The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/23326

Please be advised that this information was generated on 2019-08-21 and may be subject to change.
Vascular perfusion and hypoxic areas in RIF-1 tumours after photodynamic therapy

1PJ van Geel1, H Oppelaart1, PFJW Rijken2, HJJA Bernsen2, NEM Hagemeier2, AJ van der Kogel2, RJ Hodgkiss1 and FA Stewart1

1Division of Experimental Therapy, The Netherlands Cancer Institute/Antoni van Leeuwenhoekhuis, Amsterdam; 2Institute of Radiotherapy, University of Nijmegen, The Netherlands; 3Gray Laboratory, London, UK.

Summary The influence of photodynamic therapy (PDT) on vascular perfusion and the development of hypoxia was investigated in the murine RIF-1 tumour. Image analysis was used to quantify changes in perfusion and hypoxia at 5 min after interstitial Photofrin-mediated PDT. The fluorescent stain Hoechst 33342 was used as an in vivo marker of functional vascular perfusion and the antibody anti-collagen type IV as a marker of the tumour vasculature. The percentage of total tumour vasculature that was perfused decreased to less than 30% of control values after PDT. For the lower light doses this decrease was more pronounced in the centre of the tumour. The observed reduction in vascular perfusion showed a good linear correlation (r = 0.98) with previously published tumour hypoxia data obtained with the 15O2 extraction technique. The image analysis technique provides extra information concerning the localisation of (non)-perfused vessels. To detect hypoxic tumour areas in vivo, an immunohistochemical method was used employing NITP [7-(4′-(2-nitroimidazol-1-yl)-butyl)theophylline]. A large increase in hypoxic areas was found for PDT-treated tumours. More than half the total tumour area was hypoxic after PDT, compared with <4% for control tumours. Our studies illustrate the potential of image analysis systems for monitoring the functional consequences of PDT-mediated vascular damage early after treatment. This provides direct confirmation that the perfusion changes lead to tissue hypoxia, which has implications for the combined treatment of PDT with bioreductive drugs.

Keywords: photodynamic therapy; Photofrin; RIF-1; vascular perfusion; hypoxia; image analysis

The three-dimensional growth of solid tumours requires a vascular network of new capillaries. These new capillaries lack a supporting architecture and are thin-walled and leaky. The lack of a smooth muscle wall also renders them less responsive to vasomotor stimuli and more prone to compression, especially in larger tumours in which the interstitial pressure is raised. Thus, a tumour often has oxygen diffusion gradients and a relatively poor nutrient supply, which may result in areas of necrosis (Trotter et al., 1989; Vaupel et al., 1989; Folkman, 1993). There is a close relationship between the width of the viable cell rim around the vessels and the distance that oxygen diffuses through the tumour. In certain tumour types, small areas of necrosis are seen between the blood vessels, i.e. a corded tumour structure (Thomlinson and Gray, 1955). Central necrosis is also a common feature of larger tumours. Cells under extremely low \(pO_2 \) values are likely to exist close to the areas of necrosis. These areas of chronic hypoxia are the result of oxygen diffusion limitations. Transient, acute hypoxia has also been demonstrated in tumours (Trotter et al., 1989). This is a perfusion-limited hypoxia that is caused by a temporary interruption of blood flow within the vasculature as the vessels undergo spontaneous opening and closing. Both chronic and acute mechanisms are responsible for the presence of hypoxic cells in tumours (Chaplin et al., 1987).

The percentage of hypoxic cells in a tumour may alter during therapy as previously hypoxic cells reoxygenate or new areas become hypoxic. Simple, rapid tests for the presence of hypoxic cells in tumours (e.g. Hirsch et al., 1987; Hodgkiss et al., 1991) could enable therapies like radiotherapy and photodynamic therapy (PDT) to be optimised on the basis of the oxygen status of the tumours. The hypoxic marker NITP [7-(4′-(2-nitroimidazol-1-yl)-butyl)theophylline] (Hodgkiss et al., 1991) detects the presence of severely hypoxic cells, since nitroimidazoles are reduced in vitro at low oxygen levels, with \(K \) values of 0.02–0.2% oxygen (oxygen level required for half-maximum sensitivity) depending on cell line and compound (Taylor and Rautah, 1982; Mulcahy, 1984; Hodgkiss et al., 1991). Hypoxia represents a potential disadvantage to tumour cell killing by PDT, since fully hypoxic cells are completely resistant to this treatment; \(K \) values of 0.5–1% oxygen have been determined for PDT cell killing in vitro (Henderson and Fingar, 1987; Chapman et al., 1991a). Consequently even if all the oxygenated cells of a tumour are killed by PDT, a hypoxic subpopulation could survive and allow the tumour to regrow. Severe PDT-induced vascular damage, which results in oxygen and nutrient deprivation, does, however, lead to secondary tumour cell death of these hypoxic cells (Henderson et al., 1985). An understanding of the oxygen status of the tumour before and after PDT is very important for optimising treatment schedules, particularly if PDT is to be combined with bioreductive drugs. Intervention with bioreductive drugs could potentially increase the killing of naturally occurring hypoxic tumour cells or cells rendered hypoxic by PDT (Gonzalez et al., 1986; Brenner et al., 1992; Baas et al., 1994). Hypoxia can occur even before the development of PDT-induced vascular damage. The photochemical processes involved in PDT consume oxygen very rapidly and oxygen depletion can occur during continuous illumination, particularly at high fluence rates (Foster et al., 1991).

The purpose of this study was to analyse the patterns of vasculisation and hypoxic areas simultaneously in the RIF-1 tumour before and after PDT and to examine the influence of PDT on vascular perfusion and oxygen status in the tumour. The morphology of the vasculature was visualised with an antibody directed against the basal lamina of the blood vessels and areas of functional perfusion were identified with Hoechst 33342. For identifying the hypoxic areas in the tumour, the immunologically detectable hapten theophylline was used, covalently bound to a 2-nitroimidazole (NITP).
Materials and methods

Animal models

All experiments were carried out in accordance with protocols approved by the local experimental animal welfare committee and conformed to national and European regulations for animal experimentation. Female C3H/Fe mice were used, weighing 21 ± 3 g at an age of 11–16 weeks. Approximately 1 x 10^6 RIF-1 cells (maintained and passaged according to recommended in vivo/in vitro protocols described by Twentyman et al. (1980)) were inoculated subcutaneously on the lower dorsal of mice, which were briefly anaesthetised with enlurane. Tumour growth was documented three times per week by caliper measurements in three orthogonal diameters. PDT treatment was given 11–15 days (mean 12.2±0.4 s.e.) after inoculation, when the tumour had reached a mean diameter of 5–6 mm. The tumours were free of evident necrosis at these sizes.

Interstitial photodynamic therapy of tumours

The mice were injected i.p. with Photofrin (supplied by Quadra Logic Technologies, Vancouver, Canada). Photofrin was dissolved in 5% dextrose at a concentration of 2 mg ml^-1^ (for a dose of 10 mg kg^-1^). The photosensitiser was injected 1 day before illumination. This time interval was based on previous studies to establish times of maximum drug uptake and photosensitisation (van Geel et al., 1995e).

The light source was a dye laser (Spectra Physics model 373) pumped by a 12 W argon laser (Spectra Physics model 171). DCM ([4-(dicyanomethylene)-2-methyl-6-(p-dimethylanilino)-4H-pyra- ne]4H-pyrazine: Radiant Dyes Chemie, Wermelkirchen, Germany) was used as the dye to obtain red laser light of 628±3 nm (mono Chromator Oriel model 77320). The light was directed into a beam splitter that divided the light equally among four outputs, to which non-scintillating polystyrene fibres (Bicron BCF, 1 mm outer diameter) with 1 cm cylindrical diffusing tips were attached. The output from each fibre was adjusted to 100 mW cm^-2^ and end-gives of 30–200 J cm^-2^ were delivered by varying the exposure time from 5 to 34 min. The diffusing fibres were inserted through the centre of the tumours of anaesthetised mice held in restraining jigs, as described by Baas et al. (1993). Mice were kept in subdued light after receiving the photosensitiser.

6^4^RbCl extraction of estimates of vascular perfusion

Vascular perfusion relative to the cardiac output was measured using the 6^4^RbCl extraction technique as described previously (van Geel et al., 1996). These results have been previously reported but are included here for comparison with the image analysis estimates of perfusion.

Staining of perfused vessels

The perfusion marker Hoechst 33342 (Aldrich, Milwaukee, WI, USA) was dissolved in sterile saline immediately before use. Mice were injected i.v. via one of the lateral tail veins with 0.1 ml Hoechst (at a concentration of 9 mg ml^-1^) 5 min after illumination. Mice were killed by cervical dislocation 120 min after administration of the drug. At this time, immunohistochemical detection of the bound theophylline groups in mouse tumours has been shown to be optimal (Hodgkiss et al., 1991). Previous studies had demonstrated no significant difference in vascular perfusion determined by 42^8^Rb extraction at 5 min or 2 h and 6^4^PDT of RIF-1 tumours (van Geel et al., 1994). Freshly excised tumours were frozen immediately in liquid nitrogen and stored at −70°C until they were sectioned. The method described by Hodgkiss et al. (1991), with minor modifications, was used to stain hypoxic areas. Frozen sections were air dried and fixed in cold acetone. Non-specific sites were blocked with 0.5% normal goat serum in PBS. A rabbit antitheophylline antibody (Sigma), diluted 1:2 in PBS, was applied and the sections incubated for 1 h. Pilot studies indicated that the best results were obtained with this dilution. After washing in PBS the sections were incubated for 1 h with a second biotinylated antibody (1:100). Subsequently, avidin alkaline phosphatase (Sigma) was added and the sections were incubated for 45 min. After final washings with PBS the enzyme substrate (containing 0.04% 4-nitro-blue tetrazolium chloride +0.02% 5-bromo-4-chloro-3-indolyl phosphate +0.8% dimethylformamide in 0.1 mM Tris/HCl buffer pH 9.5 + 50 mM magnesium chloride +0.1 mM sodium chloride) was added, resulting in a red purplish staining of the hypoxic areas (Coco Martin et al., 1992).

Image analysis

Whole tumour sections were automatically scanned using a digital image processing system to quantitate tumour vascular area and percentage of perfused vessels (after staining of sections for collagen and in vivo Hoechst injection respectively). The digital imaging procedure is described in detail by Rijken et al. (1995). Briefly, the tumour sections were scanned twice on the computer-controlled motorised stage (Märzhäuser, Wetzlar, Germany) of a fluorescence microscope (Zeiss, Oberkochen, Germany) using two different filters (Hoechst and TRITC detection) and an intensified solid state camera (MXRi: HCS, Linden, The Netherlands). Major artefacts such as air bubbles and mechanically damaged areas were excluded from analysis. Each image was processed to detect the stained structures using the following processing operations: image reduction, shading correction, object isolation from the background using a previously determined threshold. Per tumour section, new threshold values could be determined interactively before scanning the section if intensity differences between sections occurred. After processing all fields of each scan (field size: 1.22 mm^2^, 10× objective: digital imaging application TCI-image, TNO, Delft, The Netherlands) the scanned area was reconstructed into one large image. This resulted in two composite images, one with vascular structures (as stained with TRITC; figure...
A measurement of hypoxic areas in the same tumour (adjacent area by the tumour area. (Figure 1c). The area of the overlapping vasculature divided was perfused by Hoechst 33342 at the time of injection over the total vascular area yielded the perfused fraction (PF) of the overlapping stained vessels represented the vasculature, which area. When the two composite images were combined, the composite images, obtained after scanning tumour sections of the RIF-1 tumour using a semi automated image analysis system, to analyse vasculature and perfused vessels in the same tumour section. (a) First scan of vasculature (stained with anti-collagen IV). (b) Second scan of perfused vessels (Hoechst). (c) Overlap of (a) and (b) to indicate the vascular structures that were perfused.

Figure 1 Black and white illustrations of the combination of composite images, obtained after scanning tumour sections of the RIF-1 tumour using a semi-automated image analysis system, to analyse vasculature and perfused vessels in the same tumour section. (a) First scan of vasculature (stained with anti-collagen IV). (b) Second scan of perfused vessels (Hoechst). (c) Overlap of (a) and (b) to indicate the vascular structures that were perfused.

1a) and another with the perfused areas (Hoechst; Figure 1b). The relative vascular area (RVA) is defined as the total surface of all vascular structures divided by the total tumour area. When the two composite images were combined, the overlapping stained vessels represented the vasculature, which was perfused by Hoechst 33342 at the time of injection (Figure 1c). The area of the overlapping vasculature divided by the total vascular area yielded the perfused fraction (PF) in this tumour section. The relative perfused tumour area (RPTA) was determined by dividing the perfused vascular area by the tumour area.

To compare spatial distribution of perfused vessels with measurement of hypoxic areas in the same tumour (adjacent sections), Hoechst 33342 was injected 150 min after NITP and the mice were sacrificed 1 min after Hoechst 33342 injection. After staining for hypoxia, clear red purple areas were detected under the light microscope. The whole tumour sections were then scanned, using a charged-coupled device (CCD) camera (MX-5, HCS, Eindhoven, The Netherlands), a light microscope (Zeiss) and the same staged-coupled computer system with digital imaging application as described earlier, for quantitative analysis of hypoxic areas. Again, the scanned area was reconstructed into one large image. The relative hypoxic area (RHA) was expressed as the total surface of the hypoxic areas divided by the total tumour surface. For illustration of the spatial relationship between hypoxic and perfused areas, the image of perfused vessels stained by Hoechst in adjacent tumour sections was merged with the image of hypoxic areas. The perfused vessels stained blue and hypoxic areas were given a pseudocolour green.

Statistical analysis

The means and standard errors (s.e.) were calculated for three sections of each of the central and/or peripheral areas of each tumour (n = 2-4) and used for further statistical analysis. The significance of differences in vascular parameters or the level of hypoxia for the control and treated groups was determined according to the Student's t-test. P-values < 0.05 were considered significant.

Results

Vascular perfusion

The mean relative vascular area (RVA) as determined by image analysis varied from 4 to 12% for control (untreated, Photofrin or light alone) and treated tumours (see Table I). Within the same tumour the mean RVA was generally fairly homogeneous throughout the whole tumour (Figure 2a and b), although the periphery was slightly, but not significantly, better vascularised than the centre of the tumour after light alone. No significant difference was found between the mean RVA of the untreated control group and all the other groups (drug alone, light alone or PDT).

The mean relative perfused tumour area (RPTA) of untreated control tumours was 3.0 ± 1.1%. There was a reduction after Photofrin or light alone (2.2 ± 0.3% and 1.5% ± 0.2% respectively) which was most marked in central areas of tumours treated with light alone, probably caused by fibre insertion (Table I). The ⁴²Rb extraction technique (separate tumours) also demonstrated a small, but significant decrease in blood flow of tumours treated with fibre or light alone (van Geel et al., 1994). PDT with 200 J cm⁻¹ caused a further reduction in relative perfused tumour area to 0.7 ± 0.3%; the perfusion fraction (PF) in these tumours was homogeneous throughout the whole tumour. Previous studies had demonstrated that Photofrin-mediated PDT with 200 J cm⁻¹ resulted in a tumour regrowth rate (to 2 mm larger than treatment size) of 16.0 ± 0.9 days compared to 2.8 ± 0.1 days for untreated controls; no cures were found with this light dose (van Geel et al., 1995a,b). Tumours treated with PDT at lower light doses (30-60 J cm⁻¹) also had reduced RPTA, which was most evident in the central parts of the tumour (Figure 2b). After these lower light doses the tumours all regrew in less than 8 days (van Geel et al., 1995b).

PDT caused a dose-dependent reduction in tumour perfusion (Figure 3), as assessed by image analysis. The PF of the RIF-1 tumour decreased significantly from 34.5 ± 9.7% in untreated tumours to 10.8 ± 2.5% at 5 min after 200 J cm⁻¹. These vascular perfusion data showed a good linear correlation (r = 0.98) with tumour perfusion previously estimated by the ⁴²Rb extraction technique (van Geel et al., 1994) (Figure 4).
Table 1 Vascular and hypoxic parameters of the RIF-1 tumour

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Tumour</th>
<th>RVA (%)</th>
<th>RPTA (%)</th>
<th>PF (%)</th>
<th>RHA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated control</td>
<td>c</td>
<td>8.5 ± 3.4</td>
<td>2.8 ± 0.8</td>
<td>35.0 ± 7.0</td>
<td>3.6 ± 0.01</td>
</tr>
<tr>
<td>p</td>
<td>12.2 ± 3.9</td>
<td>3.9 ± 1.1</td>
<td>34.2 ± 14.9</td>
<td>3.5 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>9.4 ± 4.1</td>
<td>3.0 ± 1.1</td>
<td>34.5 ± 9.7</td>
<td>3.5 ± 0.2</td>
<td></td>
</tr>
<tr>
<td>Photofrin alone (10 mg kg⁻¹)</td>
<td>c</td>
<td>5.9 ± 1.0</td>
<td>2.1 ± 0.2</td>
<td>35.3 ± 8.8</td>
<td>3.2 ± 1.1</td>
</tr>
<tr>
<td>p</td>
<td>6.8 ± 0.1</td>
<td>2.3 ± 0.4</td>
<td>35.4 ± 5.6</td>
<td>2.1 ± 0.6</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>6.3 ± 0.5</td>
<td>2.2 ± 0.3</td>
<td>36.6 ± 8.4</td>
<td>2.5 ± 0.7</td>
<td></td>
</tr>
<tr>
<td>Light alone (200 J cm⁻¹)</td>
<td>c</td>
<td>3.9 ± 0.4</td>
<td>0.7 ± 0.6</td>
<td>20.8 ± 17.1</td>
<td>3.0 ± 1.4</td>
</tr>
<tr>
<td>p</td>
<td>7.4 ± 2.4</td>
<td>2.3 ± 1.0</td>
<td>30.2 ± 14.1</td>
<td>5.3 ± 3.4</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>5.6 ± 1.4</td>
<td>1.5 ± 0.2</td>
<td>25.5 ± 6.5</td>
<td>4.5 ± 2.8</td>
<td></td>
</tr>
<tr>
<td>Photofrin-PDT (200 J cm⁻¹)</td>
<td>c</td>
<td>6.3 ± 3.5</td>
<td>0.5 ± 0.4</td>
<td>8.3 ± 1.6</td>
<td>45.1 ± 1.5</td>
</tr>
<tr>
<td>p</td>
<td>6.6 ± 0.7</td>
<td>0.9 ± 0.3</td>
<td>13.2 ± 3.4</td>
<td>53.9 ± 1.2</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>6.4 ± 2.1</td>
<td>0.7 ± 0.3</td>
<td>10.8 ± 2.5</td>
<td>51.0 ± 2.1</td>
<td></td>
</tr>
</tbody>
</table>

RVA, relative vascular area; RPTA, relative perfused total area; PF, perfusion fraction; RHA, relative hypoxic area; c, central part of the tumour; p, peripheral tumour; t, centre + periphery. *The whole-tumour data differ significantly (P<0.05) from the untreated control group. Values are mean ± s.e. of 2-4 mice per group; three sections for each region of the tumours.

Hypoxic areas

The relative hypoxic area (RHA) (acute and chronic), including the necrotic areas was quantified by image analysis. Alkaline phosphatase visualisation of the theophylline tag in frozen sections of the control tumours showed a very low background staining of unbound metabolites of NITP (Figure 5a; Table I). The RHA in a 5 mm untreated RIF-1 tumour was 3.5±0.2%. No significant difference was found between the control groups but PDT clearly increased the hypoxic fraction (Figure 5b; Table I). There was a light dose-dependent increase in hypoxic areas at 5 min after PDT, with a corresponding dose-related decrease in vascular perfusion (Figure 3). Superimposed images of adjacent tumour sections stained for hypoxic and perfused areas demonstrated that there was no overlap (Figure 5).
has vasoactive properties in the RIF-1 tumour (van Geel, 1994). Pilot studies indicated that this concentration provides sufficient fluorescence intensity in tumour tissue sections to allow accurate counting using the image analysis system as used in this study. Hoechst is unlikely to have had a workable influence on the results of this image analysis study, however, since animals were sacrificed within 1 min of administration. Chaplin and Acker (1987) have previously demonstrated that mean tumour cell fluorescence increased linearly as a function of injected dose of Hoechst (3–30 mg kg−1), indicating that large doses of Hoechst, although vasoactive, do not cause immediate decreases in blood flow and staining. The good correlation we saw between tumour perfusion estimated from the image analysis of perfused vessels stained by Hoechst and 82Rb extraction (separate studies) also suggests that Hoechst-induced vasoconstriction was not a serious problem in these studies.

In our study the mean vasoactive interstitial area was approximately homogeneously distributed in a 5 mm untreated RIF-1 tumour. However, the data on tumour perfusion indicate that the number of vessels per unit area is not the only determining factor for tissue perfusion, since many vessels may not be functional. It is not clear whether the vessels in non-perfused areas identified in our studies were permanently or temporarily non functional.

Untreated RIF-1 tumours (5 mm) are free of evident necrosis and anti-theophylline staining revealed a low (<4%) level of hypoxia. The precision with which NITP detects small proportions of cells with intermediate levels of oxygen is limited by non-specific background staining. When NITP is injected before illumination (as in the experiments reported here), chronic and acute hypoxic regions are stained. The necrotic areas lack the ability to metabolise NITP. If NITP is given after illumination, drug access is likely to be inhibited for high light doses (>100 J cm−2), which cause a rapid and pronounced decrease in perfusion (van Geel et al., 1994). Separate studies (data not shown) confirmed that this was, indeed, the case. Thus NITP given immediately after illumination only resulted in hypoxic staining after low light doses. Protocols giving NITP before illumination are therefore much more suitable for estimating treatment-induced changes in hypoxic fraction. The data presented here indicate that NITP is metabolised in PDT-treated tumours at levels significantly higher than those measured in untreated control tumours. A 15-fold increase of metabolised drug was observed after PDT compared with the untreated controls. Moore et al. (1993) only found a 1.5-fold increase in hypoxic areas, detected with the doxorubicin arabinoside (IAZA, a nitroimidazole) in the rat Dunning R3227 AR tumours after PDT. This difference can probably be explained by the fact that the spontaneous hypoxic fraction of this rat tumour is quite variable, with mean values of 15–25%. It would therefore be difficult to demonstrate very large increases in hypoxic fraction after treatment. It is also possible that IAZA requires even lower oxygen concentrations for its metabolism than does NITP, or that the severity of PDT-induced hypoxia in the rat Dunning tumour was less than in the RIF-1 tumour.

Occasionally, immunohistochemical staining of hypoxic tumour areas was seen adjacent to the blood vessels. This may represent an example of acute hypoxia in which the blood flow has become temporarily disrupted at a time when the drug was available in the tumour cells for bioreductive metabolism. The duration of hypoxia was not measured in this study, however previous experiments indicated that hypoxic flow was decreased for 24 hours after PDT (van Geel et al., 1994). The K value for radiobiological hypoxia is 0.4–0.5% (Begg et al., 1985; Hall, 1994). The dependence of NITP metabolism on oxygen concentration is similar to radioresensitivity, with a slightly lower K value of approximately 0.1% (Hodgkiess et al., 1991). This indicates that the oxygen concentration in the tumour cells stained for bound metabolites of NITP after PDT will probably be ≤0.1%. The
degree of hypoxia required for bioreduction of NITP in the tumour after PDT is similar to that required for other bioreductive drugs. It is known that bioreduction of drugs such as SR4233 and mitomycin C is strongly dependent on oxygen levels, with K values of approximately 5% or 0.05% respectively (Marshall and Rauth, 1986; Koch, 1993). Thus, PDT should decrease the oxygen concentration in the tumour to below these levels to get an optimal effect from the combination of PDT and bioreductive drugs.

The image analysis study reported here visualized and quantified a significant decrease in vascular perfusion after PDT with a concomitant increase in hypoxic areas in the RH-1 tumour. These results lend support to the proposals for the combined use of PDT and bioreductive drugs to exploit the PDT-induced hypoxia.

Acknowledgements
We are grateful to Dr AC Begg for many helpful discussions and criticism of this manuscript and to Drs L Oomen and I van der Putten for helping us with the image analysis. We thank Quadra Logic Technologies, Vancouver, Canada, for giving us Photofrin. The present work was supported by the Dutch Cancer Society, project NKI 91-05.

References

