Report of the
Fourth International Workshop on Human Chromosome 18 Mapping 1996

held on October 7–9, 1996
Children's Hospital
Boston, Massachusetts

Organized by
Gary A. Silverman
Joan Overhauser
Steve Gerken
Ad Geurts van Kessel
The fourth international workshop on human chromosome 18 mapping was held in Boston, Massachusetts, USA on October 7–9, 1996, and was hosted by The Children's Hospital and the Harvard Medical School. The workshop was attended by 34 participants from 7 countries (Canada, Germany, Italy, Japan, The Netherlands, United Kingdom, and United States) and was supported by grants from the National Institutes of Health, the US Department of Energy and the Human Genome Organization (HUGO). The goals of the workshop were to 1) generate integrated genetic and physical maps, 2) update the transcriptional map, 3) assess the syntenic relationships between human chromosome 18 and the mouse genome, and 4) establish a chromosome 18 web site.

The format of the meeting was similar to that used at previous workshops. Abstracts and data from each participant were collected, duplicated and distributed to other participants. Data presentations were organized into five sessions: regional and chromosomal genetic mapping; comparative mapping, regional and chromosomal physical mapping; transcriptional mapping, and databases/worldwide-web (WWW) site. After the data were presented, the participants were organized into working groups to address issues raised during the discussions and to prepare consensus maps.

A transcript map, using the Whitehead/MIT map as the backbone, was developed using an inferred order from radiation hybrid, STS content, somatic cell hybrid and genetic maps. At least 42 new genes and 213 ESTs were assigned to chromosome 18. A consensus genetic map was constructed using the Location Data Base (LDB). This map contained >600 loci of which 220 were polymorphic, and included markers from the Généthon, CEPH, CHLC, MIT and Utah data sets. A fully referenced hypertext version of this summary map is available through the LDB web site (Table I). Several STS content maps, somatic cell hybrid maps and regional maps were presented. A consensus physical map containing a total of 298 STSs (71 p-arm, 227 q-arm) with an average spacing of 200 kb was assembled.

Revised and new data on disease-related loci were presented. Based on genetic mapping and disease phenotype, Niemann-Pick type C (NPC) and type D are likely to be allelic variants of the same disease locus. A similar conclusion was reached for benign recurrent intrahepatic cholestasis (BRIC) and progressive familial intrahepatic cholestasis (PFIC or Byler disease). The NPC/D and BRIC/PFIC loci mapped to the pericentric region (between D18S869 and D18S1101/1108) and 18q21 (between D18S649 and D18S1101/1108) and 18q21 (between D18S41 and D18S64), respectively. Evidence of linkage disequilibrium between several chromosome 18 loci and two neuropsychiatric disorders (bipolar affective illness and schizophrenia) was provided by several groups.
A syntenic relationship between human chromosome 18 and the proximal and distal portions of mouse chromosome 18 was supported further by the identification of five new genes. Mouse mutants that may have relevance to human diseases on chromosome 18 also were presented.

The data, maps and abstracts from this workshop can be accessed by the WWW using the Genome Data Base or the Chromosome 18 Home page (Table I).

The genetic map

Large-scale efforts at developing simple-tandem repeat polymorphic loci (STRP) for all human chromosomes and genotyping the CEPH reference families with these genetic markers has occurred at Généthon and the Cooperative Human Linkage Center (CHLC). Généthon published a comprehensive genetic map of the human genome based on 5,264 STRPs (Dib et al., 1996). The genetic map of chromosome 18 spanned 124 cM (sex-averaged) and contained 136 loci with 1.10 markers per cM. The CHLC group published the assignment of 2,931 STRPs to chromosomes using the NIGMS somatic cell hybrid mapping panel 2 (Sunden et al., 1996). A collection of tri- and tetranucleotide STRP markers was used to construct genomewide human linkage maps using genotypic data collected with the CEPH reference families (Sheffield et al., 1995). Additional information about the resources developed by these groups can be accessed through the WWW (Table I). Nine genetic maps of chromosome 18 were presented at the workshop. One linkage map spanning chromosome 18 was constructed with CEPH genotypic data using an integrated set of 120 genetic markers from the Utah, CHLC, and Généthon data sets (Table II). Five genetic linkage maps were constructed with genotypes collected in families segregating bipolar disorder and a regional map of 18p11.2→q12.1 was constructed with genotypes from families with bipolar and schizophrenia disorders (Table II). A linkage map flanking the Niemann-Pick type D locus in the pericentromeric region of chromosome 18 was presented. A genetic map based upon meiotic recombination breakpoints in families with familial cholestasis (PFIC/BRIC) was presented for the 18q21→q22 region.

The summary genetic map for the workshop was the integrated physical and genetic map presented by Andrew Collins. The consensus map was comprised of 612 loci, of which 220 were STRPs. The consensus map was updated with the genetic data that were presented at the workshop. The marker orders and genetic distances were incorporated into the LDB and a new integrated map of chromosome 18 was constructed with the LDB software (ldb+/MAP+ suite of programs) (Collins et al., 1996). The updated fully referenced, hypertext version of the consensus map can be viewed on the WWW (LDB, Table I). Comparison of the
Table II. Chromosome 18 workshop summary of genetic maps

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Map position</td>
<td>18pter-qter</td>
<td>18pter-qter</td>
<td>18pter-qter</td>
<td>18pter-qter</td>
<td>18pter-qter</td>
<td>18pter-qter</td>
<td>18pter-pter</td>
<td>18q11.2-q12.1</td>
<td>18q21-q22</td>
</tr>
<tr>
<td>Number of Loci</td>
<td>220</td>
<td>120</td>
<td>31</td>
<td>28</td>
<td>13</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td>Sex average length</td>
<td>128</td>
<td>142</td>
<td>141.5</td>
<td>147</td>
<td>121.15</td>
<td>146</td>
<td>49.5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Male length</td>
<td>107</td>
<td>136</td>
<td>136</td>
<td>95</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female length</td>
<td>149</td>
<td>157.5</td>
<td>157.5</td>
<td>145.3</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map algorithm</td>
<td>likelihood</td>
<td></td>
<td>likelihood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map program</td>
<td>map</td>
<td></td>
<td>crimap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedigrees</td>
<td>CEPH and</td>
<td>CEPH</td>
<td>North-</td>
<td>German</td>
<td>Amish and</td>
<td>German and</td>
<td>Acadian</td>
<td>Amish and</td>
<td></td>
</tr>
<tr>
<td>Phenotype*</td>
<td>BP</td>
<td>Bipolar</td>
<td>Bipolar</td>
<td>BP</td>
<td>BP and</td>
<td>NPD</td>
<td>BRIC and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schiz.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>individuals typed</td>
<td>243</td>
<td>400</td>
<td>377</td>
<td>247</td>
<td>383</td>
<td>152</td>
<td></td>
<td>~350</td>
<td></td>
</tr>
</tbody>
</table>

*BP: Bipolar affective disorder; Schiz.: Schizophrenia; BRIC: Benign, recurrent intrahepatic cholestasis; NPD: Niemann-Pick Type D

The physical map

The resolution of the physical map of chromosome 18 has been improved since the last chromosome workshop (Overhauser et al., 1995). A higher resolution somatic cell hybrid mapping panel was presented by Joan Overhauser. The mapping panel is a composite panel composed of cell lines described previously by Markie et al. (1992) and Rojas et al. (1995), and newly derived cell lines. In addition, a somatic cell hybrid containing the der(X) from a synovial sarcoma cell line that was described by Gilgenkranz et al. (1990) was included. This composite mapping panel is comprised of 56 cell lines and with currently mapped markers, divides the chromosome into 42 distinct bins (Fig. 1).

A chromosome 18 STS content YAC map was presented by Ken Krauter using the Quickmap-based Pooling Strategy (QPS). This YAC map includes over 300 STSs. Chad Nusbaum presented an update on the Whitehead Institute/MIT Genome Center’s STS-based map of human chromosome 18. A total of 511 individual markers have been placed on an integrated physical, genetic and radiation hybrid map. The WI/MIT maps contain 324, 1356 and 278 STSs respectively. The marker set also contains 261 ESTs. Current efforts are focused on map verification, transcript (EST)
Fig. 1. Somatic cell hybrid mapping panel. An ideogram of chromosome 18 is shown to the left. The black bars represent the amount of chromosome 18 material present in each cell line. The bin names are shown at the right. If the cell line is available at the NIGMS Human Genetic Mutant Cell Repository, its catalogue name is included.

mapping and cytogenetic integration by FISH mapping with STS-containing BACs. Several region-specific YAC contigs were presented and included the 18p11 region (Lisa Esterling), the Niemann-Pick Disease type D locus within 18q11 (Wenda Greer and Christie Riddell), the desmocollin locus within 18q12.2 (Joachim Arneemann), the BRIC/PFIC locus within 18q21.1 (Nelson Freimer), and the 18q critical region within 18q23 (Joan Overhauser).

A consensus ordered STS content map for chromosome 18 was generated (Fig. 2). The STS content map generated by Ken Krauter served as a framework for map construction. Additional markers were added where order could be inferred using data presented by others. An STS content YAC contig of 18p was recently published by Giacalone et al. (1996) and this information was incorporated into the map. If order for large regions could not be determined, due to the use of different markers within a region, the additional STS order information was included on the left side of the consensus map (Fig. 2). If differences in STS order could not be resolved, the alternative order of markers was placed at the
right side of the consensus map. Finally, the approximate location of the STSs relative to the cytogenetic map was determined by incorporating bin localizations derived from the somatic cell hybrid mapping panel (Figs. 1 and 2).

Several radiation hybrid maps for chromosome 18 are either available in public databases (Stanford, MIT, Table I) or have been published (Giacalone et al., 1996). The ordering information from these physical maps was incorporated into the consensus map (Fig. 2). No attempt was made to include STS order based on genetic mapping information.

Sequence-ready contigs for chromosome 18 are available and include P1 contigs encompassing the desmoglein (Joachim Arnemann) and the myelin basic protein (Robi Leach) regions.

Gene transcript map

At the third international workshop (Overhauser et al., 1995) a limited number of genes and ESTs were localized on...
chromosome 18. Sevilla Detera-Wadleigh reported on the current status of the chromosome 18 transcript map. A concerted effort to sequence cDNAs and to generate ESTs by several groups, notably the Washington University/Merck collaboration, has resulted in a large number of novel, ready-to-map sequences. In addition, the development of radiation hybrid (RH) mapping panels at the Stanford Human Genome Center (SHGC) and their availability through Research Genetics, has permitted rapid and high resolution mapping of ESTs. The genome project at the Whitehead Institute/MIT has generated an RH map that included a total of 139 ESTs and genes. The SHGC RH map contained 26 ordered cDNAs and 54 unordered cDNAs localized to 40 bins. The National
Center for Biotechnology Information (NCBI) Entrez map added another 12 cDNAs. Sevilla Delera-Wadleigh reported on the isolation of 25 novel transcripts and their mapping using the chromosome 18 hybrid panel (Joan Overhauser) and the SHGC G3 RH panel. The SYT, desmocollin (DSC), and desmoglein (DSG) genes were integrated into the transcript map. Takashi Imamura reported on the generation of 55 different transcripts by cDNA selection using chromosome 18 cosmids. Nine of these transcripts were novel. Using the WI/MIT transcript map as a backbone, an integrated consensus transcript map was assembled (Fig. 3). Repetitious transcripts were ordered into groups and localizations were improved and inferred when possible.

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Chromosome Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYT</td>
<td>18</td>
</tr>
<tr>
<td>DSC</td>
<td>18</td>
</tr>
<tr>
<td>DSG</td>
<td>18</td>
</tr>
</tbody>
</table>

Fig. 2. continued

Fig. 3. Transcript map of chromosome 18. The Whitehead Institute/MIT RH map of ESTs was used as the backbone of the map. WI SIIGC, and NCBI ESTs are indicated. ESTs reported by Yoshikawa at this meeting are preceded by a clone number. Known genes are indicated by their gene symbol in bold type. ESTs with homology to other genes are depicted in bold type in parentheses. Asterisks indicate UniGene EST clusters with the first member's GenBank number indicated after the asterisk. Dashed lines refer to additions to the WI/MIT map. Vertical bars represent approximate physical locations.
Fig. 3. continued
Fig. 3. continued
Comparative Mapping

The relationships between human chromosome 18 and the mouse genome were discussed by Denise Simoneaux and Andrew Griffith. Most genes that map to human chromosome 18 map to the proximal and distal ends of mouse chromosome 18. Exceptions include a block at human 18p11 (LAMA, PTPRM) that maps to mouse chromosome 17, and a block at 18q21→q22 (BCL2 and PAI2) that maps to mouse chromosome 1 (Table III). The human-mouse gene order is similar, with the exception that genes mapping to distal human 18p (MC2R, GNAL) appear to reside in the portion of the mouse map corresponding to human 18q21.

New genes that map to both species are EST002: (Brugia malayi filarial antigen homologue), the galanin receptor (GALNR1), spalt (homologous to a Drosophila homeotic transcription factor), cerebellin 2 (CBLN2) and the NFATC transcription factor. A transgene insertion (Tg-9257) on mouse chromosome 18 resulted in craniofacial and inner ear malformations (Griffith et al., 1996a). Tg-9257 was reported to have a homologous DNA segment on human 18q22.1 (Griffith et al., 1996b). Other mouse mutants with potential human homologues are ataxia (ax) and twirler (inner ear craniofacial malformations, obesity). Many interesting mouse mutants were discussed as possible models for diseases of human 18. These include sphingomyelinosis (sphm, a possible model for NPC/NPD), balding (hal, hair loss, immunoglobulin defects), lancenate (lah, hair breakage and alopecia, possible model for Netherton Syndrome), and chromosomal osteomyelitis (crom, bone inflammation and possible model for familial expansile osteomyelitis). The mouse ortholog of SYT (SYT1) was cloned recently and found to be syntenic with bovine chromosome 24. Solinas-Toldo et al. (1995) used FISH to map to mouse chromosome 18 region B1 (CGN-1) and to bovine chromosome 24. Larsen et al. (1996) used PCR and a panel of bovine/rodent hybrid cell lines to map the bovine orthologs of TYMS and ADYCYP1, MC2R, TTR, CDH2, GRP and PAI2 to bovine chromosome 24. Solinas-Toldo et al. (1995) used FISH to map the bovine desmocollin genes, DSC1–3, to 4q21–q22.2.

Edwin McConkey used FISH to examine the origins of human chromosome 18 from a human/ape ancestor. Using probes from 18p and the pericentric region, he showed that human chromosome 18 may have arisen from a pericentric inversion involving the short arm and elements near the centromere.

Table III. Syntenic relationships between human chromosome 18 and the mouse genome

<table>
<thead>
<tr>
<th>Human chromosome</th>
<th>Human gene</th>
<th>Mouse chromosome</th>
<th>Mouse gene</th>
<th>Mouse locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>18p11.2</td>
<td>MC2R</td>
<td>18</td>
<td>Me2r</td>
<td>37.0</td>
</tr>
<tr>
<td>18p11</td>
<td>GNAL</td>
<td>18</td>
<td>Gna1</td>
<td>41.0</td>
</tr>
<tr>
<td>18p11</td>
<td>PTPN2</td>
<td>18</td>
<td>Ptpn2</td>
<td>syntenic</td>
</tr>
<tr>
<td>18p11.2</td>
<td>PTPRM</td>
<td>17</td>
<td>Ptprm</td>
<td>38.0</td>
</tr>
<tr>
<td>18q11.2-p11.3</td>
<td>LAMA</td>
<td>17</td>
<td>Lama1</td>
<td>38.0</td>
</tr>
<tr>
<td>18q11</td>
<td>NICA</td>
<td>18</td>
<td>Nica</td>
<td>syntenic</td>
</tr>
<tr>
<td>18q11</td>
<td>LAMA3</td>
<td>18</td>
<td>Lama3</td>
<td>4.0</td>
</tr>
<tr>
<td>18q12.1</td>
<td>Tg-9257</td>
<td>18</td>
<td>Tg9257</td>
<td>4.0</td>
</tr>
<tr>
<td>18q12.1-q12.2</td>
<td>TTR</td>
<td>18</td>
<td>Trr</td>
<td>7.0</td>
</tr>
<tr>
<td>18q12</td>
<td>MEPIB</td>
<td>18</td>
<td>Meplb</td>
<td>8.0</td>
</tr>
<tr>
<td>18q12</td>
<td>NPC, NPD</td>
<td>18</td>
<td>Spm</td>
<td>11.0</td>
</tr>
<tr>
<td>18q21</td>
<td>EST00250</td>
<td>18</td>
<td>D18srf18</td>
<td>syntenic</td>
</tr>
<tr>
<td>18q21.1-q21.31</td>
<td>FECH</td>
<td>18</td>
<td>Fech</td>
<td>39.0</td>
</tr>
<tr>
<td>18q21.32-q21.33</td>
<td>GRP</td>
<td>18</td>
<td>Gpr</td>
<td>40.0</td>
</tr>
<tr>
<td>18q21.1</td>
<td>DCC</td>
<td>18</td>
<td>Dcc</td>
<td>45.0</td>
</tr>
<tr>
<td>18q21.3</td>
<td>BCL2</td>
<td>1</td>
<td>Bcll</td>
<td>59.8</td>
</tr>
<tr>
<td>18q22.1</td>
<td>PAI2</td>
<td>1</td>
<td>Plnk2</td>
<td>61.1</td>
</tr>
<tr>
<td>18q23</td>
<td>MBP</td>
<td>18</td>
<td>Mbp (shj)</td>
<td>55.0</td>
</tr>
<tr>
<td>18q23</td>
<td>GALNR</td>
<td>18</td>
<td>Galnr</td>
<td>55.0</td>
</tr>
<tr>
<td>18q23</td>
<td>WI-15059</td>
<td>18</td>
<td>Spalt</td>
<td>55.0</td>
</tr>
<tr>
<td>18q23</td>
<td>PEPA</td>
<td>18</td>
<td>Pepl</td>
<td>syntenic</td>
</tr>
<tr>
<td>18q23</td>
<td>CBLN2</td>
<td>18</td>
<td>Chln2</td>
<td>58.0</td>
</tr>
<tr>
<td>18q23</td>
<td>NFATC</td>
<td>18</td>
<td>Nfatc</td>
<td>syntenic</td>
</tr>
</tbody>
</table>

New genes and disease-related studies

A summary map of chromosome 18 diseases was updated and is presented in Fig. 4.

Bipolar disorder

Wade Berrettini, Hendrik Rohleder, Daniela Gerhard, and Colin Stine presented genetic linkage studies in pedigrees with bipolar affective disorders. Three of the four studies reported increased sharing for paternal pedigrees at various loci across chromosome 18. Berrettini reported that a parent-of-origin analysis of his original 22 family sample (Berrettini et al., 1994) confirmed the observations of Stine et al. (1995). The data showed an excess allele sharing for kindreds in...
which at least one paternal transmission of illness occurred, but no excess allele sharing in other kindreds. The linkage was observed between D18S62 and D18S66, the pericentromeric region. Rohleder, and colleagues performed parametric lod score analysis and obtained a maximum 2-point lod score of 1.91 (θ = 0.0) in paternal pedigrees and no evidence of linkage in maternal pedigrees. Gerhard et al. did not find positive findings in the 2 large pedigrees (the Old Order Amish and midwestern American) using parametric and non-parametric methods and marking the entire chromosome. Stine et al. reported a re-analysis of their paternal pedigree data (Stine et al., 1995) using a two-locus model. The best lod score (4.9) was generated for an epistatic mode of inheritance and an allele on 18q with dominant inheritance. Detera-Wadleigh et al. reported the results of linkage disequilibrium analysis of chromosome 18 on two family samples: 1) the 22-family sample of Berrettini et al. (1994) and 2) 97 families collected through the NIMH Genetics Initiative. While no evidence of linkage was detected in the Genetics Initiative families by the affected sib pair method, evidence of linkage disequilibrium was detected at D18S53, D18S1116, and D18S115 in the Berrettini sample. In addition, a new transcript isolated by Yoshikawa et al. and associated with biallelic polymorphism on 18p showed linkage disequilibrium between allele 2 and the bipolar phenotype in both family samples. Supporting the earlier report by Freimer et al. (1996), linkage disequilibrium was also detected at D18S469 in the Genetics Initiative sample.

Deleted in colorectal carcinoma (DCC) gene

Diffusible chemoattractants and chemorepellents play an important role in establishing correct neuronal connections. One family of these molecules, the netrins, is conserved in vertebrates, C. elegans and D. melanogaster. Recently, DCC and its homologs in C. elegans (unc-40) and Drosophila (frizzled) were shown to be transmembrane protein receptors that bind members of the netrin family (Kecskemety et al., 1996; Koledziej et al., 1996; S.-Y. Chan et al., 1996).

Familial cholestasis

The map location for two forms of autosomal recessive familial cholestasis has been refined since the previous workshop (Carlton et al., 1995). Nelson Freimer presented results from haplotype and recombination evaluation of over 70 pedigrees for Benign Recurrent Intrahepatic Cholestasis (BRIC) and Progressive Familial Intrahepatic Cholestasis (PFIC or Byler disease). These pedigrees were collected in collaboration with Roderick Houwen, Alex Knisely and Peter Whittington. Both BRIC and PFIC are localized to within a region of ~4 cM between D18S41 and D18S64.

Galanin receptor 1

Galanin is a neuropeptide that stimulates growth hormone secretion and also inhibits vagal tone. The peptide acts via a seven-trans-membrane-spanning, G-protein-coupled receptor. Nicholl et al. (1995) mapped the galanin receptor (GALNR1) to 18q23 by FISH.
Idiopathic torsion dystonia (ITD)

ITD is a heterogeneous group of inherited movement disorders. The most common form is inherited in an autosomal dominant fashion with reduced penetrance. Genetic analysis using a pedigree with a high density of dystonia individuals showed linkage to 18p (telomeric to D18S1153) with a maximal lod score of 3.17 (Leube et al., 1996).

Mothers against decapentaplegic-related (MADR) genes: DPC4 and MADR2-JV18

TGFβ and related proteins play important roles in regulating cellular proliferation and stimulating differentiation. These proteins interact with serine/threonine kinase, cell-surface receptors. Although not well understood, MADR proteins function downstream in the TGFβ signal transduction pathway. Loss of MADR genes in certain tumors may enhance their growth. Hahn et al. (1996) identified an MADR gene, MADH4 (alias DPC4, Smad4 family), that was homozygously deleted in ~30% of pancreatic carcinomas. This gene was located ~0.7 Mb centromeric to DCC, another putative tumor suppressor gene. A second MADR gene, MADH2 (alias MADR2 or JV18-1; Smad2 family) was deleted or mutated in a subset of colorectal tumors (Eppert et al., 1996; Riggins et al., 1996). MADH2 maps to 18q21.1, ~3 Mb centromeric to MADH4.

Niemann-Pick disease type D (NPD)

NPD, like NPC, is a progressive, degenerative disorder that results in the accumulation of cholesterol and sphingomyelin. NPD has been reported only in descendants of an Acadian couple that lived in Nova Scotia. Wenda Greer and Christie Riddell presented data showing that NPD is tightly linked (Θ = 0.00; Zmax = 3.62) to D18S480. The NPD locus is flanked by markers D18S869 and D18S1038. This pericentric region of 18q also appears to be the location for NPC (Carstea et al., 1993), which suggests that the two disorders may be allelic variants of the same gene.

Schizophrenic disorders

Dieter Wildenauer reported sib-pair and lod score analysis in 59 families (383 members, 155 affected) suggesting a susceptibility locus near D18S53 for schizophrenia and schizo-affective disorder, schizophrenic type (Research Diagnostic Criteria). Multipoint sib-pair analysis using a broad definition of the affected phenotype which includes an additional 25 individuals with affective disorder revealed a lod score of 3.2 (all possible pairs) and 2.3 (independent sib pairs). In addition, multi-allelic TDT analysis revealed significant evidence of linkage disequilibrium between a polymorphic allele at the Gaf locus and the broad definition of the affected phenotype.

Striated form of palmpoplantar keratoderma (NPPK)

Palmpoplantar keratoderma is a hereditary disorder of keratinization with several clinically, histopathologically and genetically distinguishable phenotypes. Joachim Arnemann discussed the data by Hennies et al. (1995) who mapped an autosomal dominant striated form of palmpoplantar keratoderma (NPPK) with hyperkeratotic bands on palms and soles by linkage analysis to 18q12. The disorder mapped between markers D18S36 and D18S536 with a maximum lod score for D18S536 (Zmax = 3.3 at Θ = 0.00). The disease localizes within or close to the cluster of desmosomal cadherins, as Joachim Arnemann and Roger Buxton mapped D18S36 within the desmoglein cluster at 18q12 (Simrak et al., 1995). Desmosomal cadherins are potential candidates for this disease as they link via desmosomal plaque proteins to the keratin intermediate filament bundles.

Synovial sarcoma

The (X;18)(p11.2; q11.2) is found in more than 90% of human synovial sarcomas. The occurrence of two related but distinct breakpoints at Xp11.2 has been observed using tumor-derived somatic cell hybrids and FISH in primary tumor samples with breakpoint-spanning YACs. Sequence analysis of RT-PCR products from different synovial sarcomas revealed two alternative fusion products, SYT-SSX1 and SYT-SSX2, that relate to the two alternative breakpoints in Xp11.2. The SYT gene is flanked by the markers DHF-P1 and D18S1038.

Transhyretin related hereditary amyloidoses

Several missense mutations in the TTR gene, which maps to 18q12, are associated with transthyretin-related hereditary amyloidosis (TTR-HA). In previous studies, 9 different mutations were detected in the TTR gene in several unrelated Italian families affected by TTR-HA (Ferlini et al., 1992; Ferlini et al., 1994). Laura described a new TTR variant, Arg47, in two unrelated Italian families. The substitution results from two different nucleotide changes (G to A and G to C) at the same position in the penultimate nucleotide of exon 2. The G to A transition represents a novel point mutation. Haplotype studies in 6 Italian families with the Met30 variant demonstrated multiple origins of this mutation in Italy (Almeida et al., 1995). TTR transcription studies were performed in several different human fetal tissues by RT-PCR. The full length transcript was observed in the fetal liver, eyes and brain. A high amount of RNA was found unexpectedly in the cerebellum and low levels were present in the kidney and the spinal cord.

18p syndrome

Joan Overhauser used somatic cell hybrids established from several patients with the 18p- syndrome, STS mapping.
and FISH to characterize the extent of chromosomal loss in this disorder. One patient with many features of the 18p-phenotype had a 4-Mb terminal deletion of 18p11.2. This critical region contains the genes TYMS, YES1 and ADCYAPI.

18q- syndrome

Peter O'Connell used a chromosome 18 genomic library to perform direct selection of a lymphoblastoid cDNA library. A total of 3000 cDNAs were selected. A subset of 35 chromosome 18 cDNAs were isolated and mapped using a chromosome 18 somatic hybrid panel. Twelve cDNAs mapped to that portion of 18q which is lost in most patients with the 18q- syndrome. Northern blot analysis of lymphoblastoid RNA showed that the steady state levels of one of the transcripts (an EF1 homologue) was increased in 18q- syndrome patients relative to that of normal controls.

At the previous workshop, mapping of a critical region for the 18q- syndrome to the distal portion of the long arm was reported. The critical region has been narrowed further by Joan Overhauser. Molecular analysis of the del(18) from a mother and daughter, who display the major phenotypic features of 18q- syndrome, revealed a terminal deletion from D18S1121. Recently, several candidate genes for phenotypes of the syndrome map to the region. These include GALNR1 (galanin receptor 1), a neuropeptide which is in the pathway for growth hormone secretion and NFATC, a lymphoid-specific gene which may be involved in IgA deficiency. Takashi Imamura reported 31 ESTs and Sevilla Detera-Wadleigh reported 13 ESTs which map to the 18q- region. This represents a four-fold increase in the number of genes that map to the 18q- critical region.

18q21 serpin locus

Allison Bartuski presented a PCR analysis of YAC clones spanning the 18q21 serpin cluster (Schneider et al., 1995). Two new serpins, cytoplasmic antiprotease 2 (PI8) and bomapin (PI10) mapped to the cluster. The order of the six serpins was cen-PI5, SCCA2, SCCA1, PAI2, PI10, PI8-tel.

Chromosome 18 telomeres

Reithman and colleagues isolated telomeric YACs from both the q-arm (yRM2050) and p-arm (yRM2102) of chromosome 18 (Riehtman et al., 1989). A microsatellite marker CU18-010 (D18S497) was isolated from yRM2050 and found to be identical to D18S70 (Geurts van Kessel et al., 1994). Vocero-Akbani et al. (1996) reported on two additional 18q and p clones, TYAC118 and TYAC89 (89.115), respectively. From the latter clone, they isolated a simple sequence repeat, sAVA5 (Genbank U53012) that maps 0 cM from D18S59. Thus, the simple sequence repeat markers sAVA5/D18S59 and D18S497/D18S70 delineate the ends of short- and long-arms, respectively, of chromosome 18.

Pseudogenes

Pseudogenes for FAU1 (Finkel-Biskis-Reilly murine sarcoma virus associated ubiquitously expressed) (Kas et al., 1995), cyclophilin A (Willenbrink et al., 1995) and the interleukin 9 (Kermouni et al., 1995) receptor have been mapped to chromosome 18. Only the IL9RF was regionally localized to 18p11.3.

World-Wide-Web Site

A chromosome 18 home page was prepared by Rami Aburomia and now appears on the World-Wide-Web. Reports from past and present (1996) chromosome 18 workshops, as well as abstracts, consensus maps, and hypertext links to other sites of interest appear on this home page (see Table 1 for the URL). The Web interface gives the user the ability to browse information and quickly cross-reference with other on-line databases.

Acknowledgments

The organizers would like to thank Kelly Ames and Renee Bopko for their help in organizing the workshop and Lillian McDaniel for preparing the report.

The workshop was supported by grants from the NCI/NIH/NIH (HG01526), the U.S. Department of Energy (DE-FG02-96ER20184), and the Human Genome Organization. The organizers would also like to thank our corporate sponsors: Amersham Life Science, Bio-Rad Laboratories, Boehringer Mannheim Corporation, FMC Corporation, Molecular Dynamics, Stratagene, and USA/Scientific Plastics for their generous support.
Participants

Rami Aburomia
Sequana Therapeutics Inc.
11099 N. Torrey Pines Rd
Suite 160
La Jolla, CA 92037
USA
Tel: 619 646 8630
Fax: 619 452 6653
E-mail: rami@sequana.com

Joachim Arnemann
Institute of Human Genetics
University Clinic
Theodor-Stern-Kai 7 - Haus 9
D 60590 Frankfurt/M.
Germany
Tel: 49 69 6301 7808
Fax: 49 69 6301 6002
E-mail: Arnemann@cm.imi-frankfurt.d400.de

Allison J. Bartuski
Joint Program in Neonatology
Children’s Hospital
300 Longwood Avenue, Enders 9
Boston, MA 02115
USA
Tel: 617 355 6416
Fax: 617 355 7677

Wade Berrettini
Department of Psychiatry
Thomas Jefferson University
1020 Walnut Street
312 College
Philadelphia, PA 19107
USA
Tel: 215 955 2872
Fax: 215 923 8219
E-mail: berrett1@jefflin.tju.edu

Hong Chen
Millennium Pharmaceuticals Inc.
640 Memorial Drive
Cambridge, MA 02139
USA
Tel: 617 679 7316
Fax: 617 374 9379
E-mail: chen@mpi.com

Andy R. Collins
Department of Human Genetics, Level G
Princess Anne Hospital
Southampton SO16 5YA
United Kingdom
Tel: 44 1703 796939
Fax: 44 1703 798416
E-mail: A.R.Collins@soton.ac.uk

Sevilla D. Detera-Wadleigh
Clinical Neurogenetics Branch
NIMH/NIH
Bldg 10 Room 3N218
9000 Rockville Pike
Bethesda, MD 20892-1274
USA
Tel: 301 496 1641
Fax: 301 402 0859
E-mail: sevilla@helix.nih.gov

Geoffroy Duyk
Millenium Pharmaceuticals, Inc.
640 Memorial Drive
Cambridge, MA 02139
USA
Tel: 617 374 9480 x218
Fax: 617 374 9379
E-mail: geoffrey_duyk@msmail.mpi.com

Lisa Esterling
Clinical Neurogenetics Branch
Bldg. 10, Rm. 3N218
NIMH/NIH
Bethesda, MD 20892-1274
USA
Tel: 301 496 1641
Fax: 301 402 0859
E-mail: lesterlg@pop.nidcd.nih.gov

Alessandra Ferlini
Hammersmith Hospital
Department of Pediatrics
Neuromuscular Unit
DuCane Road
London W120NN
United Kingdom
Tel: 44 81 740 3148
Fax: 44 81 746 2187
E-mail: asferlini@rpms.ac.uk

Nelson B. Freimer
Department of Psychiatry
UCSF
Box F-0984
401 Parnassus Avenue
San Francisco, CA 94143-0984
USA
Tel: 415 476 7864
Fax: 415 476 7389
E-mail: nelson@ngl.ucsf.edu

Ad Geurts van Kessel
Department of Human Genetics
University Hospital Nijmegen
P.O. Box 9101
Gert Grootsteplein 10
6500 HB Nijmegen
The Netherlands
Tel: 31 24 3614105
Fax: 31 24 3542151
E-mail: A.GeurtsVanKessel@antrg.azn.nl

Wenda Greer
DNA Lab, Hematology
Rm. 223B MacKenzie Bldg
Victoria General Hospital
1278 Tower Rd
Halifax, B3H 2Y9
Nova Scotia
Tel: 902 428 3691
Fax: 902 428 4113
E-mail: wgreer@is.dal.ca

Andrew J. Griffith
Department of Human Genetics
University of Michigan
4708 Medical Sci II, Box 0618
Ann Arbor, MI 48109
USA
Tel: 313 763 1053
Fax: 313 673 3784
E-mail: encino@umich.edu

Takashi Imamura
Department of Human Genetics
National Institute of Genetics
1,111 Yata, Mishima, Shizuoka Ken
411 Japan
Tel: 81 559 81 6795
Fax: 81 599 81 6800
E-mail: timamura@lab.nig.ac.jp

Daniela S. Gerhard
Department of Genetics, Box 8232
Washington University School of Medicine
4566 Scott Avenue
St. Louis, MO 63110
USA
Tel: 314 362 2736
Fax: 314 362 7855
E-mail: gerhard@sequencer.wustl.edu
References

Carlow VEH, Knisely AS, Freimer NB: Mapping of a locus for progressive familial intrahepatic cholestasis (Byler’s Disease) to 18q22-q22, the benign recurrent intrahepatic cholestasis region. Hum mole Genet 4:1049-1053 (1995).

Abstract titles of the fourth international workshop on human chromosome 18 mapping 1996

Author listed in bold type presented the abstract at the workshop.
The complete abstract can be found in GDB.

R. Aburomla
Sequana Therapeutics, La Jolla, CA (USA)
The World Wide Web as a method and source for dissemination of genetic and biological information (CIT:763395)

R. Aburomla and S. Gerken
Sequana Therapeutics, La Jolla, CA, USA
An integrated genetic map of human chromosome 18 (CIT:763411)

J. Arnemann,1 D. Simrak,1 C.M.E. Cowley,2 and R.S. Buxton2
1Institut für Humangenetik, Universitätssklinik, Frankfurt/M. (Germany); 2Division of Eukaryotic Molecular Genetics, National Institute for Medical Research, London (United Kingdom)
The desmosomal cadherin gene cluster at 18q12.1 (CIT:763402)

A. Ferlini and L. Obici
Neuromuscular Unit, Department of Paediatrics and Neonatal Medicine, Hammersmith Hospital, London (United Kingdom)
Molecular, genetic and transcriptional analysis in the transthyretin gene (CIT:763410)

D.S. Gerhard,1 M.L. LaBuda,2 J.A. Egelend,3 R.D. Todd1 and T. Reich1
1Washington University School of Medicine, St. Louis MO; 2Johns Hopkins University, Baltimore MD; 3University of Miami, Hershey PA (USA)
A linkage map of chromosome 18 based on the genotypes from 2 large kindreds segregating affective disorder (CIT:763404)

A. Geurts van Kessel, N. dos Santos, D. de Bruijn, M. Balemans, E. Baats, B. de Leeuw
Department of Human Genetics, University Hospital, Nijmegen (The Netherlands)
The SYT and SSX Genes in t(X;18)-positive human synovial sarcomas (CIT:763401)

Division of Molecular Pathology and Molecular Genetics, Department of Pathology and Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia (Canada)
Linkage of Niemann-Pick Disease Type D to chromosome 18q11 (CIT:763398)

A.J. Griffith, D.C. Kohrman, and M.H. Meisler
Department of Human Genetics, University of Michigan, Ann Arbor MI (USA)
Comparative mapping of human chromosome 18 and mouse chromosome 18 (CIT:763405)

K.S. Krauter, C. Friesen, K. Lord, A. Karnovsky, B. Armstrong
Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder CO (USA)
An integrated physical map of human chromosome 18 (CIT:763399)

A.R. Collins and N.E. Morton
Department of Human Genetics, Princess Anne Hospital, Southampton (United Kingdom)
An integrated map of chromosome 18 (CIT:763396)

E.H. McConkey
Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder CO (USA)
Evolution of human chromosome 18 (CIT:763406)
An STS-based map of human chromosome 18

Chromosomal syndromes and somatic cell hybrid mapping

Evidence for the presence of two loci for bipolar affective disorder linked to chromosome 18

Isolation and physical mapping of chromosome 18 brain-expressed transcripts