q ∈ R
M

dFm (p, q):= inf

{∫ 1

−1
Fm(γ (t))|γ ′(t)| dt : γ ∈ A(p, q)

}
. (102)

By (97), the continuity of dFm , and Fatou’s lemma, we see that

lim inf
n→∞ μn(Rm(x0, ν)) ≥

∫
Q′(x0,ν,ρm )

dFm (u(x ′, r+
m ), u(x ′, r−

m )) dx ′. (103)

Let

Q′
m(i, j):=Q′(x0, ν, ρm) ∩ {x ′ : u(x ′, r+

m ) = zi (x ′, r+
m ), u(x ′, r−

m ) = z j (x ′, r−
m )},

and notice that in view of (98) we can write

Q′(x0, ν, ρm) = Tm ∪
k⋃

i, j=1

Q′
m(i, j),

where LN−1(Tm) = 0. Observe that as a consequence of (100) and (102) we have
∫

Q′
m (i, j)

dFm (zi (x ′, r+
m ), z j (x ′, r−

m )) dx ′ ≤
∫

Q′
m (i, j)

dW (x0, zi (x ′, r+
m ), z j (x ′, r−

m )) dx ′

≤ CLN−1(Q′
m(i, j)), (104)

where C is a constant that only depends on W , zi , and z j . Recalling the definition of r±
m , if

i �= i1 we have

LN−1(Qm(i, j)) ≤ ρN−1
m G+

i (ρm, rm) ≤ ρN−1
m

8(k − 1)

(2k − 3)δ

1

m
. (105)
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Similar computations hold if j �= i2. Consequently, combining (103)–(105) we arrive at

lim inf
n→∞ μn(Rm(x0, ν)) ≥

k∑
i, j=1

∫
Q′

m (i, j)
dFm (zi (x ′, r+

m ), z j (x ′, r−
m )) dx ′

≥
∫

Q′(x0,ν,ρm )

dFm (zi1(x ′, r+
m ), zi2(x ′, r−

m )) dx ′ − CρN−1
m

m
, (106)

for some positive constant C . Using the fact that for every p, q, z ∈ R
M

|dFm (p, z) − dFm (z, q)| ≤ dFm (p, q) ≤ dW (x0, p, q)

and the continuity of dW (x0, ·, ·), we obtain
dFm (zi1(x ′, r+

m ), zi2(x ′, r−
m )) ≥ dFm (zi1(x0), zi2(x0)) + O(1). (107)

Combining (106) and (107), we see that

lim
m→∞ lim inf

n→∞
μn(Rm(x0, ν))

ρN−1
m

≥ lim inf
m→∞ dFm (zi1(x0), zi2(x0)).

Therefore, in order to prove (99) it is enough to show that

lim
m→∞ dFm (zi1(x0), zi2(x0)) = dW (x0, zi1(x0), zi2(x0)). (108)

Step 3: This step is dedicated to the proof of (108). We claim that the sequence {Fm}m∈N
converges uniformly to 2

√
W (x0, ·) on every compact subset of RM . Indeed, as one can

readily check, the map z �→ Fm(z) is continuous for every m, while the map m �→ Fm(z) is
nondecreasing for every z. To conclude, notice that Fm(z) → 2

√
W (x0, z) for every z ∈ R

M

as m → ∞. Since the map z �→ 2
√

W (x0, z) is continuous by assumption (see (H.1)), we
are in a position to apply Dini’s convergence theorem. This proves the claim.

Let p:=zi1(x0), q:=zi2(x0) and, using the notation introduced in Proposition 3.2, notice
that (see (H.2); see also Remark 3.3) there exists m1 such that if m ≥ m1 then for every
i �= j

Nδ/2(zi (Rm(x0, ν))) ∩ Nδ/2(z j (Rm(x0, ν))) = ∅.

Thus, if m ≥ m1, we are in a position to apply the results of Proposition 3.2 and Remark 3.4
and conclude that there exists a minimizing geodesic for dFm (p, q), namely γm ∈ A(p, q),
such that if we set

λ:=max
{|zi (x)| : i ∈ {1, . . . , k}, x ∈ �

}
then

L(γm) ≤ �(λ,Rm1(x0, ν)),

‖γm‖L∞((−1,1);RM ) ≤ �(λ,Rm1(x0, ν)) + λ. (109)

Consequently, given ε > 0, we can find m2 ≥ m1 with the property that for every m ≥ m2∣∣∣Fm(z) − 2
√

W (x0, z)
∣∣∣ < ε (110)

for every z ∈ B(0,�(λ,Rm1(x0, ν)) + λ). Then, from (109) and (110) we see that

dFm (p, q) =
∫ 1

−1
Fm(γm(t))|γ ′

m(t)| dt
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=
∫ 1

−1
2
√

W (x0, γm(t))|γ ′
m(t)| dt −

∫ 1

−1

[
2
√

W (x0, γm(t)) − Fm(γm(t))
]
|γ ′

m(t)| dt

≥ dW (x0, p, q) − ε�(λ,Rm1(x0, ν)).

Letting m → ∞ in the previous inequality we obtain

dW (x0, p, q) ≥ lim sup
m→∞

dFm (p, q) ≥ lim inf
m→∞ dFm (p, q) ≥ dW (x0, p, q) − ε�(λ,Rm1(x0, ν)).

The desired inequality (108) follows immediately by letting ε → 0+. ��

4.3 Limsup inequality

This section is devoted to proving the following result, which concludes the proof of Theo-
rem 1.4.

Proposition 4.3 Let W be as is (H.1)–(H.4). Then, for every u ∈ BV (�; z1, . . . , zk) there
exists a sequence {un}n∈N of functions in H1(�;RM ) such that un → u in L1(�;RM ) and
Fn(un) → F0(u).

We split the proof in three lemmas. In the first result presented below, we exhibit a
sequence {un}n∈N of functions with polyhedral jump set which approximates the function
u and furthermore satisfies F0(un) → F0(u). This is a straightforward consequence of a
classical result due to Baldo (see [11, Lemma 3.1]). In the following we say that U ⊂ � is a
polyhedral set if ∂U ∩ � is contained in a finite union of hyperplanes.

Lemma 4.4 Under the assumptions of Proposition 4.3, let u ∈ BV (�; z1, . . . , zk). Then
there exists a sequence {un}n∈N of functions in BV (�; z1, . . . , zk) of the form

un =
k∑

i=1

zi1�i
n
,

where �i
n is a polyhedral set for each i ∈ {1, . . . , k} and each n ∈ N, such that un → u in

L1(�;RM ) and F0(un) → F0(u).

Proof Write u = ∑k
i=1 zi1�i , where {�i }k

i=1 is a Caccioppoli partition of � (see Defini-
tion 2.17 and Remark 2.18). Thanks to [11, Proposition A.2] and as a consequence of the
proof of [11, Lemma A.7], it is possible to find a sequence {{�i

n}k
i=1}n∈N of Caccioppoli

partitions of � with the following properties:

(i) �i
n is a polyhedral set;

(ii) 1�i
n

→ 1�i in L1(�);

(iii) μ
i j
n converges in (Cb(�))′ to μi j (see Definition 2.5), where for each i �= j ∈

{1, . . . , k}, and n ∈ N the measures μ
i j
n , μi j ∈ M+(�) are given by

μ
i j
n :=HN−1 ¬

(∂∗�i
n ∩ ∂∗� j

n), μi j :=HN−1 ¬
(∂∗�i ∩ ∂∗� j ).

Since dW ∈ Cb(�) (see Corollary 3.5) and recalling that the zi ’s are bounded we get

lim
n→∞F0(un) = lim

n→∞

k−1∑
i=1

k∑
j=i+1

∫
∂∗�i

n∩∂∗� j
n

dW (x, zi (x), z j (x)) dHN−1(x)
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= lim
n→∞

k−1∑
i=1

k∑
j=i+1

∫
�

dW (x, zi (x), z j (x)) dμ
i j
n (x)

=
k−1∑
i=1

k∑
j=i+1

∫
�

dW (x, zi (x), z j (x)) dμi j (x)

= F0(u),

where in the previous to last step we used property (i i i) above. ��
A key ingredient in the proof of the limsup inequality is a reparametrization due toModica

(see [49, Proposition 2], and [11, Lemma 3.2]). Being crucial to our construction of the
recovery sequence, we present the proof for the reader’s convenience.

Lemma 4.5 Under the assumptions of Proposition 4.3, fix λ > 0, ε > 0, x ∈ �, and
p, q ∈ R

M . Let γ ∈ A(p, q) be the parametrization of a curve of class C1 with γ ′(s) �= 0
for all s ∈ (−1, 1). Then there exist τ > 0 with

τ ≤ ε√
λ

L(γ ) = ε√
λ

∫ 1

−1
|γ ′(t)| dt, (111)

and g ∈ C1((0, τ ); [−1, 1]) such that

(g′(t))2 = λ + W (x, γ (g(t)))

ε2|γ ′(g(t))|2 (112)

for all t ∈ (0, τ ), g(0) = −1, g(τ ) = 1, and
∫ τ

0

[
1

ε
W (x, γ (g(t))) + ε|γ ′ (g(t)) |2 (g′(t)

)2]
dt

≤
∫ 1

−1
2
√

W (x, γ (s))|γ ′(s)| ds + 2
√

λ

∫ 1

−1
|γ ′(s)| ds. (113)

Proof Define

�(t):=
∫ t

−1

ε|γ ′(s)|√
λ + W (x, γ (s))

ds,

and set τ :=�(1). Then � is strictly increasing, and its inverse g : [0, τ ] → [−1, 1] is of
class C1 in (0, τ ) and satisfies (112) for all t ∈ (0, τ ). Moreover,

τ = �(1) =
∫ 1

−1

ε|γ ′(s)|√
λ + W (x, γ (s))

ds ≤ ε√
λ

∫ 1

−1
|γ ′(s)| ds.

Finally, by (112), a change of variables, and the subadditivity of the square root function we
get

∫ τ

0

[
1

ε
W (x, γ (g(t))) + ε|γ ′(g(t))|2(g′(t))2

]
dt

=
∫ τ

0
2|γ ′(y(t))||g′(t)|√W (x, γ (g(t)) + λ dt

=
∫ 1

−1
2
√

W (x, γ (s)) + λ|γ ′(s)| ds
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≤
∫ 1

−1
2
√

W (x, γ (s))|γ ′(s)| ds + 2
√

λ

∫ 1

−1
|γ ′(s)| ds,

and (113) follows, thus concluding the proof. ��

We now turn to the technical construction of the recovery sequence.

Lemma 4.6 Under the assumptions of Proposition 4.3, let u ∈ BV (�; z1, . . . , zk) be such
that u = ∑k

i=1 zi1�i , where, for each i = 1, . . . , k, ∂�i ∩ � is a polyhedral set. Then there
exists a sequence {un}n∈N of functions in H1(�;RM ) such that un → u in L1(�;RM ) and
Fn(un) → F0(u) as n → ∞.

Proof Throughout the proof we denote by C a positive constant independent of n, which
could possibly differ from line to line. We divide the proof into several steps.
Step 1: (definitions of the main objects). For n ∈ N define

rn :=ε
1
6
n , r ′

n :=
(
1 − ε

2
3
n

)
rn . (114)

Thanks to Proposition 3.2 and Remark 3.4, there exists L > 0 such that for every x ∈ �

and i �= j ∈ {1, . . . , k} it is possible to find a minimizing geodesic γ ∈ A(zi (x), z j (x)) for
dW (x, zi (x), z j (x)) satisfying

L(γ ) < L. (115)

For each n ∈ N set

�n :=Lε
5
8
n .

For each i ∈ {1, . . . , k} write

∂�i ∩ � =
pi⋃

m=1

�i
m ∩ �,

where pi ∈ N, the�i
m’s are pairwise disjoint, and, for each m ∈ {1, . . . , pi },�i

m is contained
in a hyperplane with normal νi

m ∈ S
N−1. Define the singular set of the partition {�i }k

i=1 as

S:=
k⋃

i=1

⎡
⎣⋃

m �=s

(
�i

m ∩ �i
s

)
∪
(
∂�i ∩ ∂�

)⎤⎦ .

For i ∈ {1, . . . , k} and m ∈ {1, . . . , pi } set
An

m,i :=
{

x ∈ R
N : x = y + tνi

m, y ∈ �i
m \ N�εn (S), t ∈ (−�n − εn, �n + εn)

}
,

where N�εn (S):={x ∈ R
N : |x − y| < �εn for some y ∈ S}. Using the fact that ∂� is

Lipschitz, it is possible to find n ∈ N and � > 0 such that for all n ≥ n, i ∈ {1, . . . , k} and
m ∈ {1, . . . , pi } it holds that An

m,i ⊂ �, and furthermore that either An
m,i = An

s, j , or

An
m,i ∩ An

s, j = ∅ (116)

for all n ≥ n, i, j ∈ {1, . . . , k}, m ∈ {1, . . . , pi }, and s ∈ {1, . . . , p j } with m �= s if
i = j (see Fig. 3). Without loss of generality, up to increasing the value of n, we can
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Fig. 3 The region shaded in red
depicts the tubular neighborhood
of the singular set of the partition
{�i }k

i=1. The main construction
of the recovery sequence is
carried out in the region shaded
in grey (color figure online)

Sn

ΩiΣi
3

Σi
2

Σi
1

An
1,i

An
2,i

An
3,i

assume that for all i ∈ {1, . . . , k} and m ∈ {1, . . . , pi } there exists only two different indexes
j1, j2 ∈ {1, . . . , k} such that

{
x ∈ R

N : x = y + tνi
m, y ∈ �i

m \ N�εn (S), t ∈ (−0, �n + εn)
}

⊂ � j1

and {
x ∈ R

N : x = y + tνi
m, y ∈ �i

m \ N�εn (S), t ∈ (−�n − εn, 0)
}

⊂ � j2 .

For n ∈ N set Sn :=N�εn (S), and notice that

LN (Sn) ≤ Dε2n, (117)

for some constant D > 0 depending only on HN−2(S).
Step 2: (definition of un close to �i

m). Let us first consider �1 \ Sn . Fix m ∈ {1, . . . , p1}.
Without loss of generality we can assume that �1

m ⊂ {xN = 0} and that the normal vector
ν1m = eN points outside �1. In the following we write points x ∈ R

N as x = (y, t) where
y ∈ R

N−1 and t ∈ R. For each n ∈ N, consider the sets

U j
n :={y ∈ R

N−1 : (y, 0) ∈ Q(y j , rn) ∩ (�1
m \ Sn)},

where y j ranges among the elements of rn
2 Z

N−1 × {0}. In the following we will consider

only the indices j for which U j
n �= ∅. Let ϕ j

n ∈ C∞
c (RN−1) be a function such that

0 ≤ ϕ
j
n ≤ 1, ϕ

j
n ≡ 1 in Q′(y j , eN , r ′

n), ϕ
j
n ≡ 0 on R

N−1 \ Q′(y j , eN , 2rn − r ′
n),

(118)∑
j

ϕ
j
n = 1 in �1

m, |∇ϕ
j
n | ≤ C

rn − r ′
n
, (119)

where C is a positive constant independent of n, and we used the notation in (90).
For every such index j , let γ j ∈ A(u−(y j ), u+(y j )) be a minimizing geodesic for
dW (y j , u−(y j ), u+(y j )) such that L(γ j ) < L , where L is the constant given in (115).

Then it is possible to find a sequence {γ j
n }n∈N of C1 curves in A(u−(y j ), u+(y j )) with
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(γ
j

n )′(s) �= 0 for all s ∈ (−1, 1) and such that

L(γ
j

n ) < L, lim
n→∞

∫ 1

−1

√
W (y j , γ

j
n (s))|(γ j

n )′(s)| ds = dW (y j , u+(y j ), u−(y j )).

(120)
Let τ j

n ∈ (0, �n) and g j
n ∈ C1((0, τ j

n )) be given by Lemma 4.5 corresponding to the choice
of

ε = εn, λ = ε
3
4
n , γ = γ

j
n .

Extend g j
n to the whole interval (0,∞) by setting g j

n (s):=1 for s ≥ τ
j

n . For each j , let
s j , q j ∈ {1, . . . , k} be such that u−(y j ) = zs j (y j ), and u+(y j ) = zq j (y j ). We then define

the function u j
n as follows:

(i) for y ∈ U j
n and t ∈ (0, �n) set

u j
n(y, t):=γ

j
n (g j

n (t));
(i i) for y ∈ U j

n and t ∈ (�n, �n + εn) set

u j
n(y, t):=zq j (y j ) + t − �n

εn

[
zq j (y, �n + εn) − zq j (y j )

] ;

(i i i) for y ∈ U j
n and t ∈ (−εn, 0) set

u j
n(y, t):=zs j (y j ) − t

εn

[
zs j (y,−εn) − zs j (y j )

]
.

Then, for (y, 0) ∈ �1
m \ Sn and t ∈ (−εn, εn + �n) define

un(y, t):=
∑

j

ϕ j (y)u j
n(y, t). (121)

Notice that, thanks to (118), un(y, t) = u j
n(y, t) for y ∈ Q′(y j , eN , r ′

n), and the number of
non-zero terms in the sum is bounded above by 3N . We repeat the same construction for all
m ∈ {1, . . . , p1}, and notice that thanks to (116) the functions un are well defined, as the
constructions in this step do not overlap.

Next, for

x ∈ �1 \
(

Sn ∪
p1⋃

m=1

{
z + tν1m ∈ R

N : z ∈ �1
m \ Sn, t ∈ (−εn, εn + �n)

})
,

define un(x):=z1(x).
Finally, we repeat the same argument for i = 2, . . . , k in the sets

�i \
⎛
⎝Sn ∪

⋃
j<i

p j⋃
m=1

{
z + tν j

m ∈ R
N : z ∈ �

j
m \ Sn, t ∈ (−εn, εn + �n)

}⎞⎠ ,

assuming that the normal ν j
m points outside the set � j .

Step 3: (estimate of the Lipschitz constant of un close to �i
m). Reasoning as in the previous

step, we assume without loss of generality that �i
m ⊂ {xN = 0}. Using the fact that the
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number of non-zero terms in the definition of un (see (121)) is bounded above by 3N , we
have that

Lip(un) ≤ 3N sup
j
Lip(ϕ j u

j
n) ≤ 3N C sup

j
[Lip(ϕ j ) + Lip(u j

n)] (122)

where in the second step we used (118) together with the fact that, by construction, and using
(115) it holds

max
j

‖u j
n‖L∞(�;RM ) ≤ C (123)

for some constant C > 0 independent of n. In order to estimate the second term in (122) we
reason as follows. Let y1, y2 ∈ U j

n and t1, t2 ∈ (0, �n). Using (112), our choice of ε and λ,
and the fact that minimizing geodesics are uniformly bounded, we get

|u j
n(y1, t1) − u j

n(y2, t2)| = |γ j
n (g j

n (t2)) − γ
j

n (g j
n (t1))|

≤ (ε
3
4
n + C)

1
2

εn
|t1 − t2|. (124)

Let y1, y2 ∈ U j
n and t1, t2 ∈ [�n, �n + εn). Then we can estimate

|u j
n(y1, t1) − u j

n(y2, t2)| ≤
∣∣∣∣u j

n(y1, t1) − t1 − �n

εn

[
zq j (y2, �n + εn) − zq j (y j )

]∣∣∣∣
+
∣∣∣∣ t1 − �n

εn

[
zq(y2, �n + εn) − zq j y j

]− u j
n(y2, t2)

∣∣∣∣
≤ t1 − �n

εn

∣∣zq j (y1, �n + εn) − zq j (y2, �n + εn)
∣∣

+ |t2 − t1|
∣∣∣∣
zq j (y1, �n + εn) − zq j (y j )

εn

∣∣∣∣

≤ Lip(zq j )|y1 − y2| + C |t2 − t1| (ε
5
4
n + r2n )

1
2

εn
. (125)

Similar computations show that, if y1, y2 ∈ U j
n and t1, t2 ∈ (−εn, 0), we get

|u j
n(y1, t1) − u j

n(y2, t2)| ≤ Lip(zs j )|y1 − y2| + C |t2 − t1|
√

ε2n + r2n
εn

. (126)

Step 4: (definition of un in �). We are now in position to define un in the whole �. Using
the estimates (122), (124), (125), and (126), Kirszbraun’s theorem ensures that it is possible
to extend un to a Lipschitz function, still denoted by un , defined in the whole � in such a
way that the Lipschitz constant of the extension is controlled by the Lipschitz constant of
the original function un . It is immediate to verify that un ∈ H1(�;RM ) and that un → u in
L1(�;RM ) as n → ∞.
Step 5: (estimate of the energy). We claim that Fn(un) → F0(u) as n → ∞. To show this,
we split � into several pieces and compute the asymptotic behavior of the energy Fn in each
of them. For i ∈ {1, . . . , k}, let �̃i

n be the set where un ≡ zi . Then

lim
n→∞

∫
�̃i

n

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx = 0, (127)

since W (x, un(x)) = 0 for x ∈ �̃i , and un has uniformly bounded gradient in that region.
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Fix one connected component � of (Ju ∩ �) \ Sn . Without loss of generality, we can
assume � ⊂ {xN = 0}. We first consider the transition region

In :=
⋃

j

{
(y, t) ∈ R

N : (y, 0) ∈ � ∩ (Q(y j , rn) \ Q(y j , r ′
n)
)
, t ∈ (−εn, �n + εn)

}
,

which we split in three parts. Let us start with

I 1n :=
⋃

j

{
(y, t) ∈ R

N : (y, 0) ∈ � ∩ (Q(y j , rn) \ Q(y j , r ′
n)
)
, t ∈ (−εn, 0)

}
.

Notice that

LN (I 1n ) ≤ C

(
rn − r ′

n

rn

)N−1

εn . (128)

Indeed, the number of (N − 1)-dimensional cubes we consider is of the order of r1−N
n ,

for each of which we are integrating over a volume of the order of εn(rn − r ′
n)N−1. Since

‖un‖L∞(�;RM ) ≤ C we have
W (x, un(x)) ≤ C, (129)

for all x ∈ In . Using (122), (126), (128), and (129) we get∫
I 1n

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx

≤
⎡
⎣ C

εn
+ εn

(
C

rn − r ′
n

+ Lip(u+) +
√

ε2n + r2n
εn

)2
⎤
⎦LN (I 1n )

≤ C

[
1

εn
+ εn

(
1

(rn − r ′
n)2

+ (Lip(u+))2 + ε2n + r2n
ε2n

)](
rn − r ′

n

rn

)N−1

εn

≤ C

[
1 +

(
εn

rn − r ′
n

)2

+ ε2n(Lip(u+))2 + ε2n + r2n

](
rn − r ′

n

rn

)N−1

= C

⎡
⎢⎣1 +

⎛
⎝ εn

ε
1
6+ 2

3
n

⎞
⎠

2

+ ε2n(Lip(u+))2 + ε2n + r2n

⎤
⎥⎦ ε

2(N−1)
3

n

→ 0, (130)

as n → ∞, where in the previous to last step we used (114).
Next, we prove that the energy contribution in the region

I 2n :=
⋃

j

{
(y, t) ∈ R

N : (y, 0) ∈ � ∩ (Q(y j , rn) \ Q(y j , r ′
n)
)
, t ∈ (0, �n)

}
,

is asymptotically negligible. We do this by noticing that

LN (I 2n ) ≤ C

(
rn − r ′

n

rn

)N−1

ε
5
8
n ,

and that, in view of (124) and (129), we have that

∫
I 2n

[
1

εn
W (x, un(x)) + εn |∇un |2

]
dx ≤

⎡
⎣ C

εn
+ εn

ε
3
4
n + C

ε2n

⎤
⎦LN (I 2n )
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≤ C

[
ε−1

n + ε
− 1

4
n

](
rn − r ′

n

rn

)N−1

ε
5
8
n

≤ Cε
− 3

8+ 2
3 (N−1)

n + Cε
2
3 (N−1)+ 3

8
n

→ 0, (131)

as n → ∞. Finally, we consider

I 3n :=
⋃

j

{
(y, t) ∈ R

N : (y, 0) ∈ � ∩ (Q(y j , rn) \ Q(y j , r ′
n)
)
, t ∈ (�n, �n + εn)

}
,

and notice that

LN (I 3n ) ≤ C

(
rn − r ′

n

rn

)N−1

εn .

In turn, by (125) and with similar computations to the ones in (130), we get

lim
n→∞

∫
I 3n

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx = 0. (132)

Therefore, from (130) –(132) we deduce that

lim
n→∞

∫
In

[
1

εn
W (x, un(x)) + εn |∇un x)|2

]
dx = 0. (133)

We now consider the region

Un :=
⋃

j

(
Q′(y j , eN , r ′

n) × (�n, �n + εn)
)

and observe that

LN (Un) ≤ C

(
r ′

n

rn

)N−1

εn . (134)

Let i ∈ {1, . . . , k} be such that Un ⊂ �i . Then, for x ∈ Q′(y j , eN , r ′
n) × (�n, �n + εn) it

holds

W (x, un(x)) = W (x, un(x)) − W (x, zi (x))

≤ Lip(W ; K )|un(x) − zi (x)|
≤ Lip(W ; K )|zi (y j ) − zi (y, �n + εn)|
≤ CLip(W ; K )Lip(zi )(ε

5
4
n + r2n )

1
2 , (135)

where in the previous to last step we used the triangle inequality together with fact that
un is a linear interpolation between zi (y j ) and zi (y, �n + εn). Here K > 0 is such that
un(x), zi (x) ∈ B(0, K ) for all x ∈ Q′(y j , eN , r ′

n) × (�n, �n + εn). Therefore, from (125)
and (135) we get
∫

Un

[
1

εn
W (x, un(x)) + εn |∇un |2

]
dx

≤ C

⎡
⎢⎣sup

i
Lip(zi )

(ε
5
4
n + r2n )

1
2

εn
+ εn

⎛
⎝ C

rn − r ′
n

+ Lip(u+) + (ε
5
4
n + r2n )

1
2

εn

⎞
⎠

2
⎤
⎥⎦LN (Un)
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≤ C

⎡
⎣ (ε

5
4
n + r2n )

1
2

εn
+ εn

(rn − r ′
n)2

+ ε
5
4
n + r2n

εn

⎤
⎦
(

r ′
n

rn

)N−1

εn

→ 0 (136)

as n → ∞, where the last step follows from (114) with analogous computations as those we
used to deduce (130).

With a similar argument it is possible to show that

lim
n→∞

∫
Ln

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx = 0, (137)

where

Ln :=
⋃

j

(
Q′(y j , eN , r ′

n) × (−εn, 0)
)
.

Moreover, using (117), (122), and (123) we also get

lim
n→∞

∫
Sn

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx = 0. (138)

Finally, we prove that

lim
n→∞

∫
G ′

n

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx = F0(u), (139)

where

G ′
n :=

⋃
j

(
Q′(y j , eN , r ′

n) × (0, �n)
) \ Sn .

Thanks to (133), we can equivalently consider the region

Gn :=
⋃

j

(
U j

n × (0, �n)
)

.

Moreover, the Lipschitz continuity of W gives

lim
n→∞

1

εn

∫
Gn

|W (x, un(x)) − W (yi , un(x))| dx

≤ lim
n→∞

1

εn

∑
j

∫
U j

n ×(0,�n)

|x − y j | dx

≤ lim
n→∞

1

εn

∑
j

∫
B(y j ,�n

√
N )

|x − y j | dx

= lim
n→∞

1

εn

∑
j

∫ �n
√

N

0
t NωN t N−1 dt

≤ lim
n→∞

1

εn

C

(rn)N−1

NωN

N + 1

(
�n

√
N
)N+1

≤ lim
n→∞ Cε

11
24 N− 5

24
n = 0, (140)
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since N ≥ 2. Therefore, using the fact that for every j and every n
∫ �n

τ
j

n

[
1

εn
W (y j , γ

j
n (g j

n (t))) + εn |(γ j
n (g j

n ))′(t)|2
]

dt = 0,

we see that

lim
n→∞

∫
G ′

n

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx

= lim
n→∞

∫
Gn

[
1

εn
W (x, un(x)) + εn |∇un(x)|2

]
dx

= lim
n→∞

∑
j

∫
U j

n ×(0,�n)

[
1

εn
W (y j , un(x)) + εn |∇un(x)|2

]
dx

= lim
n→∞

∑
j

HN−1(U j
n )

∫ �n

0

[
1

εn
W (y j , γ

j
n (g j

n (t))) + εn |(γ j
n (g j

n ))′(t)|2
]

dt

≤ lim
n→∞

∑
j

HN−1(U j
n )dW

(
y j , u+(y j ), u−(y j )

)

=
∫

�

dW (x, u+(x), u−(x)) dHN−1(x), (141)

where in the last step we used the fact that the function x �→ dW (x, u+(x), u−(x)) is
continuous on � (see Corollary 3.5), while the previous to last step follows from (120)
together with the result of Lemma 4.5.

Finally, since the number of connected components of (Ju ∩ �) \ Sn is finite, by (127),
(133), (136)–(139) we conclude. ��

We are now in position to prove the limsup inequality.

Proof of Proposition 4.3 For u ∈ BV (�; z1, . . . , zk), let {vn}n∈N be the sequence of functions
in BV (�; z1, . . . , zk) provided by Lemma 4.4. In particular, recall that each vn can bewritten
as

vn =
k∑

i=1

zi1�i
n
,

where each �i
n is a polyhedral set, that vn → u in L1(�;RM ), and that

lim
n→∞F0(vn) = F0(u).

By an application of Lemma 4.6, for each n ∈ N there exists a sequence {wn
m}m∈N of functions

in H1(�;RM ) such that wn
m → vn in L1(�;RM ) and

lim
m→∞Fn(wn

m) = F0(vn).

Therefore, by using a diagonalization argument, it is possible to find a sequence {mn}n∈N
such that the sequence {un}n∈N of functions in H1(�;RM ) defined as un :=wn

mn
is such that

un → u in L1(�; RM ) and

lim
n→∞Fn(un) = F0(u).

This concludes the proof. ��
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5 Proofs of the variants of themain results

In this section we discuss how to suitably modify our arguments to obtain the proofs for
the several variants we consider. In the following, in order to keep the notation as simple as
possible, the value of the constant C > 0 might change from one instance to another.

5.1 Proof of Theorem 1.5

To prove the compactness result, we notice that

Fn(u) ≤ FM
n (u)

for all u ∈ L1(�;RM ). Therefore, for any sequence {un}n∈N ⊂ L1(�;RM ), we have that

sup
{FM

n (un) : n ∈ N
}

< ∞ �⇒ sup {Fn(un) : n ∈ N} < ∞.

By an application of Proposition 4.1, we get that up to the extraction of a subsequence
(which we do not relabel) un → u in L1(�;RM ), for some u ∈ BV (�; z1, . . . , zk) with
F0(u) < ∞. Since

M = lim
n→∞

∫
�

un(x) dx =
∫

�

u(x) dx,

we also deduce that FM
0 (u) < ∞.

Since the proof of the liminf inequality remains unchanged, we omit the details. Next, we
discuss how to construct the recovery sequence. Our approach is inspired by that of [39]. To
be precise, let u ∈ BV (�; z1, . . . , zk) with∫

�

u(x) dx = M,

and let {wn}n∈N ⊂ BV (�; z1, . . . , zk) be the sequence provided by Lemma 4.4. Without
loss of generality, we can assume that

∫
�

|u(x) − wn(x)| dx ≤ εn . (142)

For each n ∈ N, by applying Lemma 4.6 to the function wn , it is possible to find vn ∈
H1(�;RM ) such that

|Fn(vn) − F0(wn)| ≤ εn, (143)

and such that (see Step 1 and 2 in the proof of Lemma 4.6)

LN (En) ≤ Cε
5
8
n , (144)

for some constantC > 0 independent of n, where En :={x ∈ � : vn(x) �= wn(x)}. Moreover,
for n ∈ N, let

ηn :=
∫

�

u(x) dx −
∫

�

vn(x) dx,

and define

ṽn(x):=vn(x) + ηn

LN (�)
.
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Notice that ṽn satisfies the mass constraint, i.e.,
∫

�

ṽn(x) dx = M.

Notice also that in view of (142) and (144) we get

|ηn | ≤ Cε
5
8
n (145)

and so ‖̃vn − wn‖L1(�;RM ) ≤ Cε
5
8
n . Moreover, recalling that p �→ W (x, p) is smooth for

p ∈ B(zi (x), r) for all i ∈ {1, . . . , k}, that ∇pW (x, zi (x)) = 0 for all x ∈ �, and since
‖vn‖L∞(�;RM ) ≤ C for some constant C > 0 independent of n, an application of Taylor’s
formula yields

FM
n (̃vn) =

∫
�

[
1

εn
W (x, ṽn(x)) + εn |∇ṽn(x)|2

]
dx

= 1

εn

∫
�\En

[
W (x, vn(x)) + ∇pW (x, vn(x)) · ηn + 1

2
∇2

ppW (x, ξn(x))[ηn, ηn]
]

dx

+ 1

εn

∫
En

W (x, ṽn(x)) dx +
∫

�

εn |∇vn(x)|2 dx

= 1

εn

∫
�\En

[
W (x, vn(x)) + ∇pW (x, vn(x)) · ηn + 1

2
∇2

ppW (x, ξn(x))[ηn, ηn]
]

dx

+ 1

εn

∫
En

W (x, vn(x)) dx + 1

εn

∫
En

[W (x, ṽn(x)) − W (x, vn(x))] dx

+
∫

�

εn |∇vn(x)|2 dx

≤ Fn(vn) + |ηn |2
εn

∫
�\En

|∇2
ppW (x, ξn(x))| dx + Lip(W ; C)

|ηn |LN (En)

εn

≤ Fn(vn) + C
|ηn |2
εn

+ Lip(W ; C)
|ηn |LN (En)

εn
.

Here |ξn(x) − vn(x)| ≤ |ηn | for all x ∈ �. In view of the result of Lemma 4.4 together with
(143)–(145) we get

lim
n→∞FM

n (̃vn) = FM
0 (u).

This concludes the proof. ��

Remark 5.1 It would be interesting to understand if the mass constraint can play a role
in weakening the assumptions on W . In this case, one might conjecture that the strategy
implemented in [43] would allow one to drop the assumption (H.4). It is not immediately
clear whether this is possible since (H.4) plays a crucial role in obtaining the pivotal estimate
(70).

Remark 5.2 For the proof of Theorem 1.5, we opted to use a different approach than the one
proposed in [11]. The reason for this is that, to the best of our understanding, the argument
in [11] has a flaw that we were not able to correct.
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5.2 Proof of Theorem 1.7

In the proof of the compactness result we only need to modify the definition of R′ in (62) as
follows:

R′:=Rg + �W (Rg), where Rg:=max{R, ‖g‖L∞(�;RM )}.
This is done in order to get (67) and

dW1(x, zi (x), g(x)) = dW (x, zi (x), g(x))

for all i ∈ {1, . . . , k} and x ∈ ∂�.
The liminf inequality is obtained as follows. Let u ∈ BV (�; z1, . . . , zk). Let �̃ ⊃ �

be an open bounded set with Lipschitz continuous boundary and define the function ũ ∈
BV (�̃;RM ) as

ũ:=
{

u in �

g̃ in �̃ \ �
(146)

where g̃ ∈ Lip(�̃ \ �;RM ) is such that g̃ = g on ∂�. We then conclude by repeating the
argument in the proof of Proposition 4.2 to the function ũ.

The only change we need to make to the construction of the recovery sequence is in
Lemma 4.6. Let u ∈ BV (�; z1, . . . , zk) be as in the statement of Lemma 4.6, and define
ũ ∈ BV (�̃;RM ) as in (146). Extend W and z1, . . . , zk to locally Lipschitz functions defined
in �̃×R

M ×R
M and �̃ respectively. Set zk+1:=g̃. By applying the construction in the proof

of Lemma 4.6 to ũ in �̃, we obtain a sequence {̃un}n∈N ⊂ H1(�̃;RM ) such that

lim
n→∞

∫
�

|̃un(x) − u(x)| dx = 0, Tr(̃un) = g on ∂�.

Moreover, by looking at the energy estimates (127), (133), (136)–(139), we get

lim
n→∞FD

n (un) = F0(u) +
∫

∂�

dW (x,Tr u(x), g(x)) dHN−1(x).

This concludes the proof. ��

5.3 Proof of Theorem 1.9

Since the proof of the compactness result remains essentially unchanged, we omit the details.
We only notice that since in (86) one can have ω = 0, we do not recover (87), and thus we
cannot in general conclude that u ∈ BV (�; z1, . . . , zk).

Recall that in view of Remark 1.8, if u ∈ L1(�,RM ) is such that u(x) ∈
{z1(x), . . . , zk(x)} for LN -a.e. x ∈ �, the collection of sets {{x ∈ � : u(x) = zi (x)}}k

i=1
does not necessarily give a partition of �. On the other hand, as one can readily check, it
is possible to find sets �1, . . . , �k which are measurable and pairwise disjoint and with the
property that u(x) = zi (x) for LN -a.e. x ∈ �i . In particular, this ensures that it is possible
to write

u =
k∑

i=1

zi1�i (147)

almost everywhere in �, where {�i }k
i=1 is a partition of � in sets that are not necessarily of

finite perimeter.
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The proof of the liminf inequality follows closely that of Proposition 4.2; the only changes
required are described here in detail for the reader’s convenience. For x0 ∈ Ju as in (89),
let i1, i2 ∈ {1, . . . , k} be such that for every ε > 0 there exists ρ̄ with the property that (91)
holds for every ρ ≤ ρ̄. Set

J1:=
{

j ∈ {1, . . . , k} : z j (x0) = zi1(x0)
}
,

J2:=
{

j ∈ {1, . . . , k} : z j (x0) = zi2(x0)
}
.

With these notations at hand, reasoning as in (92) we arrive at

ε ≥
∑
j /∈J1

(
δ1(x0)

ρN

∫
Q+(x0,ν,ρ)

1� j (x) dx − Lip(z j )c(N )ρ

)
, (148)

where the sets � j are defined as in (147) and δ1(x0):=min
{|zi1(x0) − z j (x0)| : j /∈ J1

}
.

Arguing as in the proof of Proposition 4.2 with (148) in place of (92) yields the following
analogue to (106):

lim inf
n→∞ μn(Rm(x0, ν)) ≥

k∑
i, j=1

∫
Q′

m (i, j)
dFm (zi (x ′, r+

m ), z j (x ′, r−
m )) dx ′

≥
∑
i∈J1

∑
j∈J2

∫
Q′

m (i, j)
dFm (zi (x ′, r+

m ), z j (x ′, r−
m )) dx ′ − CρN−1

m

m
.

Notice that in view of (147) the sets {Q′
m(i, j)}k

i, j=1 are pairwise disjoint. Moreover, since
for every i ∈ J1 and every j ∈ J2 it holds

dFm (zi (x ′, r+
m ), z j (x ′, r−

m )) ≥ dFm (zi1(x0), zi2(x0)) + O(1), (149)

the rest of the proof follows without changes (see (107)).
In the proof of the limsup inequality we need an additional approximation before applying

Lemma 4.4 since, as priviously discussed in Remark 1.8, functions u ∈ L1(�;RM ) with
F̃0(u) < ∞ can be such that HN−1(Ju) = ∞. The following result is adapted from [14,
Lemma 4.3].

Lemma 5.3 Let u ∈ L1(�;RM ) with F̃0(u) < ∞ and u(x) ∈ {z1(x), . . . , zk(x)} forLN -a.e.
x ∈ �. Then there exits a sequence {un}n∈N ⊂ BV (�; z1, . . . , zk) with

un =
k∑

i=1

zi1�i
n
,

where {�i
n}k

i=1 is Caccioppoli partition of �, such that un → u in L1(�;RM ) and

lim
n→∞ F̃0(un) = lim

n→∞

k−1∑
i=1

k∑
j=i+1

∫
∂∗�i

n∩∂∗� j
n

dW (x, zi (x), z j (x)) dHN−1(x) ≤ F̃0(u).

Proof We divide the proof into two steps.
Step 1: Let {�i }k

i=1 be a partition of � such that (147) holds, and notice that we can assume
without loss of generality that for every i ∈ {1, . . . , k}

LN
(
�i ∩ {x ∈ � : u(x) = z j (x)}

)
> 0 �⇒ j ≤ i .
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For i = 1, . . . , k − 1 and j = i + 1, . . . , k consider the Lipschitz function γi j : � → [0,∞)

given by γi j (x):=|zi (x) − z j (x)| and, for t > 0, set

Et
i j :=

{
x ∈ � : 0 < γi j (x) ≤ t

}
.

The co-area formula (see [6, Theorem 2.93]) gives us∫ ∞

0
HN−1(∂∗Et

i j ) dt =
∫

�

|∇γi j (x)| dx < ∞,

from which we infer that the function t �→ HN−1(∂∗Et
i j ) belongs to the space L1((0,∞)).

In turn, it is possible to find a sequence {tn}n∈N ⊂ (0,∞) with tn ↘ 0 such that, for all
i = 1, . . . , k − 1 and j = i + 1, . . . , k, we have

∂∗Etn
i j = {x ∈ � : γi j (x) = tn}, (150)

and
lim

n→∞ tnHN−1(∂∗Etn
i j ) = 0. (151)

For i ∈ {1, . . . , k} and n ∈ N set Etn
ii :=∅. For n ∈ N define

�1
n :=�1 ∪

k⋃
j=2

⎡
⎣Etn

1 j ∩
⎛
⎝(�1 ∪ � j ) \

⋃
r �=1, j

(
Etn
1r ∪ Etn

jr

)⎞⎠
⎤
⎦

and, for i = 2, . . . , k,

�i
n :=�i ∪

k⋃
j=i+1

⎡
⎣Etn

i j ∩
⎛
⎝(�i ∪ � j ) \

⋃
r>i,r �= j

(
Etn

ir ∪ Etn
jr

)⎞⎠
⎤
⎦ \

i−1⋃
j=1

�
j
n .

Note that {�i
n}k

i=1 is a partition of �. We claim that the sets �i
n are of finite perimeter in �.

To prove this, for each n ∈ N, let ωn > 0 be such that

inf
{

dW (x, zi (x), z j (x)) : x ∈ � \ Etn
i j

}
≥ ωn (152)

for all i �= j . For i ∈ {1, . . . , k} set J i
u :={x ∈ Ju : u−(x) = zi (x)} and note that

F̃0(u) =
∫

Ju

dW (x, u+(x), u−(x)) dHN−1(x)

≥
∫

J i
u

dW (x, u+(x), u−(x)) dHN−1(x)

≥
∫

J i
u\⋃ j �=1 Etn

i j

dW (x, u+(x), u−(x)) dHN−1(x)

≥ ωnHN−1

⎛
⎝J i

u \
⋃
j �=1

Etn
i j

⎞
⎠

= ωn

∑
r �=i

HN−1

⎛
⎝∂1/2�i

n ∩ ∂1/2�r
n \

⋃
j �=1

Etn
i j

⎞
⎠

= 2ωnHN−1

⎛
⎝∂1/2�i

n \
⋃
j �=1

Etn
i j

⎞
⎠ ,
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where in the last step we used the fact that u(x) ∈ {z1(x), . . . , zk(x)} for LN -a.e. x ∈ �.
Using the fact that each of the sets Etn

i j has finite perimeter, and recalling that by assumption

F̃0(u) < ∞, we conclude.
Step 2: Define

un :=
k∑

i=1

zi1�i
n
.

Since the sets �i
n are of finite perimeter in �, it follows from [6, Theorem 3.84] that un ∈

BV (�; z1, . . . , zk), and that it is possible to write

F̃0(un) =
k−1∑
i=1

k∑
j=i+1

∫
∂∗�i

n∩∂∗� j
n

dW (x, zi (x), z j (x)) dHN−1(x). (153)

Using the fact that ‖zi‖L∞(�;RM ) ≤ C < ∞, we deduce that

lim
n→∞ ‖un − u‖L1(�;RM ) ≤ lim

n→∞ C
k−1∑
i=1

k∑
j=i+1

LN (Etn
i j ) = 0.

Moreover, by (57) we infer that there exists C < ∞ such that

dW (x, zi (x), z j (x)) ≤ C |zi (x) − z j (x)|, (154)

for all x ∈ � and all i �= j . Using (151), (153), and (154), we obtain

lim
n→∞ F̃0(un) ≤ lim

n→∞

⎡
⎣C

k−1∑
i=1

k∑
j=i+1

tnHN−1(∂∗ Etn
i j ) +

∫
Ju\Etn

dW (x, u+(x), u−(x)) dHN−1(x)

⎤
⎦

≤ lim
n→∞

∫
Ju\Etn

dW (x, u+(x), u−(x)) dHN−1(x)

= F̃0(u),

where Etn :=⋃i �= j Etn
i j . This concludes the proof. ��

The rest of the proof of Theorem 1.9 follows by a diagonal argument without additional
changes; therefore we omit the details. ��

5.4 Final remarks

We conclude this section by remarking that Proposition 4.2 and Proposition 4.3 can be
proved independently of Proposition 4.1. Indeed, we only invoke our compactness result in
Proposition 4.2 to deduce that for a given u ∈ L1(�;RM ) the following hold:

(i) the jump set Ju is countably HN−1-rectifiable;
(ii) if {un}n∈N ⊂ H1(�;RM ) with supn∈N Fn(un) < ∞ is such that un → u in

L1(�;RM ), then u(x) ∈ {z1(x), . . . , zk(x)} for LN -a.e. x ∈ �.

Notice that, in view of the recent result [26], property (i) holds for all u ∈ L1
loc(�;RM ), while

(ii) is readily derived reasoning as follows: without loss of generality, up to the extraction of
a subsequence, we can assume that un(x) → u(x) for LN -a.e. x ∈ �. Let

A:= {x ∈ � : u(x) /∈ {z1(x), . . . , zk(x)}} ,
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and, arguing by contradiction, suppose that LN (A) > 0. Then Fatou’s lemma gives

0 <

∫
A

W (x, u(x)) dx ≤ lim inf
n→∞

∫
A

W (x, un(x)) dx ≤ lim inf
n→∞ Cεn = 0,

where C > 0 is independent of n. Consequently, we see that assumption (H.4) is used only to
deduce (25), which, together with (H.1)–(H.3), is needed to ensure that we are in a position to
apply Proposition 3.2 and Corollary 3.5. In conclusion, the�-convergence results of Sect. 1.2
hold for a potential W satisfying (H.1)–(H.3) and (25) in place of (H.4).
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