Ultrastructural immunogold labeling of lipid-laden enterocytes from patients with genetic malabsorption syndromes

Marie-Elisabeth Samson-Bouma, Nicole Verthier, Leo A Ginsel, Gérard Feldmann, Jack AM Fransen, Lawrence P Aggerbeck

U327, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, Université Paris 7 – Denis Diderot, BP 416, 75870 Paris cedex 18, France; Department of Cell Biology and Histology, University of Nijmegen, the Netherlands; Centre de Génétique Moléculaire, UPR 9061, CNRS, 91198 Gif-sur-Yvette, France

(Received 29 July 1996; accepted 2 December 1996)

Summary – Intestinal biopsies from patients having genetic disorders of lipoprotein assembly and secretion, such as abetalipoproteinemia (ABL) or Anderson’s disease (AD), contain large amounts of lipids which are accumulated in the enterocytes. Determination of the intracellular pathways in which the lipids and apolipoproteins occur has been difficult, and low temperature freeze substitution and embedding in Lowicryl HM20, to establish a protocol for investigating the intestinal tissue from these patients. Ultrastructural immunogold labeling of apolipoprotein B (ApoB) appeared dislocated. Freeze substitution and low temperature embedding in Lowicryl K4M, in contrast, appeared to better preserve the lipid and lipoprotein structures; however, the antigenicity of both apoAI and apoB appeared to be lost and no specific labeling could be obtained. Freeze substitution and embedding in Lowicryl HM20 best preserved the lipid and lipoprotein structures while maintaining apoprotein antigenicity. In conclusion, immunogold labeling of apolipoproteins on lipid structures in the lipid-laden enterocytes of patients with ABL and AD is best obtained by freeze substitution and embedding in Lowicryl HM20.

Anderson’s disease / abetalipoproteinemia / freeze-substitution / low temperature embedding / cryo-ultramicrotomy / protein A-gold / immunogold labeling / lipoprotein assembly / malabsorption

Introduction

In man, apolipoprotein B (apo B) containing lipoproteins play important roles in lipid transport and metabolism [26]. They have also been implicated in the pathogenesis of cardiovascular disease which is one of the major causes of mortality in western countries [47]. Although much is known about the structure and physiology of these particles, the mechanisms of assembly and secretion of the apo B containing lipoproteins in the intestine and the liver are less well understood. The initial assembly of apo B with lipids apparently occurs cotranslationally in the rough endoplasmic reticulum [1, 10, 11, 18]. Nascent lipoproteins are then transported to the Golgi apparatus and subsequently to the intestinal intercellular spaces at the basolateral side of the enterocyte and to the space of Disse in hepatocytes. It is unknown, however, exactly how lipids and apo B are brought together to form a lipoprotein particle. It is clear that, at least, one other factor, microsomal triglyceride transfer protein (MTP), is involved in the assembly of lipoproteins [24, 38, 46].

To learn more about these mechanisms, we have chosen to study two inherited disorders: abetalipoproteinemia (ABL) and Anderson’s disease (AD) [2, 13–15, 20, 24, 34, 36, 39, 46]. These diseases are genetic defects of the assembly and secretion of apo B lipoproteins, not related to the apo B gene. They are characterized by a marked accumulation of lipids alone (ABL) or lipids associated with large vesicles containing numerous lipoprotein-like structures (AD). Identification of the subcellular structures where these lipid or lipoprotein-like structures are stored may help to identify the factors involved in these defects (apolipoproteins or other factors) and lead to a better understanding of both these diseases and of lipoprotein assembly and secretion in normal individuals.

Immunolabeling at the ultrastructural level is a powerful technique for studying directly the in situ localization and the intracellular pathways of proteins in cells. As compared to immunofluorescence methods [17], ferritin-labeled antibodies [40] provide the advantage of being visible at the electron microscopic level, however, the disadvantage of this technique is an impaired penetration of the labeled antibodies into the tissues. More recently, enzyme labeled antibodies [4, 28] have become widely used for the localization of cellular components in investigative and diagnostic pathology as well as for research [5, 29].

When immuno-electron microscopy following peroxidase labeling of apolipoproteins was used to study the enterocytes from patients having ABL or AD, lipid and lipoprotein structures were poorly preserved and the
interpretation of the labeling was very difficult (Bouma et al., unpublished results). Visualization of the particular subcellular structures to which apo B or other proteins were bound was not possible. This difficulty was due to the marked intra-cytoplasmic accumulation of lipids and lipoprotein-like structures in both the enterocytes and hepatocytes from patients with ABL and AD, resulting from the inability of these cells to export fat as lipoprotein particles.

The development of the protein A-gold immunochromical labeling technique associated with improved embedding procedures has further extended the investigation of protein secretion at the ultrastructural level [7, 8, 31]. Several proteins have been localized with high resolution specificity in particular subcellular compartments, confirming the data obtained by autoradiography and cell fractionation concerning the secretory pathway [30]. Because of their small size, gold particles provide accurate and easy identification of these compartments and the intensity of the labeling can be quantified simply by counting the number of gold particles. Double labeling with gold particles of different sizes can demonstrate two different antigenic sites on the same tissue section [6]. These different techniques have been used to study lipoprotein biosynthesis and secretion in the rat, chicken and in man [1, 11–13, 16, 19–21, 23, 25, 27, 37]. Unfortunately, immunolabeling at the ultrastructural level of the intestinal biopsies of patients with ABL and AD is greatly hampered by the marked accumulation of lipids.

Ultrathin cryosectioning [43] and freeze substitution followed by low temperature embedding in Lowicryl [3, 32, 33, 45] associated with protein A-gold labeling may avoid some of the problems due to the intracellular lipid accumulation [43]. Lewis et al. [27] and Dixon et al. [19] showed the feasibility of using Lowicryl K4M embedding for studying normal human intestinal and chicken liver ultrastructure, respectively. Dullaart et al. [20] used ultra-thin cryosectioning to study the ultrastructure of intestinal fragments from a patient with abetalipoproteinemia. These interesting data suggested that it might be possible to preserve the antigenicity of the proteins as well as the ultrastructure of lipids and lipoproteins in the lipid-laden enterocytes from patients with abetalipoproteinemia and Anderson’s disease. We studied several approaches to fixing and embedding intestinal biopsies from normal individuals as well as from patients with ABL or AD. After optimizing the experimental conditions, we found that good preservation of the subcellular architecture could be obtained while maintaining the antigenicity of the apolipoprotein when the tissue was pre-fixed in paraformaldehyde with or without glutaraldehyde and then freeze-substituted at −90°C and embedded in Lowicryl HM20 at −50°C. The same protocol worked well with biopsies from normal individuals and should prove useful for the intracellular localization of apoprotein antigens.

Materials and methods

Human intestinal biopsies

Human duodenal-jejunal fragments were obtained by fiber optic endoscopy, from patients diagnosed as having abetalipoproteinemia or Anderson’s disease after the nature of the study and its possible consequences were explained and after informed consent was obtained. Normal biopsies were a part of those taken from normo-lipidemic individuals for diagnostic purposes, after obtaining informed consent. All biopsies were obtained in the fasting state (12–15 h). The procedures for obtaining biopsies and the experimental methods employed in their analysis have been approved by INSERM (Institut National de la Santé et de la Recherche Médicale) and the Bioethics Committee of the Bichat Hospital (Paris, France), part of a biomedical project (Projet de Recherche Biomédicale no 94002) for the study of hereditary disorders of malabsorption and lipoprotein assembly and secretion. Biopsies were treated according to four protocols. The first, fixation and ultrathin sectioning, was used for routine staining prior to electron microscopy. The other three, fixation and cryo-ultramicrotomy, freeze-substitution and low temperature embedding in Lowicryl K4M, and freeze-substitution and ultra-low temperature embedding in Lowicryl HM20, were used prior to immunogold labeling.

Routine electron microscopy

Fixation and ultrathin sectioning

Intestinal fragments (2–3 mm3) were fixed immediately by immersion in 2.5% glutaraldehyde (TAAB, Aldermaston, UK) with 0.1 M sodium phosphate (pH 7.4) for 2 h at 4°C. After post fixation in 1% osmium tetroxide for 1 h at 4°C, the fragments were dehydrated with ethanol at 4°C (70% ethanol overnight; 95% ethanol for 20 min; 100% ethanol, twice for 20 min) and then once for 20 min in propylene oxide. Ultrathin cryosections were prepared using a LKB Ultracrotome III 8802A (Bromma, Sweden), were counterstained for 10 min with 1% aqueous uranyl acetate and for 10 min with Reynold’s lead citrate. They were observed with a Jeol 1010 electron microscope (Jeol, Croissy-sur-Seine, France).

Immuno electron microscopy

Fixation and cryo-ultramicrotomy

Intestinal fragments (about 2–3 mm3) were fixed immediately by immersion in either 2% paraformaldehyde (freshly prepared from Sigma, St Louis, USA) alone or in a mixture of 2% paraformaldehyde and 0.1% glutaraldehyde both in 0.1 M sodium phosphate (pH 7.4) for 2 h at room temperature. In both cases, after fixation, fragments were stored in a 2% paraformaldehyde solution, at 4°C, until further processing. In our experience, tissues could be stored up to 6 months without any apparent deterioration of the immunolabeling or the lipid preservation. Ultrathin cryosectioning of the fixed biopsy fragments was performed with modifications of techniques previously described [22, 43, 44]. The fixed tissue fragments were cryoprotected by infusion under stirring, with 2.3 M sucrose in 0.1 M phosphate buffer (pH 7.4) for 30 min at 20°C, then placed on copper blocks and frozen in liquid nitrogen. Ultrathin cryosections were prepared using an FC4D ultracryotome (Reichert, Vienna, Austria) and then processed for immunogold-staining.

Freeze-substitution and low temperature embedding in Lowicryl K4M

Low temperature embedding in Lowicryl K4M was performed, with some modifications, as previously described [3, 32, 33]. Briefly, intestinal biopsies were fixed with 2% paraformaldehyde or with a mixture of 2% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer as described above. They were infused under stirring for 30 min in 2.3 M sucrose buffered with 0.1 M sodium phosphate (pH 7.4) at room temperature and then frozen in liquid nitrogen. Fixed tissues were then dehydrated in a graded ethanol series, during which the temperature was lowered stepwise to −35°C (30% ethanol, 0°C, 30 min; 50% ethanol, −20°C, 60 min; 70% ethanol, −35°C, 60 min; 80% ethanol, −35°C, 60 min; 90% ethanol, −35°C, 60 min; 100% ethanol, −35°C, 2 h). Infiltration with Lowicryl K4M and embedding in beam capsules was done at −35°C (Lowicryl: ethanol 1:1, 60 min; Lowicryl:eth-
Lipid-laden enterocytes and genetic diseases

andol 2:1; 60 min; Lowicryl 100%, 60 min, Lowicryl 100%, over-night). The material was embedded in pure Lowicryl K4M in beam capsules and polymerization was induced by UV light at -40°C for 48 h and then completed by 48 h of incubation at room temperature. Ultrathin sections were prepared using an LKB Ultramicrotome III 8802A and were then processed for immunolabeling.

Freeze-substitution and ultra-low temperature embedding in Lowicryl HM20

Intestinal biopsies were first fixed with 2% paraformaldehyde or with a mixture of 2% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer as described above. Fixed intestinal biopsies were then infused under stirring for 30 min in 2.3 M sucrose buffered with 0.1 M sodium phosphate (pH 7.4) at room temperature and then frozen in liquid nitrogen. They were then dehydrated in methanol at -90°C for at least 48 h in a CS auto, cryo-substitution apparatus (Reichert). The embedding was performed with increasing concentrations of Lowicryl HM20 in methanol (Lowicryl:methanol 1:1; 1 h; twice; Lowicryl:methanol 2:1, 1 h; twice; pure Lowicryl for 1 h, then 16 h and finally for 1 h) by raising the temperature from -90°C to -50°C at a rate of 4°C per hour. Samples were transferred, inside the Reichert CS-auto, to an embedding mould filled with pure Lowicryl HM20 and polymerization was induced by indirect UV light at -50°C for 48 h and was completed by incubation at room temperature for 2 more days [45]. Ultrathin sections were prepared using an LKB Ultramicrotome III 8802A and were then processed for immunolabeling.

Immunogold labeling of ultrathin cryosections and ultrathin Lowicryl sections

The frozen ultrathin cryosections and the ultrathin Lowicryl sections were transferred to carbon coated collodion grids and immunogold labeled by modifications of previously described techniques [22, 31]. We investigated various durations (15 min to 1 h) and various concentrations of bovine serum albumin (BSA) (1 to 5%) and gelatin (1 to 4%) for the preincubation period at room temperature in order to determine that the optimal conditions were to preincubate thawed cryosections and Lowicryl sections at room temperature for 1 h in a solution of 1% BSA and 4% gelatin dissolved in phosphate buffered saline, pH 7.4 (buffer A). This incubation was necessary to reduce the non-specific immunolabeling that occurred, particularly in the lipid-laden cells of the patients. Buffer A was present throughout the treatment of the ultrathin sections (including incubations with the antibodies and with protein A gold as well as during washing steps). Sections were then incubated at room temperature for 1 h with a polyclonal (rabbit anti-apoB anti-serum diluted 1/100) or monoclonal antibody (murine anti-apoB diluted 1/50 or 1/100; murine anti-apoA1 diluted 1/50 or 1/100) specific for the apolipoprotein detergent in buffer A. Polyclonal rabbit antibodies against apoB were prepared by A Mazure (Institut National de la Recherche Agronomique, Laboratoire des maladies métaboliques, Clermont-Ferrand) and by S Salmon (INSERM Unit 312, Muséum National d'Histoire Naturelle, Paris, France). The murine monoclonal anti-apoA1 antibodies were from M Ayrault-Jarrier [35] and the murine monoclonal anti-apoA2 was from Daiichi (Tokyo, Japan). Both the rabbit polyclonal antibodies against apoB gave identical labeling of the cellular structures, which was better than that obtained with the murine monoclonal antibodies, and they were, therefore, used for this study. After incubation with the first antibody for 1 h at room temperature, the sections were washed with buffer A (three times for 10 min) and then incubated for 1 h with protein A complexed to 10 nm colloidal gold (1/400), as previously described [9, 41]. After washing with distilled water, the sections were stained with a saturated aqueous solution of uranyl acetate (10 min) and with Reynold's lead citrate (10 min). They were examined at 80 kV with a Jeol 1010 electron microscope. Non-specific labeling was evaluated by omitting the specific antisera and incubating the sections with pre-immune serum or with protein A gold reagent alone.

Results and discussion

Routine electron microscopy

Intestinal tissues from patients with abetalipoproteinemia were characterized by a marked accumulation of large lipid vacuoles ranging in size from 200 nm to 8 μm (fig 1a). The Golgi apparatus appeared flat, devoid of lipid or lipoprotein-like structures (fig 1a, inset). Intestinal tissue from patients with Anderson’s disease also contained marked accumulation of lipids (fig 1b). Some of the lipid however, appeared to be lipoprotein-like structures and were observed within the Golgi apparatus (fig 1b, inset). The size of these lipoprotein-like structures varied from 18 nm to 1 μm and they resembled lipoproteins observed in the Golgi apparatus of enterocytes from normal individuals having a dense rim around the edge of the particle. In both groups of patients, the lipid droplets exhibited the typical electron dense aspect of lipid material, due to the fixation by osmium tetroxide. These results are consistent with current concepts that abetalipoproteinemia is primarily a problem of lipoprotein assembly whereas Anderson’s disease would appear to be a problem related to the secretion of already formed lipoprotein particles [26]. It should be noted that adequate visualisation of the lipid and lipoprotein-structures in these fat laden tissues depends upon dehydration at 4°C. Dehydration at 20°C results in increased lipid extraction, leaving holes in the tissue (results not shown).

Immuno electron microscopy

Ultracryosectioning

Ultrathin cryosectioning of intestinal tissues from normal fasted control subjects gave good preservation of the subcellular structures as has been previously noted [22]. After immunogold labeling with anti apoB antiseraum, chylomicron-like structures decorated by gold particles could be observed in the intracellular spaces (fig 2a). No gold particles, however, were detected in the endoplasmic reticulum or in the Golgi apparatus.

Ultrathin cryosectioning of intestinal tissues from patients with ABL or AD also gave adequate preservation of the overall structural morphology of the enterocytes, however, the content of the lipid rich structures (both the lipid droplets and the lipoprotein-like particles) that accumulated in the cells of the patients frequently disappeared, leaving a collapsed appearance. Immunogold labeling with anti-apoB antiseraum gave numerous gold particles scattered on the exceptionally remaining lipid structures. The immunolabeling of both abetalipoproteinemia and Anderson’s disease enterocytes appeared dissociated with many of the gold particles no longer overlaying the lipid structures (fig 2b).

Freeze substitution with Lowicryl K4M

Freeze substitution with Lowicryl K4M better preserved the lipid and lipoprotein-like structures, particularly in the intestinal tissue from the patients with Anderson’s disease. Chylomicron-like structures were visible in large vesicles and they resembled the images of normal tissues [15] that had been prepared for routine electron microscopy by fixation with glutaraldehyde and post-fixation with osmium tetroxide followed by post-embedding in epoxy resin. However, the protein antigenicity apparently was lost during the Lowicryl K4M freeze substitution procedure since no specific immunogold labeling was observed with anti-apo B antiseraum (results not shown). These results are in contrast with those obtained by Dürrer et al [21] who observed gold labeling of structures in the rough
Fig. 1. Electron micrographs of ultrathin sections of glomus tissue and osmium tetroxide-fixed, frozen, thin sections of a patient with abetalipoproteinemia (a) and a patient with Anderson disease (b). In electron microscopy, the Golgi apparatus is flat and devoid of lipoprotein-like structures (b, inset, arrows). In electron microscopy, the electron dense material is found in the Golgi apparatus in the absence of lipoprotein-like structures. (a, inset, arrow). In electron microscopy, the electron dense material is found in the Golgi apparatus in the absence of lipoprotein-like structures (b, inset, stars). (a) × 5000, inset × 10000; (b) × 7500, inset × 5400. Bars: 1 μm (inset, 1 μm; b, 2 μm (inset, 2 μm).
In lower panels, H2O2 presents both the sensitivity of
recognizing high Freeze H2O2 and H2O2. The results of this study clearly demonstrate that
the sensitivity of these molecules is improved under these conditions (data not shown).

The sensitivity of the freeze crystals was enhanced by employing the
combination of freeze sublimation followed by embedding
the resulting ice crystals directly onto a silicon wafer.

The images of the ice crystals were taken using a scanning electron microscope (SEM).

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.

The freeze sublimation process was performed under vacuum conditions, where
the crystals were sublimated directly onto the silicon wafer. This process
enhanced the sensitivity of the freeze crystals, allowing for a clearer
visualization of the microstructure. The resulting images
showed a significant improvement in the detection of
the ice crystals compared to conventional freezing methods.
The authors would like to thank PR Connon for critical reading of the manuscript and Dr. Bruce Bonneau for sectional assistance.

Acknowledgements

...
deviated or rigid particles (a, x 9450; b, x 26000) BAPN: a, 1 l/min; b, 0.5 l/min. Hypoprothrombinemia. The overall morphology of the endothelial and the lipid structures are preserved (1). The Golgi apparatus is dark and increased. Fig. 3a. Electron photomicrographs of vitamin sections of livers (1) and HM20-embedded human intimal biopsy from a patient with athero-
Fig 4. Immunogold labeling of apo AI (a) and apo B (b) on ultrathin sections of intestinal biopsies from a patient with Anderson's disease (a) and from a patient with abetalipoproteinemia (b) embedded in Lowicryl HM20. Gold particles are present on lipid structures (L) and on the Golgi apparatus to a lesser extent (arrows) a, × 24,320; b, × 35,000. Bars: a, 0.5 μm; b, 0.2 μm.

This work was supported by the National Institute of Health and Medical Research (INSERM), by the Caisse Nationale de l'Assurance Maladie des Travailleurs Salariés (CNAMTS), by the National Center of Scientific Research (CNRS), by the Fondation de France and by a collaborative project between INSERM and the Dutch Organization for Scientific Research (NWO-GBMW).

References

41 Stein O, Stein Y (1971) Light and electron microscopic radio autography of lipids: techniques and biological applications. *Adv Lipid Res* 2, 1–72
46 Young SG (1990) Recent progress in understanding apolipoprotein B. *Circulation* 82, 1574–1594