The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/23285

Please be advised that this information was generated on 2019-03-27 and may be subject to change.
Ultrastructural immunogold labeling of lipid-laden enterocytes from patients with genetic malabsorption syndromes

Marie-Elisabeth Samson-Bouma a, Nicole Verthier a, Leo A Ginsel b, Gérard Feldmann a, Jack AM Fransen a, Lawrence P Aggerbeck c

a U327, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Xavier Bichat, Université Paris 7 – Denis Diderot, BP 416, 75870 Paris cedex 18, France; b Department of Cell Biology and Histology, University of Nijmegen, the Netherlands; c Centre de Génétique Moléculaire, UPR 9061, CNRS, 91198 Gif-sur-Yvette, France

(Received 29 July 1996; accepted 2 December 1996)

Summary – Intestinal biopsies from patients having genetic disorders of lipoprotein assembly and secretion, such as abetalipoproteinemia (ABL) or Anderson’s disease (AD), contain large amounts of lipids which are accumulated in the enterocytes. Determination of the intracellular sites in which the lipids accumulate and in which apolipoproteins (the lipids are bound to) would help to identify the defects in these diseases and further elucidate the mechanisms by which lipoprotein assembly and secretion occur normally. Ultrastructural immunogold labeling, however, is hampered by the poor preservation of the lipids accumulated in the enterocytes of these patients. We have used routine electron microscopy (fixation and ultra-thin sectioning) along with three methods for immunogold labeling of lipid-laden enterocytes: ultrathin cryosectioning, low temperature freeze substitution with embedding in Lowicryl K4M, and ultra-low temperature freeze substitution with embedding in Lowicryl HM20, to establish a protocol for investigating the intestinal tissue from these patients. Ultracyrosectioning, while preserving the overall morphology of the lipid laden enterocytes, did not preserve the lipid content and the immunogold labeling of apolipoprotein B (ApoB) appeared dislocated. Freeze substitution and low temperature embedding in Lowicryl K4M, in contrast, appeared to better preserve the lipid and lipoprotein structures; however, the antigenicity of both apoAI and apoB appeared to be lost and no specific labeling could be obtained. Freeze substitution and embedding in Lowicryl HM20 best preserved the lipid and lipoprotein structures while maintaining apoprotein antigenicity. In conclusion, immunogold labeling of apolipoproteins on lipid structures in the lipid-laden enterocytes of patients with ABL and AD is best obtained by freeze substitution and embedding in Lowicryl HM20.

Anderson’s disease / abetalipoproteinemia / freeze-substitution / low temperature embedding / cryo-ultramicrotomy / protein A-gold / immunogold labeling / lipoprotein assembly / malabsorption

Introduction

In man, apolipoprotein B (apo B) containing lipoproteins play important roles in lipid transport and metabolism [26]. They have also been implicated in the pathogenesis of cardiovascular disease which is one of the major causes of mortality in western countries [47]. Although much is known about the structure and physiology of these particles, the mechanisms of assembly and secretion of the apo B containing lipoproteins in the intestine and the liver are not well understood. The initial assembly of apo B with lipids apparently occurs cotranslationally in the rough endoplasmic reticulum [1, 10, 11, 18]. Nascent lipoproteins are then transported to the Golgi apparatus and subsequently to the intestinal intercellular spaces at the basolateral side of the enterocyte and to the space of Disse in hepatocytes. It is unknown, however, exactly how lipids and apo B are brought together to form a lipoprotein particle. It is clear that, at least, one other factor, microsomal triglyceride transfer protein (MTP), is involved in the assembly of lipoproteins [24, 38, 46].

To learn more about these mechanisms, we have chosen to study two inherited disorders: abetalipoproteinemia (ABL) and Anderson’s disease (AD) [2, 13–15, 20, 24, 34, 36, 39, 46]. These diseases are genetic defects of the assembly and the secretion of apo B lipoproteins, not related to the apo B gene. They are characterized by a marked accumulation of lipids alone (ABL) or lipids associated with large vesicles containing numerous lipoprotein-like structures (AD). Identification of the subcellular structures where these lipid or lipoprotein-like structures are stored may help to identify the factors involved in these defects (apolipoproteins or other factors) and lead to a better understanding both of these diseases and of lipoprotein assembly and secretion in normal individuals.

Immunolabeling at the ultrastructural level is a powerful technique for studying directly the in situ localization and the intracellular pathways of proteins in cells. As compared to immunofluorescence methods [17], ferritin-labeled antibodies [40] provide the advantage of being visible at the electron microscopic level, however, the disadvantage of this technique is an impaired penetration of the labeled antibodies into the tissues. More recently, enzyme labeled antibodies [4, 28] have become widely used for the localization of cellular components in investigative and diagnostic pathology as well as for research [5, 29].

When immunoelectron microscopy following peroxidase labeling of apolipoproteins was used to study the enterocytes from patients having ABL or AD, lipid and lipoprotein structures were poorly preserved and the
interpretation of the labeling was very difficult (Bouma et al, unpublished results). Visualization of the particular subcellular structures to which apo B or other proteins were bound was not possible. This difficulty was due to the marked intra-cytoplasmic accumulation of lipids and lipoprotein-like structures in both the enterocytes and hepatocytes from patients with ABL and AD, resulting from the inability of these cells to export fat as lipoprotein particles.

The development of the protein A-gold immunochromical labeling technique associated with improved embedding procedures has further extended the investigation of protein secretion at the ultrastructural level [7, 8, 31]. Several proteins have been localized with high resolution and specificity in particular subcellular compartments, confirming the data obtained by autoradiography and cell fractionation concerning the secretory pathway [30]. Because of their small size, gold particles provide accurate and easy identification of these compartments and the intensity of the labeling can be quantified simply by counting the number of gold particles. Double labeling with gold particles of different sizes can demonstrate two different antigenic sites on the same tissue section [6]. These different techniques have been used to study lipoprotein biosynthesis and secretion in the rat, chicken and in man [1, 11-13, 16, 19-21, 23, 25, 27, 37]. Unfortunately, immunolabeling at the ultrastructural level of the intestinal biopsies of patients with ABL and AD is greatly hampered by the marked accumulation of lipids.

Ultrathin cryosectioning [43] and freeze substitution followed by low temperature embedding in Lowicryl [3, 32, 33, 45] associated with protein A-gold labeling may avoid some of the problems due to the intracellular lipid accumulation [45]. Lewy et al [27] and Dixon et al [19] showed the feasibility of using Lowicryl K4M embedding for studying normal human intestinal and chicken liver ultrastructure, respectively. Dullaart et al [20] used ultra-thin cryosectioning to study the ultrastructure of intestinal fragments from a patient with abetalipoproteinemia. These interesting data suggested that it might be possible to preserve the antigenicity of the proteins as well as the ultrastructure of lipids and lipoproteins in the lipid-laden enterocytes from patients with abetalipoproteinemia and Anderson's disease. We studied several approaches to fixing and embedding intestinal biopsies from normal individuals as well as from patients with ABL or AD. After optimizing the experimental conditions, we found that good preservation of the subcellular structures we studied several approaches to fixing and embedding intesti.

Materials and methods

Human intestinal biopsies

Human duodeno-jejunal fragments were obtained by fiberoptic endoscopy, from patients diagnosed as having abetalipoproteinemia or Anderson's disease after the nature of the study and its possible consequences were explained and after informed consent was obtained. Normal biopsies were a part of those taken from normo-lipidemic individuals for diagnostic purposes, after obtaining informed consent. All biopsies were obtained in the fasting state (12-15 h). The procedures for obtaining biopsies and the experimental methods employed in their analysis have been approved by INSERM (Institut National de la Sante et de la Recherche Medicale) and the Bioethics Committee of the Bichat Hospital (Paris, France), as part of a biomedical project (Projet de Recherche Biomedical no 94002) for the study of hereditary disorders of malabsorption and lipoprotein assembly and secretion. Biopsies were treated according to four protocols. The first, fixation and ultrathin sectioning, was used for routine staining prior to electron microscopy. The other three, fixation and cryo-ultramicrotomy, freeze-substitution and low temperature embedding in Lowicryl K4M, and freeze-substitution and ultra-low temperature embedding in Lowicryl HM20, were used prior to immunogold labeling.

Routine electron microscopy

Fixation and ultrathin sectioning

Intestinal fragments (2-3 mm³) were fixed immediately by immersion in 2.5% glutaraldehyde (TAAB, Aldermaston, UK) followed by low temperature embedding in Lowicryl K4M, were used prior to electron microscopy. The other three, fixation and cryo-ultramicrotomy, freeze-substitution and low temperature embedding in Lowicryl K4M, and freeze-substitution and ultra-low temperature embedding in Lowicryl HM20, were used prior to immunogold labeling.

Immuno electron microscopy

Fixation and cryo-ultramicrotomy

Intestinal fragments (about 2-3 mm³) were fixed immediately by immersion in either 2% paraformaldehyde (freshly prepared from Sigma, St Louis, USA) or in a mixture of 2% paraformaldehyde and 0.1% glutaraldehyde both in 0.1 M sodium phosphate (pH 7.4) for 2 h at room temperature. In both cases, after fixation, fragments were stored in a 2% paraformaldehyde solution, at 4°C, until further processing. In our experience, tissues could be stored up to 6 months without any apparent loss of the immunological or histochemical properties.

Ultrathin cryosectioning of the fixed biopsy fragments was performed with modifications of techniques previously described [22, 43, 44]. The fixed tissue fragments were cryoprotected by infusion under stirring, with 2.3 M sucrose in 0.1 M phosphate buffer (pH 7.4) for 30 min at 20°C, then placed on copperblocks and frozen in liquid nitrogen. Ultrathin cryosections were prepared using an FCS-D ultramicrotome (Reichert, Vienna, Austria) and then processed for immunogold-staining.

Freeze-substitution and low temperature embedding in Lowicryl K4M

Low temperature embedding in Lowicryl K4M was performed, with some modifications, as previously described [3, 32, 33]. Briefly, intestinal biopsies were fixed with 2% paraformaldehyde or with a mixture of 2% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer as described above. They were infused under stirring for 30 min in 2.3 M sucrose buffer with 0.1 M sodium phosphate (pH 7.4) at room temperature and then frozen in liquid nitrogen. Fixed tissues were then dehydrated in a graded ethanol series, during which the temperature was lowered stepwise for 15°C, 30% ethanol, 0°C, 30 min; 50% ethanol, −20°C, 60 min; 70% ethanol, −35°C, 60 min; 80% ethanol, −35°C, 60 min; 90% ethanol, −35°C, 60 min; 100% ethanol, −35°C, 2 h.

Infiltration with Lowicryl K4M and embedding in beam capsules was done at −35°C (Lowicryl:ethanol 1:1, 60 min; Lowicryl:eth-
The material was embedded in pure Lowicryl K4M in heavy capsules and polymerization was induced by UV light at —40°C for 48 h and then completed by 48 h of incubation at room temperature. Ultrathin sections were prepared using an LKB Ultramicrotome III 8802A and were then processed for immunolabeling.

Freeze-substitution and ultra-low temperature embedding in Lowicryl HM20

Intestinal biopsies were first fixed with 2% paraformaldehyde or with a mixture of 2% paraformaldehyde and 0.1% glutaraldehyde in phosphate buffer as described above. Fixed intestinal biopsies were then infused under stirring for 30 min in 2.3 M sucrose buffered with 0.1 M sodium phosphate (pH 7.4) at room temperature and then frozen in liquid nitrogen. They were then dehydrated in methanol at —90°C for at least 48 h in a CS auto, cryo-substitution apparatus (Reichert). The embedding was performed with increasing concentrations of Lowicryl HM20 in methanol (Lowicryl:mechanol 1:1; 1 h; twice; Lowicryl:mechanol 2:1; 1 h; twice; pure Lowicryl for 1 h, then 16 h and finally for 1 h) by raising the temperature from —90°C to —50°C at a rate of 4°C per hour. Samples were transferred, inside the Reichert CS-auto, to an embedding mould filled with pure Lowicryl HM20 and polymerization was induced by indirect UV light at —50°C for 48 h and was completed by incubation at room temperature for 2 more days [45]. Ultrathin sections were prepared using an LKB Ultramicrotome III 8802A and were then processed for immunolabeling.

Immunogold labeling of ultrathin cryosections and ultrathin Lowicryl sections

The frozen ultrathin cryosections and the ultrathin Lowicryl sections were transferred to carbon coated collodion grids and immunogold labeled by modifications of previously described techniques [22, 31]. We investigated various durations (15 min to 1 h) and various concentrations of bovine serum albumin (BSA) (1 to 5%) and gelatin (1 to 5%) for the incubation period at room temperature in order to determine that the optimum conditions were to preincubate thawed cryosections and Lowicryl sections at room temperature for 1 h in a solution of 1% BSA and 4% gelatin dissolved in phosphate buffered saline, pH 7.4 (buffer A). This incubation was necessary to reduce the non-specific immunolabeling that occurred, particularly in the lipid-laden cells of the patients. Buffer A was present throughout the treatment of the ultrathin sections (including incubations with the antibodies and with protein A gold as well as during washing steps). Sections were then incubated at room temperature for 1 h with a polyclonal (rabbit anti apoB anti-serum diluted 1/100) or monoclonal antibody (murine anti-apoB diluted 1/50 or 1/100; murine anti-apoAI diluted 1/50 or 1/100) specific for the apolipoprotein diluted in buffer A. Polyclonal rabbit antibodies against apoB were prepared by A Mazure (Institut National de la Recherche Agronomique, Laboratoire des maladies métaboliques, Clermont-Ferrand) and by S Salmon (INSERM Unit 312, Museum National d'histoire Naturelle, Paris, France). The murine monoclonal anti-apoB antibodies were from M Ayrault-Jarrier [35] and the murine monoclonal anti-apoA1 was from Daichi (Tokyo, Japan). Both the rabbit polyclonal antibodies against apoB gave identical labeling of the cellular structures, which was better than that obtained with the murine monoclonal antibodies, and they were, therefore, used for this study. After incubation with the first antibody for 1 h at room temperature, the sections were washed with buffer A (three times for 10 min) and then incubated for 1 h with protein A complexed to 10 nm colloidal gold (1/400), as previously described [9, 41]. After washing with distilled water, the sections were stained with a saturated aqueous solution of uranyl acetate (10 min) and with Reynolds’s lead citrate (10 min). They were examined at 80 kV with a Jeol 1010 electron microscope. Non-specific labeling was evaluated by omitting the specific antisera and incubating the sections with pre-immune serum or with protein A gold reagent alone.

Results and discussion

Routine electron microscopy

Intestinal tissues from patients with abetalipoproteinemia were characterized by a marked accumulation of large lipid vacuoles ranging in size from 200 nm to 8 µm (fig 1a). The Golgi apparatus appeared flat, devoid of lipid or lipoprotein-like structures (fig 1b, inset). Intestinal tissue from patients with Anderson’s disease also contained marked accumulation of lipids (fig 1b). Some of the lipid however, appeared to be lipoprotein-like structures and were observed within the Golgi apparatus (fig 1b, inset). The size of these lipoprotein-like structures varied from 18 nm to 1 µm and they resembled lipoproteins observed in the Golgi apparatus of enterocytes from normal individuals having a dense rim around the edge of the particle. In both groups of patients, the lipid droplets exhibited the typical electron dense aspect of lipid material, due to the fixation by osmium tetroxide. These results are consistent with current concepts that abetalipoproteinemia is primarily a problem of lipoprotein assembly whereas Anderson’s disease would appear to be a problem related to the secretion of already formed lipoprotein particles [26]. It should be noted that adequate visualisation of the lipid and lipoprotein-structures in these fat laden tissues depends upon dehydration at 4°C. Dehydration at 20°C results in increased lipid extraction, leaving holes in the tissue (results not shown).

Immunoelectron microscopy

Ultracryosectioning

Ultracryosectioning of intestinal tissues from normal fasted control subjects gave good preservation of the subcellular structures as has been previously noted [22]. After immunogold labeling with anti apoB antisera, chylomicron-like structures decorated by gold particles could be observed in the intercellular spaces (fig 2a). No gold particles, however, were detected in the endoplasmic reticulum or in the Golgi apparatus.

Ultrathin cryosectioning of intestinal tissues from patients with ABL or AD also gave adequate preservation of the overall structural morphology of the enterocytes, however, the content of the lipid rich structures (both the lipid droplets and the lipoprotein-like particles) that accumulated in the cells of the patients frequently disappeared, leaving a collapsed appearance. Immunogold labeling with anti-apoB antisera gave numerous gold particles scattered on the exceptionally remaining lipid structures. The immunolabeling of both abetalipoproteinemia and Anderson’s disease enterocytes appeared dissociated with many of the gold particles no longer overlaying the lipid structures (fig 2b).

Freeze substitution with Lowicryl K4M

Freeze substitution with Lowicryl K4M better preserved the lipid and lipoprotein-like structures, particularly in the intestinal tissue from the patients with Anderson’s disease. Chylomicron-like structures were visible in large vesicles and they resembled the images of normal tissues [15] that had been prepared for routine electron microscopy by fixation with glutaraldehyde and post-fixation with osmium tetroxide followed by post-embedding in epoxy resin. However, the protein antigenicity apparently was lost during the Lowicryl K4M freeze substitution procedure since no specific immunogold labeling was observed with anti-apoB antisera (results not shown). These results are in contrast with those obtained by Dürr et al [21] who observed gold labeling of structures in the rough
Fig. 1. Electron micrographs of ultrathin sections of cultured cells and osmium-fixed tissue from a patient with hyperprolactinemia showing the marked increase in the number of cells with hyperprolactinemia and a patient with hyperprolactinemia and hyperprolactinemia. (A) In vitro cultures (B) In vitro cultures (C) In vitro cultures (D) In vitro cultures (E) In vitro cultures (F) In vitro cultures (G) In vitro cultures (H) In vitro cultures (I) In vitro cultures (J) In vitro cultures (K) In vitro cultures (L) In vitro cultures (M) In vitro cultures (N) In vitro cultures (O) In vitro cultures (P) In vitro cultures (Q) In vitro cultures (R) In vitro cultures (S) In vitro cultures (T) In vitro cultures (U) In vitro cultures (V) In vitro cultures (W) In vitro cultures (X) In vitro cultures (Y) In vitro cultures (Z) In vitro cultures.

In vitro cultures (A) In vitro cultures (B) In vitro cultures (C) In vitro cultures (D) In vitro cultures (E) In vitro cultures (F) In vitro cultures (G) In vitro cultures (H) In vitro cultures (I) In vitro cultures (J) In vitro cultures (K) In vitro cultures (L) In vitro cultures (M) In vitro cultures (N) In vitro cultures (O) In vitro cultures (P) In vitro cultures (Q) In vitro cultures (R) In vitro cultures (S) In vitro cultures (T) In vitro cultures (U) In vitro cultures (V) In vitro cultures (W) In vitro cultures (X) In vitro cultures (Y) In vitro cultures (Z) In vitro cultures.

In vitro cultures (A) In vitro cultures (B) In vitro cultures (C) In vitro cultures (D) In vitro cultures (E) In vitro cultures (F) In vitro cultures (G) In vitro cultures (H) In vitro cultures (I) In vitro cultures (J) In vitro cultures (K) In vitro cultures (L) In vitro cultures (M) In vitro cultures (N) In vitro cultures (O) In vitro cultures (P) In vitro cultures (Q) In vitro cultures (R) In vitro cultures (S) In vitro cultures (T) In vitro cultures (U) In vitro cultures (V) In vitro cultures (W) In vitro cultures (X) In vitro cultures (Y) In vitro cultures (Z) In vitro cultures.
Further lipoprotein-like structures could also be detected in
adjacent tissue on low magnification, followed by embedding
of tissue in Lowicryl, sectioning, and examination under
a transmission electron microscope.

The results of this study clearly demonstrate that the
interaction of lipoprotein-like structures with the
membrane of the tissue section was
improvement of the immunogold technique. The
membrane and the immunogold particles were
encountered in the outer membrane, as the
particles were detected in the outer layer. The
membrane was also observed at a lower power, which
allowed a better examination of the structures.

The results of this study clearly demonstrate that the
interaction of lipoprotein-like structures with the
membrane of the tissue section was
improvement of the immunogold technique. The
membrane and the immunogold particles were
encountered in the outer membrane, as the
particles were detected in the outer layer. The
membrane was also observed at a lower power, which
allowed a better examination of the structures.

The results of this study clearly demonstrate that the
interaction of lipoprotein-like structures with the
membrane of the tissue section was
improvement of the immunogold technique. The
membrane and the immunogold particles were
encountered in the outer membrane, as the
particles were detected in the outer layer. The
membrane was also observed at a lower power, which
allowed a better examination of the structures.
use of colloidal gold particles as immunocytochemical
marks (logging on to unpublished results). In contrast, the
main (or minor) components of the antigenic determinant-
which leads to poor visualization of the antigenic determinant-
results in a thin layer of precipitated reaction products
remaining dispersed. Also, most complete following
these processes, finally, the procedure is immunocytological
method of choice of the antigenic determinant or the precipitated
reaction product on the antigenic determinant necessary for the
detection of the precipitated reaction product from the decay-
delayed precipitation label. In addition, if the procedure is performed
with a low-temperature protocol, the results obtained with pre-embedded
labels can be determined with

Although low-temperature protocols have been recommended for

pre-embedding microscopy is useful for the immune-

staining procedure of the cell's organelles is achieved.

In conclusion, the protocol described here allows the

low-temperature protocol, which also gives high-resolution

structural preservation of the cell's organelles is achieved.

In conclusion, the protocol described here allows the

low-temperature protocol, which also gives high-resolution

structural preservation of the cell's organelles is achieved.
devolved of lipid particles (a, × 9450; b, × 26 000). Bars: a, 1 μm; b, 0.5 μm.

The Golgi apparatus is Hall and hyporeflexic. The overall morphology of the enterocytes and the lipid structures are presented (1). The electron micrographs of ultrathin sections of lower luminal membrane of human intestine from a patient with abetalipoproteinemia. Fig. 3: Electron micrographs of ultrathin sections of lower luminal membrane of human intestine from a patient with abetalipoproteinemia.
Lipid-laden enterocytes and genetic diseases

Fig 4. Immunogold labeling of apo AI (a) and apo B (b) on ultrathin sections of intestinal biopsies from a patient with Anderson's disease (a) and from a patient with abetalipoproteinemia (b) embedded in Lowicryl HM20. Gold particles are present on lipid structures (L) and on the Golgi apparatus to a lesser extent (arrows) a, × 24,320; b, × 35,000. Bars: a, 0.5 μm; b, 0.2 μm.

This work was supported by the National Institute of Health and Medical Research (INSERM), by the Caisse Nationale de l’Assurance Maladie des Travailleurs Salarisés (CNAMTS), by the National Center of Scientific Research (CNRS), by the Fondation de France and by a collaborative project between INSERM and the Dutch Organization for Scientific Research (NWO-GBMW).

References
