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Review

RNA-Centric Methods: Toward the Interactome
of Specific RNA Transcripts

Cathrin Gräwe,1,2 Suzan Stelloo,1,2 Femke A.H. van Hout,1 and Michiel Vermeulen1,*,@

RNA–protein interactions play an important role in numerous cellular processes
in health and disease. In recent years, the global RNA-bound proteome has
been extensively studied, uncovering many previously unknown RNA-binding
proteins. However, little is known about which particular proteins bind to which
specificRNA transcript. In this review, we provide an overview ofmethods to iden-
tify RNA–protein interactions, with a particular focus on strategies that provide
insights into the interactome of specific RNA transcripts. Finally, we discuss
challenges and future directions, including the potential of CRISPR-RNA targeting
systems to investigate endogenous RNA–protein interactions.

Importance of Studying RNA–Protein Complexes
The various types of RNA, such as mRNAs, rRNAs, and long noncoding (lnc)RNAs, are involved
in a multitude of cellular processes. The classical view of RNAs serving merely as a template for
protein synthesis has been expanded to catalytic, structural, and regulatory functions [1,2].
RNAs interact with RNA-binding proteins (RBPs; see Glossary), which play an essential role
in RNA fate and function, such as in mRNA processing and translation [3]. In addition, RNA
binding can also change the fate and function of proteins, for example by regulating protein
stability and localization [4,5]. The importance of these interactions also becomes clear in the
context of diseases that are characterized by perturbed RNA–protein interactions. Any alteration
in expression level, structure, localization, or modification of either RNA or protein may disrupt
these interactions and result in deregulation of the involved cellular processes [6,7]. For example,
the RNA modification N6-methyladenosine (m6A) affects protein binding, and alterations in m6A
levels are frequently observed in cancer [8–10].

To characterize RNA–protein interactions, a rapidly expanding toolbox of methods is available,
often classified into protein-centric and RNA-centric methods. Protein-centric methods, such
as crosslinking immunoprecipitation (CLIP), rely on immunoprecipitation of the protein of interest
followed by sequencing of the associated RNAs [11,12]. Conversely, RNA-centric methods rely
on isolation of proteins associated with the RNA of interest. These methods led to the identifica-
tion of many RBPs, including unexpected proteins, such as metabolic enzymes and transcription
factors (reviewed in [5]). In this review, we provide an overview of the current and emerging RNA-
centric approaches (Figure 1). In addition, we highlight the advantages, disadvantages, and
challenges that have to be overcome to improve current methods. Furthermore, we discuss potential
technical innovations to provide robust insights into endogenous protein–RNA interactomes.

Global RNA-Binding Proteome
To gain insight into the function of RNA–protein interactions, several methods have been devel-
oped in recent years to identify the global RNA-bound proteome. These methods preserve cellu-
lar RNA–protein interactions by crosslinking, which is then followed by cell lysis and purification
of the RNA–protein complexes. Purification of all cellular RNA–protein complexes can be done in
multiple ways; for example, total RNA-associated protein purification (TRAPP) is based on
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silica-based matrices that bind nucleic acids [13]. Other methods, such as orthogonal organic
phase separation (OOPS) [14], protein-crosslinked RNA extraction (XRNAX) [15], or phenol toluol
extraction (Ptex) [16], rely on extraction of crosslinked RNA–protein complexes by organic phase
separation (Figure 1A). Alternatively, polyadenylated RNA–protein complexes can be purified
using oligo-dT coupled beads, a method often referred to as RNA interactome capture (RIC)
(Figure 1B) [17,18]. This approach has been applied to study various biological processes. For
instance, Liepelt and colleagues studied changes of the RNA-bound proteome upon lipopolysac-
charide (LPS) stimulation in macrophages, thereby gaining important insights into signaling path-
ways involved in innate immune responses [19]. In another study, oligo-dT capture was applied to
determine changes in the RNA-bound proteome after inhibition of RNA demethylases, thereby

Glossary
Aptamers: short, single-stranded
nucleic acids that bind specifically to
their target proteins, often with high
affinity and specificity.
Binding affinity: the affinity of an
interaction indicates how strong a given
interaction is. A common measure for
this is the dissociation constant (Kd). The
lower the Kd value, the stronger the
interaction.
Catalytically dead Cas13 (dCas13):
developed bymutating the two nuclease
domains of Cas13. dCas13 retains
affinity for RNA, but lacks RNA-cleavage
activity.
Coat proteins: small proteins that
specifically interact with RNA stem loop
structures.
Crosslinking: formaldehyde or UV light
can be used to preserve RNA–protein
interactions. Formaldehyde forms
crosslinks between proteins and RNA as
well as between proteins, whereas UV
forms crosslinks exclusively between
proteins and RNA.
Proximity-labeling enzyme: an
enzyme that facilitates the attachment of
biotin to proximal proteins. Proximity-
labeling enzymes can be categorized in
biotin ligases [BioID, (mini)TurboID, and
BASU] and peroxidases (APEX and
APEX2).
RNA-binding proteins (RBPs):
proteins that bind RNA, thereby forming
regulatory complexes that control
numerous cellular processes.
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Figure 1. Schematic Illustration of RNA-Centric Methods for Detecting RNA–Protein Interactions. (A) The global
RNA-bound proteome can be isolated by organic phase separation. (B) RNA hybridization capturemethods to study proteins
bound to polyadenylated RNA use oligo-dT coupled to beads. (C) For RNA affinity purifications, an RNA bait is bound to a
solid support (i) or immobilized on beads (ii). The protein extract is then added to capture in vitro assembled RNA–protein
interactions. (D) RNA hybridization capture methods use antisense DNA oligonucleotides that anneal to a specific RNA
transcript. (E) RNA aptamer strategies rely on the co-expression of an aptamer-tagged RNA and coat proteins fused to a
tag in living cells. The coat proteins can either be recognized by specific antibodies allowing to pulldown the target RNA or
can be fused to proximity biotinylation enzymes, which label neighboring proteins. (F) In dCas13-based approaches, a
guide RNA (gRNA) recruits catalytically inactive Cas13 (dCas13) fused to a biotin-labeling enzyme specifically to an RNA of
interest. Upon addition of biotin, the biotin-labeling enzyme biotinylates proteins in its proximity. Abbreviations: RBP, RNA-
binding proteins; RNPS, ribonucleoprotein particles.
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identifying m6A-regulated RBPs [20]. Furthermore, oligo-dT capture approaches have been
adapted to map the exact RNA-binding sites of proteins [21]. These and similar studies allowed
the characterization of the global RNA-bound proteome, identifying known as well as previously
unknown, unexpected RBPs [5]. However, some questions remain that cannot be addressed by
studying the global RNA-bound proteome. What is the function of RNA–protein interactions and
how are they regulated? To answer these questions, interactomes for specific RNA transcripts
need to be characterized, thus providing new insights into the function of RNAs, proteins, and
their interactions.

In Vitro Assembled RNA–Protein Complexes
Numerous in vitro RNA affinity purifications approaches have been developed to identify proteins
interacting with RNA sequences of interest (Figure 1C). Generally, an RNA bait is immobilized on
beads and incubated with proteins extracted from tissues or cells. Then, unbound proteins are
washed away and bound proteins are purified and identified by western blot or mass spectrometry
(Figure 2A) [22]. This strategy has been widely adapted and different approaches have been
developed. For example, immobilization on beads can be achieved using either chemical modifi-
cations or RNA tags; RNA baits can either be synthesized or in vitro transcribed; and different
kinds of protein mixture can be used, such as nuclear or cytoplasmic extracts (reviewed in
[22]). These approaches demonstrate that RNA affinity purifications can be applied to various
biological questions. After the first description by Grabowski and Sharp in 1986, who studied
proteins binding to small nucleolar RNAs [23], RNA affinity purifications have been used to identify
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Figure 2. RNA Affinity Purifications. (A) Schematic workflow of RNA affinity purifications. In this example, a biotin-tagged
RNA bait is immobilized on streptavidin beads. Alternatively, the RNA bait is immobilized on a solid support as shown in
Figure 1A in the main text. Protein extract is incubated with the RNA bait to capture in vitro assembled RNA–protein
interactions. Subsequently, unbound proteins are removed by stringent washes and bound proteins are eluted. The eluted
proteins are further processed for western blot or mass spectrometry analysis. (B) The binding of proteins to RNA can be
influence by the RNA sequence (e.g., motif or nucleotide variant), its secondary structure, and RNA modification, including
5-methylcytosine (m5C), pseudouridine (Ψ), and N6-methyladenosine (m6A), and can be studied by using RNA affinity
purifications. (C) A graphical illustration of a scatter plot showing protein ratios obtained in quantitative mass spectrometry
analysis. In semiquantitative mass spectrometry approaches, proteins or peptides are isotopically labeled to differentiate
the experimental and control sample. The protein ratio of the two labels (experimental sample over control sample) is
calculated and outlier statistics is used to identify differential binders. (D) The binding affinity of a protein to the RNA of interest
can be determined by a dilution series of the RNA bait concentration. The RNA–bait concentration where half of the protein
fraction is bound is referred to as the dissociation constant (Kd), a measure of binding affinity.
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proteins binding to specific RNA sequences [24], RNA secondary structures [25,26], and RNA
modifications [8] (Figure 2B).

The broad use of RNA affinity purifications is due to the ease of performing the experiment since
no genetic manipulations are needed. Recent advances in experimental procedures and mass
spectrometry technologies enable affinity purifications in relatively high-throughput format,
thereby increasing identification accuracy while lowering experimental costs [27]. Furthermore,
affinity purifications using immobilized nucleic acids are not limited to determine binding specificity
(regardless of whether an interaction occurs) (Figure 2C), but can also be applied to determine
binding affinity (i.e., how strong an interaction is) (Figure 2D) [28].

Although affinity purifications are in principle easy to perform, care should be taken when design-
ing an experiment to avoid false positive hits. Binding of proteins to RNA is influenced by various
factors, such as sequence specificity and RNA secondary structures. It is possible that a partic-
ular RNA sequence adapts a different secondary structure in vitro compared with in vivo due
to the immobilization linker sequence or the length of the RNA bait. Another problem is that the
binding of some proteins depends on motifs that are located upstream or downstream of the
motif of interest, which can be missed when using relatively short baits. Using longer RNA baits
can circumvent these problems but, the longer the bait, the more proteins bind, which increases
the background signal in the mass spectrometer. This can hinder the identification of low-
abundant specific interactors by mass spectrometry. In addition, incubation and washing
conditions can affect the identification of interactors, especially since affinity purifications do not
capture weak and transient interactors well. Several experimental steps can be optimized to
increase identification rates, such as preclearing of extracts [29,30] or using competitors during
the experiment to eliminate nonspecific binding [22,24]. Furthermore, continuous improvements
in the sensitivity and sequencing speed of modern mass spectrometers enable the identification
of more proteins in shorter time frames, which increases the amount of information that can be
obtained from single-step affinity purifications using crude lysates. Taken together, RNA affinity
purifications are a powerful tool to study the molecular mechanisms of RNA–protein interactions,
but experimental validations are essential to verify whether the detected in vitro interactions also
occur in vivo.

In Vivo Assembled RNA–Protein Complexes
In addition to in vitro-based approaches, several methods have been developed to investigate
in vivo assembled RNA–protein complexes. These methods can be divided into three categories:
RNA hybridization; RNA-tags; or CRISPR-based RNA targeting (Figure 1D–F).

RNA Hybridization Capture
RNA antisense purification can be used to identify trans-genomic binding sites of endogenous
RNAs [31–33], but in recent years this approach has also been used to identify RNA–protein
interactions. In this method, RNA–protein interactions occurring in cells are first fixed by
crosslinking, followed by capturing of an RNA of interest using specific biotin-tagged antisense
DNA oligonucleotides. RNA–protein complexes are then purified using streptavidin-coated
beads and, after extensivewashes, bound proteins are eluted and identified bymass spectrometry
(Figure 3A) [31,34–36].

In 2014, West and colleagues described a hybridization-capture approach, called capture
hybridization analysis of RNA targets (CHART)-MS to study the interactome of the lncRNAs
NEAT1 and MALAT1 [31]. One year later, three other hybridization-capture approaches, called
comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) [34],
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RNA antisense purification (RAP)-MS [35], and identification of direct RNA-interacting proteins
(iDRiP) [36], were developed. Interestingly, all three studies applied their approaches to identify
the interactome of Xist, a lncRNA involved in inactivation of the X chromosome in female cells.
Strikingly, the overlap of identified Xist interacting proteins between these three methods is rather
low, whichmight be due tomethodological differences. These include use of different crosslinking
reagents, the number and size of antisense oligonucleotides, and the use of different cutoffs to
define statistically significant interactors (reviewed in [37]). This illustrates that the experimental
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Figure 3. Methods to Study In Vivo Assembled RNA–Protein Interactions. (A) Schematic workflow of RNA hybridization capture. In brief, RNA–protein interactions
in cells are preserved by crosslinking. The site of RNA–protein crosslinks are indicated in orange. After cell lysis, biotinylated DNA antisense oligonucleotides are hybridized
to the target RNA, and the RNA–protein complexes are purified with streptavidin beads. The beads are washed and proteins are eluted. (B) RNA aptamer strategies rely on
the co-expression of an aptamer-tagged RNA and coat proteins fused to a tag in living cells. The cells are crosslinked, lysed, and, subsequently, the RNA-associated
proteins are captured by immunoprecipitation using the tag fused to the coat protein (left). Alternatively, the coat protein can be fused to a proximity-labeling enzyme,
which, upon addition of biotin, biotinylates proteins in its proximity. The biotinylated proteins are isolated with streptavidin coated beads (right). (C) Workflow of
catalytically dead Cas 13 (dCas13)-based methodology. Cells are transfected with dCas13 and guide RNAs (gRNAs). The gRNA recruits dCas13 fused to a proximity-
labeling enzyme to an RNA of interest. Upon addition of biotin, the proximity-labeling enzyme biotinylates proteins in its proximity. These proteins are isolated with
streptavidin beads and identified by mass spectrometry.
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design can significantly affect which RNA–protein interactions are identified. Antisense oligonu-
cleotides in particular need to be designed carefully so that they are specific for the target RNA
and their binding site is accessible. However, once antisense oligonucleotides are designed
and tested, a target RNA can be isolated from cells without genetic manipulations, which enables
the identification of in vivo RNA–protein interactions also from primary cells and tissue samples.
Hybridization capture approaches have been applied to a range of RNAs, successfully identifying
RNA–protein interactions [38,39].

RNA Tagging
The general strategy of RNA-tag-mediated purifications involves the attachment of stem loop
structures, called aptamers, to the RNA of interest (Figure 3B). These introduced stem
loops, often 4–24 repeats, are recognized by their corresponding RBP/coat protein. The
most widely used aptamer is the MS2 stem loop originating from the bacteriophage MS2,
which interacts with high specificity and affinity to the MS2 phage coat protein (MS2-CP)
[40]. In mammalian cells, MS2 sequences do not naturally occur and, therefore, MS2-CPs
do not recognize mammalian RNAs. Other aptamer–protein combinations exist, such as PP7
stem loop-PP7 coat protein [41] and BoxB stem loop-λN peptide [42]. The aptamer-tagged
RNA recruits the coat proteins fused to peptide tags to facilitate the isolation of associated
proteins. The method RBP purification and identification (RaPID) uses the interaction between
MS2 and MS2-CP, which is fused to GFP and the streptavidin-binding peptide (SBP) tag [43].
The fluorescent label allows imaging of RNA and the SBP tag enables the purification of the
RNA-associated proteins [43]. Several similar methods, such as MS2 in vivo biotin tagged RNA
affinity purification (MS2-BioTRAP) [44], MS2-tagged RNA affinity purification (MS2-TRAP)
[45,46], and MS2-tagged RNA affinity purification and mass spectrometry (MTRAP-MS) [47],
have been described.

When designing RNA-tag-based purification, several considerations need to be considered. The
choice of a small tag with high affinity and specificity is favored to avoid interference with the
folding and structure of the coat protein, and to apply stringent washes (e.g., using washing
buffers containing high salt and detergent concentrations) to remove nonspecific binders [48].
Furthermore, the expression level of the coat protein relative to the RNA expression level and
the number of stem loop repeats is critical to achieve the best signal-to-noise ratio. It is unclear
howmany stem loops are required to achieve an optimal recruitment of the coat protein. Reducing
the number of stem loops or even a single stem loop might be beneficial to minimize structural
interference and binding of endogenous RBPs. Few methods reported the tagging of an RNA
molecule with just a single stem loop [49,50]. Lee and colleagues used a single hairpin sequence
that can be recognized by the CRISPR endonuclease Csy4 to study the interactome of three
pre-miRNAs in different cell types [50]. This shows that mass spectrometry analysis of single
hairpin-tagged RNAs is feasible.

Recently a different strategy, called in-cell protein–RNA interaction (incPRINT) was developed,
which does not require mass spectrometry-based analysis [51]. The method relies on the co-
expression of three components; recombinant luciferase tethered to MS2-CP; an MS2-tagged
RNA; and a FLAG-tagged protein. The cell lysates are subjected to 384-well plates coated with
anti-FLAG beads for immunoprecipitation and, together with the luminescence detection, the
FLAG-tagged proteins that interact with the tested RNA can be identified. For systematic
identification of RNA–protein interactions, a library of FLAG-tagged proteins is needed. As a
proof of concept, three conserved regions of the murine Xist RNA were interrogated with
~3000 FLAG tagged proteins, identifying region-specific interactions for the ~17 kb-long Xist
transcript [51].
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Proximity Proteome of Specific RNA Transcripts: Aptamer-Based Approaches
Further development of aptamer-based methods lies in the recruitment of proximity-labeling
enzymes to the stem loop-tagged RNAs by fusing coat proteins to those enzymes. Proximity-
labeling enzymes biotinylate accessible lysines or tyrosines of proteins within a 10–20-nm radius.
The most commonly used enzymes are APEX and BioID (a promiscuous mutant of the BirA
enzyme). The advantages of proximity-dependent biotinylation include the capture of weak and
transient interactions as well as insoluble proteins because the biotinylation happens in the living
cell (reviewed in [52]). Furthermore, due to the strong affinity between biotin and streptavidin-
conjugated beads, stringent washes can be used to reduce the background signal. Besides
labeling of proteins, APEX2 can also label RNA [53], enabling the parallel identification of RNAs
and proteins that interact with the RNA of interest. In addition, biotin-labeling enzymes with a
faster labeling time, such as APEX2 and (mini)TurboID, enable the study of dynamic changes in
RNA–protein interactions over time [54]. Yet, proximity-dependent biotinylation also has some
limitations, which are discussed later (see ‘Proximity Proteome of Specific RNA Transcripts:
Future Directions’).

Ramanathan and colleagues developed the method RNA–protein interaction detection (RaPID),
which involves a BoxB stem loop-tagged RNA and the λN peptide fused to the biotin ligases
BirA* or BASU [55]. RaPID-western was applied to validate a known RNA–protein interaction
between UDEN15 UG-rich RNA sequence and CELF1. Even though the methods cannot be
directly compared, RaPID-western showed significant enrichment of CELF1 binding to UDEN15
compared with conventional RNA affinity purifications [55]. Others fused the MS2-CP to APEX2
to identify proteins interacting with the human telomerase RNA [56]. These studies investigated
the interactome of overexpressed tagged RNAs rather than of endogenous RNA. However,
recently RNA-BioID was applied to study the interactome of endogenously tagged β-actin RNA
[57]. The paucity of studies focusing on endogenous interactions might have two reasons; first,
endogenous tagging is challenging and, second, the RNA abundance of most transcripts is too
low to provide sufficient enrichment.

Proximity Proteome of Specific RNA Transcripts: CRISPR-Based Approaches
The discovery of the CRISPR-Cas13 RNA targeting system (Box 1) provides new opportunities to
recruit proximity-labeling enzymes to an RNA transcript of interest. This new methodology has
been recently applied by several groups [56,58–61]. Zhang and colleagues developed a

Box 1. Cas13: An Expansion of the CRISPR/Cas-Based Toolbox

CRISPR and CRISPR-associated (Cas) enzymes are part of the adaptive immune system in prokaryotes and Archaea,
protecting them from foreign nucleic acids [78]. The CRISPR/Cas system became famous for its application in eukaryotic
gene editing, where the precise and programmable DNA cleavage activity of Cas9 and Cas12a is used to introduce
changes in the genome [79]. Since the first discovery of the CRISPR/Cas system, researchers have been studying and
identifying new Cas enzymes to improve and expand their applications in biotechnology. For instance, recent computa-
tional approaches discovered class 2 type VI CRISPR/Cas enzymes that target RNA [80]. These enzymes belong to the
Cas13 family, with at least six identified subtypes, Cas13a (previously known as C2C2), Cas13b, Cas13c, Cas13d,
Cas13e, and Cas13f [81–83]. All identified Cas13 enzymes have two distinct ribonuclease activities. The first is important
for processing pre-CRISPR RNAs generated by transcription of the CRISPR array into functional CRISPR RNAs that are
complementary to the foreign RNA. Second, upon gRNA-dependent binding of Cas13 to the target RNA, the two higher
eukaryotes and prokaryotes nucleotide-binding (HEPN) domains are activated and cleave the target RNA [84]. However,
this second endonuclease activity is not only restricted to the target RNA, but also contributes to global RNA degradation.
This phenomenon, called collateral cleavage, occurs in prokaryotic cells and in vitro, but further research is needed to
understand the underlying molecular mechanisms [85,86]. Given that collateral cleavage is uncommon in eukaryotic cells
and Cas13 shows precise targeting of RNA in these cells, Cas13 is a powerful tool for specific RNA cleavage with little to no
off-target events [87,88]. The development of catalytically dead versions of Cas13 extended the applications beyond RNA
knockdowns, allowing the recruitment of effector proteins to a RNA of interest, enabling imaging [89], editing [88], and
splicing alterations [90] of specific RNAs.
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CRISPR-based RNA-united interacting system (CRUIS), which is based on the fusion of
catalytically dead Cas 13a (dCas13a) to the proximity-labeling enzyme PUP-IT. CRUIS was
applied to identify the interactome of endogenous lncRNA NORAD and p21 mRNA [58]. By con-
trast, Yi and colleagues developed CRISPR-assisted RNA–protein interaction detection
(CARPID) to detect protein interactors of Xist, DANCR, and MALAT1 by recruiting dCas13d-
BASU [59]. Although these studies are based on the same principle, key differences are apparent,
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Figure 4. Potential Refinements of Proximity Labeling-Based RNA–Protein Identification. The use of a split proximity-labeling enzyme (A–C) could allow a better
signal-to-noise-ratio (SNR). (A) For instance, by incorporating two different stem loops within the RNA of interest, an intact proximity-labeling enzyme is assembled only when
bound to the target RNA. (B) Another option could be the delivery of two guides in the cell that are recognized by different hairpin-binding proteins [e.g., catalytically dead Cas
13 (dCas13)b and dCas13d] each fused to one half of the proximity-labeling enzyme, where the guides are spaced at certain distances to allow dimerization. (C) Alternatively,
the ligase activity could be reconstituted by combining split-protein strategies with chemical inducers of dimerization. The recruitment of more biotin ligase to the target RNA
can also improve the SNR (D,E). This can be achieved by (D) expressing a guide RNA (gRNA) containing aptamers that can recruit coat proteins fused to a proximity-labeling
enzyme. (E) In the SunTag system, dCas13 can be fused to a peptide array, which can recruit multiple scFv-proximity-labeling enzymes. (F) Engineering smaller proteins that
can target and bind to the RNA of interest might lead to decreased interference with other RNA-binding proteins (RBPs).
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such as targeting endogenous or exogenous RNAs, expression levels of the target RNA, and the
combination of dCas13 subtypes with proximity-labeling enzymes. Although the first studies
using the CRISPR-Cas13 RNA target system to identify proteins interacting with specific RNA
transcripts are promising, more insights into the underlying molecular mechanisms of this system
are needed. For example, the design of effective guide RNAs (gRNAs) remains challenging be-
cause target recognition requirement is not yet fully understood and only a few tools exist to pre-
dict gRNA efficiency [62,63].

Proximity Proteome of Specific RNA Transcripts: Future Directions
Amajor challenge of proximity-dependent biotinylation methods, either aptamer or Cas13 based,
is to improve the signal-to-noise ratio. Proximity-labeling enzymes facilitate biotinylation of
proximal proteins even when not bound to the target RNA, resulting in biotinylation of nonspecific
proteins. To overcome this limitation, the reconstitution of the proximity-labeling enzyme activity
on the target RNAmolecule might be a promising strategy [64]. Each half of the proximity-labeling
enzyme can be fused to a different coat protein that reassembles when bound to their cognate
stem loops inserted into the target RNA (Figure 4A). Another approach would be to use two
gRNAs that are recognized by different hairpin-binding proteins each fused to one half of the
proximity-labeling enzyme, where the gRNAs are spaced at a certain distance to allow dimeriza-
tion (Figure 4B). Another way to reconstitute proximity-labeling activity on the target RNA could be
achieved by combining split-protein strategies with chemical inducers of dimerization [65]
(Figure 4C). Split enzymes have already been developed for APEX2, TurboID, and BioID, making
the adaption of current methods to study RNA–protein interactions with split enzymes feasible
[64,66–68].

Furthermore, increasing the number of proximity-labeling enzyme on the target RNA could
improve the signal-to-noise ratio. As demonstrated for Cas9, designing gRNAs with additional
aptamers results in recruitment of multiple effector proteins to the targeted site, thereby improving
gene-editing efficiency [69,70]. Recently, Zhao and colleagues incorporated twoMS2 stem loops
into the Cas13 gRNA to recruit a methyltransferase, enabling efficient m6A editing [71]
(Figure 4D). Another suggestion is to use the SunTag technology to recruit multiple proximity-
labeling enzymes to a single dCas13 protein (Figure 4E). Suntag has been combined with
dCas9 [72], although not yet with dCas13, and was shown to improve imaging of genomic loci,
as well as gene activation and repression [72,73]. Taken together, these and other adaptations
could improve the signal-to-noise ratio.

Cas13 proteins are rather large proteins (~100–140 kDa), which might influence the binding of
endogenous RBPs to the Cas13-targeted RNA molecule. Therefore, smaller RNA-targeting
systems would be beneficial (Figure 4F), such as the CRISPR/Cas-inspired RNA targeting system
(CIRTS, ~25 kDa) [74]. The CIRTS system is, similar to Cas13, a gRNA-dependent RNA targeting
system that could deliver proximity-labeling enzymes to an RNA of interest. Further technical
innovations will facilitate the development of robust methods to comprehensively identify
interactomes for specific RNA transcripts.

Concluding Remarks
Taken together, a variety of RNA-centric methods exist to study the proteome of a given RNA
transcript, yielding new insights into RNA biology. Recent developments of dCas13-based
approaches will facilitate the identification of interactomes for specific RNA transcript, possibly
even in a high-throughput manner. This could be applied, for example, to map proteins binding
across the full length of an RNA transcript of interest (see Outstanding Questions). Furthermore,
combining RNA-centric methods with complementary approaches is required to validate

Outstanding Questions
How can we capture the complete
protein interactome of a specific RNA
transcript?

Is it possible to map the proteins along
an RNA transcript of interest and, if
so, how?

What is the overlap of identified RBPs
when using different RNA-centric
methods studying the same RNA
transcript?

Are dCas13-biotinylation-based ap-
proaches the future for identifying
RNA–protein interactions, or are there
other novel targeting or labeling systems?

How can we apply the knowledge of
RNA–protein interactions to various
fields, such as therapeutics and
bioengineering?
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identified interactors and to gain a deeper understanding of RNA biology. Even more insights
into the complexity of RNA interactions can be gained by studying RNA–RNA, RNA–DNA, or
RNA–chromatin interactions.

Given that RNAmolecules have a central role in disease, RNA–protein interactions are considered
an attractive target for therapy. For example, small molecules have been developed to target the
interaction between transactivator of transcription (TAT) protein and transactivator response RNA
(TAR) in HIV, reducing viral replication [75,76]. Furthermore, knowledge of RNA–protein interac-
tions can be used to design proteins for various purposes, including RNA degradation, editing,
or imaging [77]. Thus, further development and implementation of technologies to identify
RNA–protein interactions will have a profound impact, not only from a fundamental, but also
from an applied scientific perspective.
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