BACKGROUND
We previously reported that olaparib led to significantly longer imaging-based progression-free survival than the physician's choice of enzalutamide or abiraterone among men with metastatic castration-resistant prostate cancer who had qualifying alterations in homologous recombination repair genes and whose disease had progressed during previous treatment with a next-generation hormonal agent. The results of the final analysis of overall survival have not yet been reported.

METHODS
In an open-label, phase 3 trial, we randomly assigned patients in a 2:1 ratio to receive olaparib (256 patients) or the physician's choice of enzalutamide or abiraterone plus prednisone as the control therapy (131 patients). Cohort A included 245 patients with at least one alteration in \textit{BRCA1}, \textit{BRCA2}, or \textit{ATM}, and cohort B included 142 patients with at least one alteration in any of the other 12 prespecified genes. Crossover to olaparib was allowed after imaging-based disease progression for patients who met certain criteria. Overall survival in cohort A, a key secondary end point, was analyzed with the use of an alpha-controlled, stratified log-rank test at a data maturity of approximately 60%. The primary and other key secondary end points were reported previously.

RESULTS
The median duration of overall survival in cohort A was 19.1 months with olaparib and 14.7 months with control therapy (hazard ratio for death, 0.69; 95% confidence interval [CI], 0.50 to 0.97; \(P = 0.02 \)). In cohort B, the median duration of overall survival was 14.1 months with olaparib and 11.5 months with control therapy. In the overall population (cohorts A and B), the corresponding durations were 17.3 months and 14.0 months. Overall, 86 of 131 patients (66%) in the control group crossed over to receive olaparib (56 of 83 patients [67%] in cohort A). A sensitivity analysis that adjusted for crossover to olaparib showed hazard ratios for death of 0.42 (95% CI, 0.19 to 0.91) in cohort A, 0.83 (95% CI, 0.11 to 5.98) in cohort B, and 0.55 (95% CI, 0.29 to 1.06) in the overall population.

CONCLUSIONS
Among men with metastatic castration-resistant prostate cancer who had tumors with at least one alteration in \textit{BRCA1}, \textit{BRCA2}, or \textit{ATM} and whose disease had progressed during previous treatment with a next-generation hormonal agent, those who were initially assigned to receive olaparib had a significantly longer duration of overall survival than those who were assigned to receive enzalutamide or abiraterone plus prednisone as the control therapy, despite substantial crossover from control therapy to olaparib. (Funded by AstraZeneca and Merck Sharp & Dohme; PROfound ClinicalTrials.gov number, NCT02987543.)
METASTATIC CASTRATION-RESISTANT prostate cancer remains lethal.1 Men with deleterious alterations in genes involved in homologous recombination repair, such as BRCA1 and BRCA2, have more aggressive disease and higher mortality than those with proficient homologous recombination repair.2-12 The goal of treatment is to prolong survival while maintaining or improving quality of life.13 Tumors with gene alterations that affect homologous recombination repair are sensitive to poly(adenosine diphosphate–ribose) polymerase (PARP) inhibitors.14-21 Findings from a phase 2 trial of the PARP inhibitor olaparib in patients with metastatic castration-resistant prostate cancer and homologous recombination deficiency were confirmed in the PROfound trial, a phase 3, randomized trial.17,21,22 The PROfound trial enrolled patients with metastatic castration-resistant prostate cancer who had alterations in at least 1 of 15 prespecified genes with a direct or indirect role in homologous recombination repair and whose disease had progressed during previous treatment with a next-generation hormonal agent. The overall population comprised patients who had at least one alteration in BRCA1, BRCA2, or ATM (cohort A) and patients with at least one alteration in any of the other 12 prespecified genes (cohort B). In cohort A, the patients who received olaparib had a significantly longer duration of imaging-based progression-free survival than those who received the physician’s choice of enzalutamide or abiraterone plus prednisone (control) (hazard ratio for progression or death, 0.34; 95% confidence interval [CI], 0.25 to 0.47; P<0.001).22 Benefits with olaparib were also shown with respect to the key secondary end points of confirmed objective response rate, defined as the percentage of patients who had an imaging-based complete response or partial response (higher with olaparib than with control), and time to pain progression in cohort A (longer with olaparib than control).22 An exploratory analysis in cohort B revealed a hazard ratio (olaparib vs. control) for imaging-based progression or death of 0.88 (95% CI, 0.58 to 1.36) (Fig. S1 in the Supplementary Appendix, available with the full text of this article at NEJM.org).22 An interim analysis of overall survival in cohort A at a data maturity of 38% showed a median duration of overall survival of 18.5 months in the olaparib group, compared with 15.1 months in the control group, despite substantial crossover from control therapy to olaparib.22 Here, we report the results of the final prespecified analyses of overall survival in cohort A, a key secondary end point.

METHODS

TRIAL DESIGN AND PATIENTS

A detailed account of the methods, including all eligibility criteria, has been published previously.22 Briefly, the trial enrolled men with metastatic castration-resistant prostate cancer whose disease had progressed during previous treatment with enzalutamide, abiraterone, or both. Previous taxane chemotherapy was allowed. All the patients provided written informed consent.

An investigational clinical trial assay, based on the FoundationOne CDx next-generation sequencing test that was developed in partnership with Foundation Medicine, was used to prospectively identify patients with a qualifying deleterious or suspected deleterious alteration in at least 1 of the following 15 prespecified genes, which were selected on the basis of their direct or indirect role in homologous recombination repair: BRCA1, BRCA2, ATM, BRIP1, BARD1, CDK12, CHEK1, CHEK2, FANCL, PALB2, PPP2R2A, RAD51B, RAD51C, RAD51D, and RAD54L (Fig. S2). Confirmation of homologous recombination deficiency by means of a genomic instability test was not a requirement for patient eligibility.

Patients were randomly assigned in a 2:1 ratio to receive olaparib (300 mg twice daily) or the physician’s choice of enzalutamide (160 mg once daily) or abiraterone (1000 mg once daily) plus prednisone (5 mg twice daily) (control). Subsequent therapies were administered at the discretion of the investigators. Patients who were assigned to the control group were allowed to cross over to receive olaparib as a first subsequent anticancer therapy if they had disease progression (verified by blinded, independent central review if it occurred before the primary analysis data cutoff date of June 4, 2019, or by site investigator review if it occurred thereafter), had not received other subsequent anticancer therapy, had no unresolved toxic effects from previous therapy that were uncontrolled or greater than grade 1 at the time of initiating treatment with olaparib, and had agreed to continue attending the scheduled trial visits.
Primary and key secondary end points were reported previously. Overall survival (defined as the time from randomization to death from any cause regardless of whether the patient withdrew from the assigned therapy or received another anticancer therapy) in cohort A was a key alpha-controlled secondary end point. A prespecified sensitivity analysis was performed to explore the effect of crossover from control therapy to olaparib on overall survival. Prespecified subgroup analyses were also performed to assess the consistency of the treatment effect across potential prognostic factors. Central assessment of tumor response was stopped when imaging-based disease progression occurred during the assigned treatment. Imaging-based disease progression was defined as soft-tissue disease progression according to the Response Evaluation Criteria in Solid Tumors, version 1.1, or bone lesion progression according to the criteria of the Prostate Cancer Clinical Trials Working Group 3.

The time from randomization to a second progression (after a first event) or death was a secondary end point and was based on investigator assessment of either imaging-based or clinical disease progression or death; assessment was commenced after patients had begun a subsequent anticancer treatment. Adverse events were monitored throughout the trial and were graded according to the Common Terminology Criteria for Adverse Events, version 4.03.

The trial was performed in accordance with the principles of the Declaration of Helsinki, the International Conference on Harmonisation Good Clinical Practice guidelines, and the AstraZeneca and Merck policies on bioethics. Representatives of AstraZeneca designed the trial in collaboration with the trial steering committee and were responsible for overseeing the collection, analysis, and interpretation of the data. All the authors had full access to the data. Merck provided input regarding data interpretation. The manuscript was written with medical writing assistance funded by AstraZeneca and Merck Sharp & Dohme, with critical review and input by the authors. The authors vouch for the accuracy and completeness of the data and for the fidelity of the trial to the protocol, available at NEJM.org.

RESULTS

PATIENTS AND TREATMENT

The demographic and clinical characteristics of the patients at baseline are provided in Table S1. At the time of the final analysis, 68 patients in the olaparib group and 33 in the control group remained in the trial; of these patients, 14 and 2,
respectively, were receiving olaparib or control therapy as assigned (Fig. S4). The crossover-adjusted analysis included 86 of 131 patients (66%) in the control group who had crossed over to receive olaparib; this subgroup included 83 of 99 patients (84%) who had disease progression and chose to cross over in accordance with the protocol and 3 additional patients who did not meet the crossover eligibility criteria and received olaparib outside of the trial.

OVERALL SURVIVAL

Cohort A

At the time of the final analysis of overall survival, 148 of 245 patients (60%) in cohort A had died, so the prespecified criteria for significance of the overall survival end point were met. The median duration of overall survival was 19.1 months with olaparib and 14.7 months with control therapy (hazard ratio for death, 0.69; 95% CI, 0.50 to 0.97; P=0.02) (Fig. 1A). A sensitivity analysis that adjusted for crossover from control therapy to olaparib showed a hazard ratio of 0.42 (95% CI, 0.19 to 0.91) (Fig. 1B).

Cohort B

At the time of the final analysis of overall survival, 100 of 142 patients (70%) in cohort B had died. The median duration of overall survival was 14.1 months with olaparib and 11.5 months with control therapy (hazard ratio for death, 0.95; 95% CI, 0.68 to 1.34) in the intention-to-treat population; after adjustment for crossover from control therapy to olaparib, the hazard ratio was 0.83 (95% CI, 0.11 to 5.98) (Fig. 2B). The role of PPP2R2A as a homologous recombination repair gene could not be validated on the basis of preclinical data (Fig. S9), and no benefit of olaparib over control therapy with respect to overall survival was noted among patients who had alterations in PPP2R2A (hazard ratio for death, 5.11; 95% CI, 1.10 to 35.73) (Fig. S5B). In a post hoc exploratory sensitivity analysis that excluded these patients from cohort B, the hazard ratio for death was 0.79 (95% CI, 0.51 to 1.25) for the comparison between olaparib and control therapy, and the median duration of overall survival was 14.2 months with olaparib and 10.8 months with control therapy (Fig. S10A).

Overall Population

After the death of 248 of 387 patients (64%) in the overall population (cohorts A and B), the median duration of overall survival was 17.3 months with olaparib and 14.0 months with control therapy (hazard ratio for death, 0.79; 95% CI, 0.61 to 1.03) (Fig. 3A). After adjustment for crossover from control therapy to olaparib, the hazard ratio was 0.55 (95% CI, 0.29 to 1.06) (Fig. 3B). In a sensitivity analysis that excluded patients who had alterations in PPP2R2A, the hazard ratio was 0.76 (95% CI, 0.58 to 1.00), and the median duration of overall survival was 17.4 months with olaparib and 13.6 months with control therapy (Fig. S10B).

Prespecified Subgroup Analyses

In cohort A, prespecified subgroup analyses according to demographic and clinical characteristics at baseline, including previous use of taxane (yes vs. no), are shown in Figure 4. When these same prespecified analyses were performed in the overall population, the benefit of olaparib over control therapy with respect to overall survival was less clear than in cohort A (Fig. S5A).

Exploratory Gene-Level Analyses

Exploratory gene-level analyses showed hazard ratios for death (olaparib vs. control) of 0.42 (95% CI, 0.12 to 1.53) among patients with an alteration in only BRCA1 and 0.59 (95% CI, 0.37 to 0.95) among patients with an alteration only in BRCA2; exploratory gene-level analyses of other genes were also performed when there were sufficient numbers of patients and events (Figs. S5B and S6). The hazard ratio for death among patients with an alteration in any non-BRCA gene was 0.95 (95% CI, 0.68 to 1.34) in the intention-to-treat population; after adjustment for crossover, the hazard ratio was 0.82 (95% CI, 0.25 to 2.68) (Fig. S7A). Findings from exploratory analyses that included patients with an alteration in only ATM or CDK12 are shown in Figure S7B and S7C. Post hoc subgroup analyses according to previous use of taxane in patients with an alteration in only BRCA1 or BRCA2, ATM, or CDK12 are shown in Figure S8.

TIME TO SECOND PROGRESSION OR DEATH

The median time until a second progression or death in cohort A, as assessed by the investigators, was 15.5 months with olaparib and 10.6 months with control therapy (hazard ratio for second progression or death, 0.64; 95% CI, 0.45 to 0.93) (Fig. S11A). The corresponding values in cohort B were 9.9 months and 7.9 months (hazard ratio, 0.77; 95% CI, 0.50 to 1.21) (Fig. S11B); in the overall population, the values were 13.4 months
Survival with Olaparib in Prostate Cancer

Olaparib
Control

Patients who crossed over, 67% (56/83)
Hazard ratio for death, 0.42 (95% CI, 0.19–0.91)

Olaparib
Control

91%
84%
73%
61%
54%
42%

Percent/uni0020of/uni0020Patients/uni0020Alive

100
90
80
70
60
50
40
30
20
10
0

Months since Randomization

No. at risk
Olaparib 162 155 150 142 136 124 107 101 91 71 56 44 30 18 6 2 1 0
Control 83 79 74 69 64 58 50 43 37 27 18 15 11 9 6 3 1 0

Figure 1. Kaplan–Meier Estimates of Overall Survival and Corresponding Crossover-Adjusted Sensitivity Analyses in Cohort A.

Panel A shows overall survival among the patients in the intention-to-treat population who had at least one alteration in BRCA1, BRCA2, or ATM (cohort A). Panel B shows overall survival in cohort A, as adjusted with the use of a rank-preserving structural failure time model (with a recensoring approach to avoid possible informative censoring bias) to show the effect of crossover of patients from control therapy to olaparib as a subsequent anticancer therapy. For the patients who had censored data, the median duration of follow-up was 21.9 months among those in the olaparib group and 21.0 months among those in the control group. The alpha spent at the final analysis of overall survival was 0.047. Among the 83 patients in cohort A who were assigned to the control group, 56 (67%) crossed over to receive olaparib.
and 9.7 months (hazard ratio, 0.68; 95% CI, 0.51 to 0.90) (Fig. S11C).

SUBSEQUENT ANTICANCER THERAPIES

In cohort A, 79 of 162 patients (49%) in the olaparib group and 64 of 83 patients (77%) in the control group received a subsequent anticancer therapy; the corresponding values in the overall population were 129 of 256 patients (50%) and 96 of 131 patients (73%) (Table S2). Among the 64 patients in the control group in cohort A who received a subsequent anticancer therapy, 56 (67%) received olaparib and 8 (10%) received a different anticancer therapy, with no use of olaparib. The most common subsequent therapies other than olaparib were docetaxel...
adverse events were anemia, fatigue or asthenia, and decreased appetite (Table 1 and Table S5). Adverse events that were suspected by the site investigators to be causally related to olaparib were most frequently anemia (occurring in 39% of the patients), nausea (in 36%), and fatigue or asthenia (in 32%); olaparib was discontinued because of anemia in 7% of the patients and because of neutropenia, thrombocytopenia, nausea, vomiting, or fatigue or asthenia in 1% of the patients for each (Table S8). The most common adverse events that were suspected to be causally related to control therapy were fatigue or asthenia (occurring in 21% of the patients), nausea (in 11%), and decreased appetite (in 7%). Fatigue or asthenia that was considered to be causally related to control therapy led to treatment discontinuation in 2% of the patients.

No additional cases of a second new primary malignant tumor, pneumonitis, or myelodysplastic syndrome or acute myeloid leukemia were noted during the 30-day safety follow-up period. One case of fatal acute myeloid leukemia was reported in a 75-year-old White male patient who had a germline BRCA2 alteration that was diagnosed 54 days after the discontinuation of olaparib (duration of olaparib exposure, 15.7 months). Adverse events led to death in 10 of 256 patients (4%) in the olaparib group, in 6 of 130 patients (5%) in the control group, as well as in 3 of 83 patients (4%) who crossed over from control therapy to receive olaparib in accordance with the protocol (Table S9). Two deaths were considered to be causally related to a trial treatment: one from pneumonia and neutropenia in the olaparib group and one from pleural effusion in the control group.

SAFETY

The median duration of treatment was 7.6 months (range, 0.03 to 28.9) in the olaparib group and 3.9 months (range, 0.6 to 29.1) in the control group; the median duration of treatment with olaparib among the 83 patients in the control group who crossed over to receive olaparib was 15.7 months. No new safety signals were observed after the longer follow-up, as compared with the follow-up period in the primary analysis (Table S3). The most common adverse events among the patients in the olaparib group and those who crossed over to receive olaparib were anemia, nausea, and fatigue or asthenia; among those in the control group, the most common adverse events were anemia, fatigue or asthenia, and decreased appetite (Table 1 and Table S5). Adverse events that were suspected by the site investigators to be causally related to olaparib were most frequently anemia (occurring in 39% of the patients), nausea (in 36%), and fatigue or asthenia (in 32%); olaparib was discontinued because of anemia in 7% of the patients and because of neutropenia, thrombocytopenia, nausea, vomiting, or fatigue or asthenia in 1% of the patients for each (Table S8). The most common adverse events that were suspected to be causally related to control therapy were fatigue or asthenia (occurring in 21% of the patients), nausea (in 11%), and decreased appetite (in 7%). Fatigue or asthenia that was considered to be causally related to control therapy led to treatment discontinuation in 2% of the patients.

No additional cases of a second new primary malignant tumor, pneumonitis, or myelodysplastic syndrome or acute myeloid leukemia were noted during the 30-day safety follow-up period. One case of fatal acute myeloid leukemia was reported in a 75-year-old White male patient who had a germline BRCA2 alteration that was diagnosed 54 days after the discontinuation of olaparib (duration of olaparib exposure, 15.7 months). Adverse events led to death in 10 of 256 patients (4%) in the olaparib group, in 6 of 130 patients (5%) in the control group, as well as in 3 of 83 patients (4%) who crossed over from control therapy to receive olaparib in accordance with the protocol (Table S9). Two deaths were considered to be causally related to a trial treatment: one from pneumonia and neutropenia in the olaparib group and one from pleural effusion in the control group.

DISCUSSION

In this trial involving men with metastatic castration-resistant prostate cancer whose disease had progressed during previous treatment with a next-generation hormonal agent, overall survival in cohort A (those who had an alteration in BRCA1, BRCA2, or ATM) was a prespecified key alpha-controlled secondary end point. In cohort A, the patients who received olaparib had a significantly longer duration of overall survival than those who received a control therapy (enzalutamide or abiraterone plus prednisone) (19.1 months vs. 14.7 months; hazard ratio for death, 0.69; 95% CI, 0.50 to 0.97; P=0.02). The risk of death was 31%
lower with olaparib than with control therapy, despite substantial crossover from control therapy to olaparib. The median duration of treatment with olaparib among the patients who crossed over was 4.8 months, and the median duration of treatment with control therapy was 3.9 months. These findings support the previously reported result of a significantly longer duration of imaging-based progression-free survival with olaparib than with control therapy in the same patient population.22

Phase 2 trials have shown that antitumor activity with PARP inhibition in patients with metastatic castration-resistant prostate cancer varies...
according to the DNA-repair gene alterations they express, with consistently higher response rates among those with BRCA2 alterations. Patients in cohort A, and particularly the high percentage of patients who had tumors with a BRCA1 or BRCA2 alteration, appeared to derive the greatest benefit from olaparib with respect to overall survival. The trial was not designed to test the benefit of therapy with respect to overall survival at the individual gene level. However, a clinical benefit was not observed for olaparib in the population of patients who had other homologous recombination repair gene alterations. These data, including the results of sensitivity analyses that excluded patients with PPP2R2A alterations, and the recent regulatory approval of olaparib for metastatic castration-resistant prostate cancer in which this gene alteration was excluded highlight that additional studies are now required to further delineate genomic indicators of response to PARP inhibition.

Post hoc, gene-level subgroup analyses according to previous use of taxane in patients who had an alteration in only BRCA1, BRCA2, ATM, or CDK12 provide some insight into the potential effect of previous therapy on the treatment effect of olaparib. The effect of previous use of taxane on overall survival was observed predominantly in the analysis that included patients with only ATM loss, in which olaparib seemed to show a benefit over control therapy in those who had previously received taxane therapy, as compared with those who had not. However, this trial was not powered to detect a treatment effect across any subgroup; moreover, the patient number and number of events in some subgroups were limited, and the analyses were not adjusted for confounding factors (e.g., baseline prognostic factors, differences in disease burden and treatment history at baseline, and crossover from control therapy to olaparib after disease progression). Therefore, the results of these subgroup analyses should be interpreted with caution.

The safety profile of olaparib in this final analysis was consistent with that in the primary analysis, with no cumulative toxic effects observed during the extended exposure period. During the 30-day safety follow-up period, the number of cases of a second new primary malignant tumor or pneumonitis did not increase over those reported in the primary analysis; however, one case of acute myeloid leukemia was reported during follow-up for overall survival.

These data on overall survival are supported by the observation that the interval between a first progression and a second progression or death was longer with olaparib than with control therapy, despite substantial crossover from control therapy to olaparib. However, this was an investigator-assessed end point and thereby potentially subject to reporting bias. Patients who crossed over from control therapy to receive olaparib had a shorter median duration of olaparib exposure (4.8 months) than those who were randomly assigned to receive olaparib (7.6 months). Thus, earlier treatment with olaparib may have an advantage over its use later in the disease course.

When the PROfound trial was designed, data from phase 3 randomized trials that would validate the efficacy of switching from one next-generation hormonal therapy directed at androgen signaling to another were lacking, although such sequential use has been commonly applied in clinical practice. Small clinical studies that assessed sequential next-generation hormonal therapy had shown some antitumor activity, and because patients with disease progression had restricted options for systemic treatment, this approach was incorporated into clinical guidelines and adopted as a standard of care. With the caveat that cross-trial comparisons should be considered with caution, we note that recently reported data from the CARD trial have shown
that the efficacy of cabazitaxel was superior to that of a second androgen-signaling–directed, next-generation hormonal agent in patients (not selected on the basis of biomarkers) who had previously been treated with docetaxel and whose disease had progressed during 12 months of previous treatment with a next-generation hormonal agent. However, data to guide treatment sequencing for patients with metastatic castration-resistant prostate cancer and homologous recombination deficiency remain sparse outside of that trial. In addition, cabazitaxel was not considered to be an appropriate choice for the control treatment in the PROfound trial, because it is only approved for use after docetaxel, and patients were included in our trial regardless of previous receipt of chemotherapy.

In this analysis of overall survival among patients with metastatic castration-resistant prostate cancer who had tumors with at least one alteration in BRCA1, BRCA2, or ATM and whose disease had progressed during previous treatment with a next-
generation hormonal agent, olaparib led to significantly longer overall survival than enzalutamide or abiraterone plus prednisone. This improvement was noted despite substantial crossover from control therapy to olaparib. Previously defined adverse effects of olaparib (e.g., anemia, nausea, and fatigue or asthenia) were observed in this trial.

Supported by AstraZeneca and Merck Sharp and Dohme (a subsidiary of Merck).

Dr. Hussain reports receiving grant support, advisory board fees, and travel support from Pfizer, Bayer, and Genentech/Roche, grant support, advisory board fees, and lecture fees from AstraZeneca, grant support, paid to Northwestern University, from Arvinas, lecture fees and travel support from Astellas, lecture fees from Physicians' Education Resource, Sanofi/Genzyme, Research to Practice, and OncLive, honoraria from Projects

<table>
<thead>
<tr>
<th>Event</th>
<th>Olaparib (N = 256)</th>
<th>Control (N = 130)†</th>
<th>Crossover (N = 83)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Grades</td>
<td>Grade ≥3</td>
<td>All Grades</td>
</tr>
<tr>
<td>Any adverse event</td>
<td>246 (96)</td>
<td>133 (52)</td>
<td>115 (88)</td>
</tr>
<tr>
<td>Anemia§</td>
<td>127 (50)</td>
<td>58 (23)</td>
<td>20 (15)</td>
</tr>
<tr>
<td>Nausea</td>
<td>110 (43)</td>
<td>4 (2)</td>
<td>27 (21)</td>
</tr>
<tr>
<td>Fatigue or asthenia¶</td>
<td>107 (42)</td>
<td>8 (3)</td>
<td>43 (33)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>80 (31)</td>
<td>4 (2)</td>
<td>24 (18)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>55 (21)</td>
<td>2 (<1)</td>
<td>9 (7)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>51 (20)</td>
<td>6 (2)</td>
<td>17 (13)</td>
</tr>
<tr>
<td>Constipation</td>
<td>49 (19)</td>
<td>0</td>
<td>19 (15)</td>
</tr>
<tr>
<td>Back pain</td>
<td>36 (14)</td>
<td>2 (<1)</td>
<td>18 (14)</td>
</tr>
<tr>
<td>Peripheral edema</td>
<td>34 (13)</td>
<td>0</td>
<td>10 (8)</td>
</tr>
<tr>
<td>Cough</td>
<td>29 (11)</td>
<td>0</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>27 (11)</td>
<td>6 (2)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>26 (10)</td>
<td>1 (<1)</td>
<td>14 (11)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>21 (8)</td>
<td>5 (2)</td>
<td>15 (12)</td>
</tr>
<tr>
<td>Any serious adverse event‖</td>
<td>94 (37)</td>
<td>NA</td>
<td>39 (30)</td>
</tr>
<tr>
<td>Interruption of treatment because of adverse event</td>
<td>119 (46)</td>
<td>NA</td>
<td>25 (19)</td>
</tr>
<tr>
<td>Dose reduction because of adverse event</td>
<td>60 (23)</td>
<td>NA</td>
<td>7 (5)</td>
</tr>
<tr>
<td>Discontinuation of treatment due to adverse event</td>
<td>51 (20)</td>
<td>NA</td>
<td>11 (8)</td>
</tr>
<tr>
<td>Death due to adverse event</td>
<td>10 (4)</td>
<td>NA</td>
<td>6 (5)</td>
</tr>
</tbody>
</table>

*Adverse events, regardless of the investigators’ assessment of causality, are reported for those that occurred in at least 10% of the patients in either treatment group. Patients who reported multiple adverse events were counted once for each type of adverse event, even if they reported multiple occurrences of a particular adverse event. The safety analysis set included all the patients who had been randomly assigned to receive olaparib or the physician’s choice of enzalutamide or abiraterone plus prednisone (control) and received at least one dose of a trial drug. Adverse events were graded according to the Common Terminology Criteria for Adverse Events, version 4.03. NA denotes not applicable.

†One patient in the control group did not receive treatment.

‡Patients in the control group were allowed to cross over to receive olaparib after disease progression in accordance with the protocol. Three patients in the control group who received olaparib outside of the trial were not included in the safety analysis set.

§The anemia category includes anemia, decreased hemoglobin level, decreased red-cell count, decreased hematocrit level, erythropenia, macrocytic anemia, normochromic anemia, normochromic normocytic anemia, and normocytic anemia. Among the patients in the overall population, anemia was reported in 49% and a decreased hemoglobin level in less than 1%. Among the patients who crossed over to receive olaparib, anemia was reported in 49%, a decreased hemoglobin level in 1%, decreased red-cell count in 1%, and macrocytic anemia in 1%.

¶Fatigue or asthenia is a grouped term that includes fatigue, asthenia, or both.

‖The most common serious adverse events, regardless of the investigators’ assessment of causality, are listed in Table S7 in the Supplementary Appendix.
in Knowledge, advisory board fees from Bristol-Myers Squibb and Daiichi Sankyo, fees for conducting an interview with UroToday, and holding patents US14437/US-1/PRO 60/923,385 and US14437/US-2/ORD12/101,753 on systems and methods for tissue imaging, patent 229990/10-016P2/31173361/481/671 on a method of treating cancer, and patent 11764665.4-1464 on dual inhibition of MET and vascular endothelial growth factor for the treatment of castration-resistant prostate cancer and osteoblastic bone metastases; Dr. Mateo, receiving grant support, paid to his institution, advisory board fees, fees for serving on a speakers bureau, and access to materials from AstraZeneca, grant support, paid to his institution, from Pfizer Oncology, advisory board fees, fees for serving on a speakers bureau, and travel support from Janssen Oncology and Astellas, and advisory board fees from Clovis Oncology, Merck, Merck Sharp and Dohme, Roche, and Amgen; Dr. Fizazi, receiving fees for serving as an investigator, paid to his institution, from Astellas, Janssen, Sanofi, Bayer, AstraZeneca, and Clovis, advisory board fees from Onconova Therapeutics, Inc., and advisory board fees and fees for participating in a symposium from Merck Sharp and Dohme; Dr. Saad, receiving grant support, consulting fees, advisory board fees, lecture fees, and writing assistance from Sanofi, Janssen, Bayer, and Astellas, grant support, consulting fees, and writing assistance from Bristol-Myers Squibb, Merck, Pfizer, and Myovant, and grant support, consulting fees, advisory board fees, and lecture fees from AstraZeneca; Dr. Shore, receiving fees for serving as an investigator and consulting fees from Abbvie, Amtry, Amgen, Astellas, AstraZeneca, Bayer, Boston Scientific, Clovis Oncology, Dendreon, Exact Imaging, FerGene, Ferring, Foundation Medicine, Invitae, Janssen, IDXHealth, Merck, Myriad, Pfizer, Platform Q, Sanofi-Genzyme, Tolmar, Bristol-Myers Squibb, Myovant, and Nymox; Dr. Sandhu, receiving advisory board fees, paid to her institution, and grant support from AstraZeneca and Merck Sharp and Dohme, and receiving grant support from Amgen, Endocyte, and Genentech; Dr. Chi, receiving grant support, paid to his institution, and consulting fees from AstraZeneca, Bayer, Novartis, Pfizer, Point Biopharma, Roche, and Sanofi, and consulting fees from Daiichi Sankyo, Merck, and Bristol-Myers Squibb; Dr. Sartor, receiving grant support and consulting fees from AstraZeneca, Bayer, Endocyte, Progenics, Novartis, and Janssen, consulting fees from Astellas, Blue Earth Diagnostics, EMD Serono, Pfizer, Constellation, Dendreon, Bristol-Myers Squibb, Braverman, Melt, Clovis, Myriad, Nara Therapeutics, Novo-pharm, Point Biopharma, Tenebio, Theragnostics, Telix, Clarity Pharmaceuticals, Celgene, and Fusion, grant support, consulting fees, and fees for expert testimony from Sanofi, and grant support from Invitae, Merck, Innocrin, and Sotio, and serving as co-chairman of GU committee for NRG Oncology; Dr. Agrawal, receiving grant support, paid to his institution, and consulting fees from AstraZeneca, Bayer, Bristol-Myers Squibb, Clovis, Eisai, Eli Lilly, EMD Serono, Exelixis, Genentech, Janssen, Merck, Nektar, Novartis, Pfizer, and Seattle Genetics, grant support, paid to his institution, from Bavarian Nordic, Calithera, CellDec, GlaxoSmithKline, Immunomedics, Medivation, New Link Genetics, Prometheus, Rexahn, Roche, Sanofi, Takeda, and Tracon, and consulting fees from Astellas, Foundation Medicine, and Pharmacodynamics; Dr. Olmos, receiving grant support, advisory board fees, lecture fees, and travel support from AstraZeneca, grant support and travel support from Astellas, steering committee fees, advisory board fees, and lecture fees, paid to his institution, travel support, and grant support from Janssen, advisory board fees from Clovis and Daiichi-Sankyo, advisory board fees and lecture fees, paid to his institution, travel support, and grant support from Bayer, travel support from Genentech, F. Hoffmann–La Roche, and Ipsen, and advisory board fees and lecture fees, paid to his institution, from Merck Sharp and Dohme, and serving on an advisory board for BioOncotech; Dr. Thiery-Vuillemin, receiving advisory board fees and advisory board fees from Ipsen, consulting fees, lecture fees, and advisory board fees, and travel support from Novartis, Sanofi-Aventis, and Astellas, consulting fees, lecture fees, advisory board fees, and travel support from Bristol-Myers Squibb and Janssen, consulting fees and travel support from F. Hoffmann–La Roche and Merck Sharp and Dohme, grant support, consulting fees, lecture fees, advisory board fees, and travel support from Pfizer, advisory board fees from Bayer, and consulting fees, advisory board fees, and travel support from AstraZeneca; Dr. Roubaud, receiving consulting fees and travel support from Astellas, Ipsen, Sanofi, and Janssen and consulting fees from AstraZeneca; Dr. Ozguroglu, receiving lecture fees and travel support from AstraZeneca, advisory board fees, lecture fees, and travel support from Janssen, advisory board fees from Sanofi and Roche, advisory board fees and lecture fees from Astellas, lecture fees from Novartis, and travel support from Bristol-Myers Squibb; Dr. Kang, being employed by and owning stock in AstraZeneca; Dr. Burgents, being employed by and owning stock in Merck and being previously employed by AstraZeneca; Drs. Corcoran and Adelman, being employed by and owning shares in AstraZeneca; and Dr. de Bono, receiving grant support, paid to his institution, advisory board fees, consulting fees, lecture fees, and travel support from AstraZeneca, grant support, paid to his institution, advisory board fees, and travel support from GlaxoSmithKline, Pfizer, Taiho, Daiichi Sankyo, Bayer, Orion, Genentech/Roche, Merck Serono, Sierra Oncology, Merck Sharp and Dohme, Astellas, Cellectriic, Sanofi Aventis, and Vertex Pharmaceuticals, and advisory board fees and travel support from Terumo, Menarini/Silicon Biosystems, Bioxcel Therapeutics, Eisai, and Qiagen, and holding patent WO 2005 053662 on DNA damage repair inhibitors for treatment of cancer, licensed to AstraZeneca, and patent US5604213 on 17-substituted steroids useful in cancer treatment, licensed to Janssen. No other potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.

A data sharing statement provided by the authors is available with the full text of this article at NEJM.org.

We thank the patients who participated in the PROfound trial, their families, and our coinvestigators; Christian H. Pohle, M.D., of Merck Sharp and Dohme for his contribution to the analysis and interpretation of the data; Allison Allen, Ph.D., of Global Medicines Development at AstraZeneca for her role as the trial medical scientist; Caroline Sibilla, Ph.D., of Precision Medicine and Biosamples, AstraZeneca, for her contribution to enable delivery of diagnostic test results in the trial; Alessandro Galbiati, Ph.D., Kunzah Jamal, Ph.D., and Elisabetta Leo, Ph.D., of the AstraZeneca preclinical team for providing the data on PPP2R2A; and Jacqueline Kolston, Ph.D., and Debbi Gorman, Ph.D., of Mudskipper Business for medical writing assistance with an earlier version of the manuscript.

APPENDIX

The authors' full names and academic degrees are as follows: Maha Hussain, M.D., Joaquin Mateo, M.D., Karim Fizazi, M.D., Fred Saad, M.D., Neal Shore, M.D., Shahnenee Sandhu, M.D., Kim N. Chi, M.D., Oliver Sartor, M.D., Neeraj Agrawal, M.D., David Olmos, M.D., Antoine Thiery-Vuillemin, M.D., Przemysław Twardowski, M.D., Guilhem Roubaud, M.D., Mustafa Ozguroglu, M.D., Jinyu Kang, M.D., Joseph Burgents, Ph.D., Christopher Gresty, M.Sc., Claire Corcoran, Ph.D., Carrie A. Adelman, Ph.D., and Johann de Bono, M.D.

The authors' affiliations are as follows: the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago (M.H.); Vall d’Hebron Institute of Oncology and Vall d’Hebron University Hospital, Barcelona (J.M.), the Spanish National Cancer Research Center, Madrid (D.O.), and Instituto de Investigacion Biomédica de Málaga, Málaga (D.O.) — all in Spain;
SURVIVAL WITH OLAPARIB IN PROSTATE CANCER

Institut Gustave Roussy, University of Paris Saclay, Villejuif (K.F.), the Department of Medical Oncology, Centre Hospitalier Universitaire Besançon, Besançon (A.T.-V.), and the Department of Medical Oncology, Institut Bergonié, Bordeaux (G.B.) — all in France; Centre Hospitalier de l’Université de Montréal—Centre de Recherche du Centre Hospitalier de l’Université de Montréal, Montreal (F.S.), and BC Cancer Agency, Vancouver (K.N.C.) — both in Canada; Carolina Urologic Research Center, Myrtle Beach, SC (N.S.); Peter MacCallum Cancer Centre, Melbourne, VIC, Australia (S.S.); Tulane University School of Medicine, New Orleans (O.S.); Huntsman Cancer Institute, University of Utah, Salt Lake City (N.A.J.); John Wayne Cancer Institute, Santa Monica, CA (P.T.); Istanbul University–Cerrahpaşa, Cerrahpaşa School of Medicine, Istanbul, Turkey (M.O.); AstraZeneca, Global Medicines Development, Oncology, Gaithersburg, MD (J.K.); Merck, Kenilworth, NJ (J.B.); and Global Medicines Development, Oncology (C.G.), Precision Medicine and Biosamples, R&D Oncology (C.G.), and Translational Medicine (C.A.A.), AstraZeneca, Cambridge, and the Institute of Cancer Research and Royal Marsden, London (J.B.) — both in the United Kingdom.

REFERENCES

Copyright © 2020 Massachusetts Medical Society.