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Abstract. Bayesian network modelling is applied to health psychology
data in order to obtain more insight into the determinants of physical
activity. This preliminary study discusses some challenges to apply gen-
eral machine learning methods to this application domain, and Bayesian
networks in particular. We investigate suitable methods for dealing with
missing data, and determine which method obtains good results in terms
of fitting the data. Furthermore, we present the learnt Bayesian network
model for this e-health intervention case study, and conclusions are drawn
about determinants of physical activity behaviour change and how the
intervention affects physical activity behaviour and its determinants. We
also evaluate the contributions of Bayesian network analysis compared
to traditional statistical analyses in this field. Finally, possible extensions
on the performed analyses are proposed.
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1 Introduction

Nowadays there are various e-health intervention platforms that employ inte-
grated behaviour change techniques in order to change health-related-behaviour
of participants, for example increasing physical activity. These interventions ap-
ply theoretical psychological methods to influence behavioural determinants,
which are factors determining a certain behaviour. These general techniques are
translated to behaviour change strategies by tailoring the theoretical method to
the target population and intervention setting [1]. To measure the effects of such
interventions, various research studies have been performed, assessing physical
activity with tools such as questionnaires and activity trackers. While there is
now a good understanding of what the most important determinants for increas-
ing physical activity are, little is known about how these determinants interact.
Improved understanding of these relationships could be used to improve existing
e-health interventions.



Supervised machine learning techniques are used to identify relationships
underlying data with labeled input and output, and predict output results for
a given input. These techniques could for example be used to model relations
between diseases and symptoms and give expectations about the presence of
various diseases given symptoms. Bayesian networks [8] represent probabilistic
relationships between a set of variables, where relationships between the input
variables can also be investigated. Such networks can make probabilistic predic-
tions and provide a visual insight in relations among all variables of interest,
thereby providing a potential useful tool to better understand determinants of
physical activity.

In this article, a Bayesian network model is learned from data from a single
intervention study, i.e., the Active Plus intervention [12], aiming at influencing
physical activity behaviour among older adults. We discuss ways to learn from
these complex data containing a significant amount of missing values. Based on
these initial findings, results from previous analyses are compared to results from
applying the Bayesian network model to the same data, to examine the added
value of this technique compared to traditional ones. We show that learning a
Bayesian network model for measurement data from the Active Plus project
indeed reveals conditional dependence and independence relations that provide
new insights and explanations for previously found results.

This paper is organised as follows. Section 2 provides technical background
about methods and algorithms. Section 3 provides a description of the data and
intervention study at hand, and how the data has been pre-processed. Further-
more, the analysis based on the Bayesian network model is explained including a
description of the applied learning strategy, and a missing data analysis to select
appropriate methods for handling the missing data. Then, in Section 4, results
are given about the comparison of evaluated methods, and the comparison of
the results from the Bayesian network model, determined using the best method,
and the results from previous analyses. Finally, Section 5 concludes this paper
and elaborates on possible extensions.

2 Preliminaries

This section gives an overview of the theoretical background relevant to perform
the case study analyses, including a brief introduction of the modelling approach.

2.1 Bayesian network model

A Bayesian network [8] is a probabilistic graphical model represented as a di-
rected acyclic graph G = (V,E), where the set of nodes V represent random
variables, and the set of arcs E represent probabilistic independencies among
the variables. Associated with each node is a conditional probability distribu-
tion of that variable given its parents. The graphical structure implies condi-
tional independence statements. Let V = {X1, . . . , Xn} be an enumeration of
the nodes in a Bayesian network such that each node appears after its children,



and let Πi be the set of parents of a node Xi. The local Markov property in the
Bayesian network states that Xi is conditionally independent of all variables in
{X1, X2, . . . , Xi−1} given Πi for all i ∈ {1, . . . , n}. These local independences
imply conditional independence statements over arbitrary sets of variables.

The joint probability distribution over discrete variables follows from the
conditional independence propositions and conditional probabilities:

P(X1, . . . , Xn) =

n∏
i=1

P(Xi | X1, . . . , Xi−1) =

n∏
i=1

P(Xi | Πi),

where the first equation follows from the usual chain rule in probability theory
and the second from the local Markov property. Note that the conditional prob-
abilities P(Xi | Πi) correspond to the arcs in the Bayesian network specification.
In continuous Bayesian networks, usually a linear Gaussian distribution is as-
sumed, where the joint density is factorised where eachXi | Πi ∼ N (βΠi+α, σ

2).

A temporal Bayesian network is an extension to the static counterpart in that
it is a Bayesian network model over time, where the nodes represent the random
variables occurring at particular time slices. The temporal Bayesian network
model is subject to the condition that arcs directed to variables in previous time
slices cannot occur. In case the temporal Bayesian network is time-homogeneous
(or time-invariant), these models are also called dynamic Bayesian networks [6].
Since in this case study there are only a few time slices and differences between
these slices are not constant, we do not assume time-invariance in the remainder
of this paper.

2.2 Learning Bayesian networks

The following three common classes of algorithms are used to learn the structure
of Bayesian networks from the data: constraint-based algorithms which employ
conditional independence tests to learn the dependence structure of the data,
score-based algorithms which use search algorithms to find a graph that max-
imises a goodness-of-fit scores as objective function, and hybrid algorithms which
combine both approaches. Recent research has shown that constraint-based al-
gorithms are often less accurate and seldom faster and hybrid algorithms are
neither faster nor more accurate [11]. For this reason, we focus in the remainder
of this paper on score-based structure learning algorithms, where local search
methods are used to explore the space of directed acyclic graphs by single-arc
addition, removal and reversal. In particular, we apply tabu search to the phys-
ical activity data in this case study as empirical evidence shows that this search
method typically performs well for learning Bayesian networks [5, chapter 13.7].

There are several model selection criteria that are used in the search-based
structure learning algorithms, where in this paper we have chosen the commonly-
used Bayesian Information Criterion (BIC) [9]. To fit the parameters we have
chosen a uniform prior distribution over the model parameters [4].



Algorithm 1 Structural EM algorithm, given (M0,o):

for n = 0, 1, . . . until convergence or predefined maximum number of iterations
reached do

Compute ΘMn using a parameter learning algorithm.
Expectation-step:
compute h∗ = arg maxh P(h | o,Mn)
Maximization-step: apply structure learning to determine Mn using data h∗∪o
if Mn = Mn+1 or if stopping criterion is met then

return Mn

end if
end for

2.3 Handling missing data

Learning Bayesian networks with missing data is significantly harder as the
log-likelihood does not admit a closed-form solution if values are missing. In
this paper, we assume that data are missing at random, for which commonly
used methods are listwise deletion, pair-wise deletion, single imputation, multiple
imputation [7]. The deletion approaches omit (observed) values from analyses.
In the listwise deletion approach on the one hand, all observations with missing
values at any measurement are omitted completely. On the other hand, the pair-
wise deletion method does not require complete data on all variables in the
model, and mean and covariance estimations are here based on the full number
of observations with complete data for each (pair of) variable(s). Imputation
methods involve replacing missing values by estimates such as by the mean
of observed values in the attribute, called mean imputation. Single imputation
imputes a single value treating it as known, whereas multiple imputation replaces
missing values by two or more values representing a distribution of possibilities.
In multiple imputation, missing data are filled in an arbitrary number of times to
generate different complete datasets to be analysed, and results are combined for
inference. Finally, in Bayesian network learning, the Expectation Maximization
(EM) algorithm [2] is often applied, which iteratively optimises parameters in
order to find the maximum likelihood estimate, assuming the missing data is
missing at random (MAR). The Structural EM algorithm (SEM) [3] combines
this standard EM algorithm with structure search for model selection.

The variant of the structural EM algorithm that is used in this case study
can be described as follows (see Algorithm 1 for an overview). Let d be a dataset
over the set of random variables V. Assume that o is part of the dataset that
is actually observed, i.e., o ⊆ d. Furthermore, we denote the missing data by
h, i.e., d = o ∪ h, and o ∩ h = ∅. The SEM algorithm aims to find a model
from the space of Bayesian network models over V, denoted by M, such that
each model M ∈ M is parametrised by a vector ΘM defining a probability dis-
tribution P(V : M,ΘM ). To find a model in case of missing values, the complete
data likelihood P(H,O | M) is estimated. The algorithm iteratively maximises
the expected Bayesian network model score optimised by the score-based algo-



rithm. First the posterior parameter distributions, given the currently best model
structure and observed data, are computed. In the expectation step, these dis-
tributions are used to compute the expected complete dataset, imputing missing
values with their most probable values, also sometimes called hard EM. During
the maximization, the currently best model structure is updated using a tabu
structure learning algorithm, using the imputed data from the expectation step.
Then parameter learning gives new distributions to be used as input for the next
expectation step. To perform the first expectation, an initial network structure
is given as input to the algorithm. In case a maximum number of iterations is
reached or in case of convergence, the Bayesian network model is returned.

3 Description of the Data and Methodology

The experiments in this intervention case study aim to analyse performance of
different methods to handle missing values and to learn the Bayesian network
model for given intervention data in order to compare its results to previous
analyses. This section describes the data, preprocessing phase, magnitude of
the missing data problem and the approach to determine a suitable method in
order to analyse the data by Bayesian network learning. The raw research data
that has been collected during the Active Plus intervention was provided to the
authors and is described in the first subsection.

3.1 Data acquisition and description

The raw research data has mostly been collected via questionnaires and con-
sists of determinants, external factors, measurements of physical activity and
intervention-related information at different time-slots, starting with a baseline
measurement before the participant receives the intervention [14]. For example,
the validated self-administrated Dutch Short Questionnaire to Assess Health
Enhancing Physical Activity (SQUASH) is included in the questionnaires as
subjective measurement of physical activity [15]. Figure 1 illustrates the in-
tervention outline including moments of receiving intervention content and of
measurement in time [12]. There is a distinction between control, intervention
basic and intervention-plus groups, representing the intervention condition. This
condition determines whether a participant receives an intervention or not and
if environmental content is included in the intervention with additional infor-
mation such as opportunities to be physically active in the own environment.
Within these main groups, content is further personalised based on character-
istics of participants, for example state of behaviour change (stage) measured
at baseline or age. Since in the analyses in this article intervention content is
proxied by a few main characteristics, this personalisation is beyond the focus
of this article [12].

As depicted in Figure 1, data has been collected at 4 time-slots; at the baseline
(before receiving the intervention, T0) and, to measure intervention effects, 3
(T1), 6 (T2) and 12 (T3) months after the baseline. About 1258 variables have



Fig. 1: Outline intervention program including moments of measurement [12].

been measured for a sub-population being a random sample of 1976 adults aged
50 and older. Measurements are at item-level of detail, where an item is a specific
measurement, for example a question in the questionnaire. In preprocessing rules,
it is described how concepts are calculated from item data in order to perform
analyses at a higher level of abstraction.

3.2 Data preprocessing and concept design

The raw data is preprocessed, according to rules to integrate data from different
studies and to aggregate, by calculating concepts from the raw data at item-
level of detail, as mentioned in previous subsection. This subsection describes
assumptions and decisions made during data preprocessing phase and rules to
calculate the concepts included in analyses in this article.

In general, concepts are calculated by the mean or sum of items taking into
account a maximum percentage of items allowed to be missing, except from a
few concepts calculated using predefined formulas. In particular, the SQUASH-
outcome measure, which is the number of minutes per week of moderate to
intensive physical activity, is calculated in a standardised way [12]. In case more
than 25 percent of the items are missing, the concept value is assumed to be
missing. Besides these aggregation rules, preprocessing rules contain decisions
about recalculation of raw data values to unipolar scale.

This article focuses on a selection of the data measured in the Active Plus
intervention and, as already mentioned, analyses are performed at concept-level.
The selection consists of data about the main determinants of physical activity



Concept Number of items T0 T1 T2 T3

Condition: intervention 1 X

Condition: environment 1 X

SQUASH outcome measure - X X X X

Self-efficacy 10 X X

Attitude(-pros) 9 X X

Attitude(-cons) 7 X X

Intrinsic motivation 6 X X

Intention 3 X X X X

Commitment 3 X X X

Strategic planning 10 X X X X

Action planning 6 X X X

Coping planning 5 X X X

Habit 12 X X X

Social modelling 1 X X X

Social support 1 X X

Table 1: Overview of concept-level variables included in case study.

behaviour, including some social-related determinants, the main outcome mea-
sure from the SQUASH questionnaire and some variables indicating the inter-
vention content the participant receives. As described, the intervention content
that an individual participant has received is personalised and proxied in the
analyses. The proxy of the intervention content is represented in the data by
intervention condition variables, which thus play a central role in analyses. Ta-
ble 1 gives an overview of these and all other concepts included in this articles
analyses, indicating the number of item-level variables the concept variable ag-
gregates and at which moments in time the concept is measured. Note that the
number of items for the SQUASH outcome measure is not indicated since it is
calculated by standard rules.

3.3 Missing data analysis

A significant part of this case study consists of the evaluation of ways to handle
missing data values. This subsection illustrates the magnitude of the missing
data problem in the case study and determines which methods are appropriate
to be evaluated.

A total of 39 variables being concepts at certain moments in time are selected
as subset for analyses. Table 2 demonstrates the number of missing values out of
1976 observations for each of the included concept-level variable. Since the time
dimension is crucial to analyse intervention effects and, as can be seen in Table 2,
more than a fourth of the values are missing for measurements after the baseline,
applying pairwise deletion would result in an immense loss of information. Fur-
thermore, the number of complete observations is for the selection of concepts
360 out of 1976 in total, meaning that applying list-wise deletion would neglect
a large part of the dataset. Since deletion methods are not appropriate to deal
with the missing data in this case study, we resort to the remaining methods
for dealing with missing data, i.e., mean imputation and the SEM algorithm
described in Section 2.3, are applied and results are compared.



Concept Timeslot Number of missing values (out of 1976)

Condition: intervention T0 8

Condition: environment T0 8

SQUASH outcome measure T0 3
T1 518
T2 565
T3 628

Self-efficacy T0 229
T1 638

Attitude(-pros) T0 149
T1 587

Attitude(-cons) T0 167
T1 597

Intrinsic motivation T0 325
T1 690

Intention T0 141
T1 571
T2 654
T3 748

Commitment T0 31
T1 531
T2 573

Strategic planning T0 156
T1 601
T2 652
T3 661

Action planning T0 182
T1 604
T2 686

Coping planning T0 192
T1 621
T2 668

Habit T0 136
T2 633
T3 662

Social modelling T0 532
T1 915
T2 952

Social support T0 68
T1 561

Table 2: Overview of number of missing values in included concepts.

3.4 Approach

This subsection discusses how a suitable method for handling missing data is
determined in order to model the intervention data. To perform experiments,



Handling missing data Mean log-likelihood 95% Confidence Interval

Mean imputation -4779 [-4832;-4726]

SEM algorithm -4127 [-4183;-4071]

Table 3: Results of cross-validation analysis for missing data methods.

the bnlearn package in R is used for Bayesian network learning [10]. Source code
has been made publicly available5.

In the comparison of the methods to handle missing data values evaluated
in this article, we apply discrete dynamic Bayesian networks for preprocessed
data that is discretised by manually creating intervals meaningful in the health
psychology field. The models are learnt by the tabu search algorithm optimising
the BIC score (see Section 2.2). In the intervention study at hand only system
missing values occur, for example, in case a participant has not answered a spe-
cific question in the questionnaire or if the maximum amount of items allowed
to be missing is exceeded. The methods evaluated both apply imputation where
missing values are substituted by (maximum likelihood) estimators during the
structure learning phase, namely mean imputation and the structural EM algo-
rithm, introduced in Section 3.3. These two methods are compared by means
of comparing the mean test-set log-likelihood using k-fold cross-validation (with
k = 10).

Finally, a linear Gaussian temporal Bayesian network model for the Active
Plus intervention data is constructed from the preprocessed selection of data by
learning the network structure using SEM. It was chosen to learn a continuous
network rather than a discrete one to prevent possible loss of information from
the discretisation process. In order to evaluate significance of edges, a bootstrap
analysis is applied. Edges that are identified in most bootstrap samples and in
the original network are considered stable findings in the following.

4 Results

This section describes the performance comparison of the methods applied to
handle missing values. Furthermore, the learnt Bayesian network to model the
Active Plus data is presented and results are compared to previous analyses of
relations between determinants in the study by Van Stralen et al. [13].

4.1 Comparison Bayesian network missing data strategy

Table 3 demonstrates the mean log-likelihood over the folds resulting from ap-
plying the implemented cross-validation algorithm to the selected methods for
handling missing data.

The cross-validation analysis shows that the structural EM algorithm signif-
icantly outperforms mean imputation to handle missing data, since the mean

5 https://github.com/SCMWTUM/Active4life-datascience.git



Model Statistics

Optimal Bayesian network #nodes 39

# arcs 188

# undirected arcs 0

Average markov blanket size 19.90

Average neighbourhood size 9.64

Average branching factor 4.82

Averaged Bayesian network #nodes 39

# arcs 170

# undirected arcs 0

Average markov blanket size 17.54

Average neighbourhood size 8.72

Average branching factor 4.36

Table 4: Statistics Bayesian network model versus averaged counterpart.

log-likelihoods over the folds significantly differ at 5% confidence level. In the
next subsection, the learnt model is presented and results are compared to those
from previous analyses.

4.2 Comparison of Bayesian network model to previous analyses

Figure 2 shows the union of the temporal Bayesian network model learnt by
the tabu search algorithm, applying SEM and optimising BIC score, and the
result of bootstrapping (which we call averaged model). A comparison of these
models shows that only 149 edges appear in both models represented by black
edges in Figure 2, 21 only in the averaged model represented by red edges, and
39 only in the optimal model learnt from the data represented by blue dashed
edges. Table 4 gives the summary statistics of the temporal Bayesian network
model learnt and its averaged counterpart and indicates that model complexity
is decreased in the averaged model. This suggests that most edges are stable,
but not in all cases. Quite some edges appear to be unstable, which is something
that should be analysed further in future.

Compared to previous analyses, the Bayesian network model provides a more
complete insight in the complexity of mechanisms influencing physical activity
behaviour. Previously, mediation analyses have shown that factors such as social
modelling, self-efficacy and intention are significant mediators of the intervention
influencing physical activity behaviour. In Figure 3, a fragment of the stable part
of the averaged model (Figure 2) is shown that includes these previously proven
significant determinants, intervention effects, and effects on physical activity. It
also includes coefficients, which represent the maximum likelihood estimators of
parameters of the Gaussian conditional density distribution of variables given
their parents. This part of the network suggests that intervention effect on physi-
cal activity levels is mainly mediated by influencing habit and intention, and the
extension in which environmental components are added to the intervention does



Fig. 2: Averaged model learnt from bootstrapping, which includes the false positives
(in blue) and false negatives (in red) from the model learnt for the original dataset.



Fig. 3: Selected subgraph of the averaged model.

not significantly influence physical activity nor its determinants. Furthermore,
there is a distinction between determinants of physical activity in the short (T1)
and in the long (T2 and T3) run. In the short run, effects on physical activity
are mainly determined by self-efficacy and intrinsic-motivation, which mediates
effects of habit and self-efficacy. In the long-run, social modelling, intention and
habit are important, where habit has the strongest correlation with long run
physical activity levels.

Looking at intervention effect analysis, comparing these results to previous
results by [13], significant influence on social modelling and self-efficacy in the
short run is not demonstrated in the network. Looking at mediator effects on
physical activity, [13] has not found that intrinsic motivation is relevant in the
short run, whereas in the Bayesian network this determinant does have a signif-
icant direct influence on physical activity level in the short run. Also, where in
previous analyses results show significant influence of the environmental exten-
sion on physical activity and determinant levels, this relationship is not found in
the Bayesian network model. All in all, the added value of applying the Bayesian
network model compared to traditional analyses is that the model provides new
in-depth information relevant for understanding the working mechanisms of the
intervention. For example, intrinsic motivation might mediate effects of other
determinants found in [13], such as attitude-cons, on physical activity in the



short run, which might explain that the Bayesian network model leads to the
difference compared to classic mediator analyses that has been found.

To conclude this section, differences found between previous results and re-
sults from the Bayesian network model are explored and possible explanations
are provided. First of all, previously-found important mediators of intervention
effects on physical activity such as social modelling, self-efficacy and intention
are confirmed by the network model. In the network, habit is also a significant
mediator. [13] did not include this determinant in analyses, so no comparison
can be made with respect to habit being a significant mediator of intervention
effects on physical activity. An important difference is that [13] found differences
between effects in groups of participants having received environmental content
and those who did not receive this extension. In the Bayesian network, those dif-
ferences are not found. However, taking into account uncertain edges, there are
some interesting correlations of the environmental extension with, for example,
commitment at T2. Further analyses could explore these relations in order to
explain the differences. There are also differences found with respect to interven-
tion effects on determinants and mediation effects on physical activity. [13] has
not found intrinsic motivation being a significant mediator, whereas the network
model shows that the effect of self-efficacy on physical activity is both direct and
mediated by intrinsic motivation. The network explores the mechanism in which
self-efficacy influences physical activity, so that intrinsic motivation emerges as
mediator. In the network, the intervention does not have a direct effect on social
modelling nor on self-efficacy. This can be explained by looking at the whole
model, where for example the intervention influences intention, which is corre-
lated with action planning that is again correlated with social modelling. In this
way, some determinants previously-found to be influenced by the intervention
directly, are indicated in the network to be influenced via other determinants.
Hence, the network provides a more in-depth view in the dependencies and the
structure in which determinants and physical activity are influenced by the in-
tervention.

5 Discussion and Conclusions

In this article, the Bayesian network modelling technique has been applied to
an e-health intervention case study to potentially better understand relations
between determinants of physical activity, since this technique has not been
applied often in this field and traditional analyses are not sufficient to reveal
the dependence structure between determinants. The magnitude of the major
challenge of missing values in performing machine learning in real-world studies
in general is examined for this case study and is shown to be of such an order that
conventional methods to handle missing values cannot be used. The performance
of different methods to handle missing data in Bayesian network modelling (i.e.
mean imputation and the structural EM algorithm), considered to be appropriate
in this case study, has been evaluated. Although the comparison between the
mean imputation and structural EM method is not very novel from a machine



learning point of view, it has been carried out to evaluate their performances in
this specific context. Also, since this modelling technique has not yet often been
applied in this research field, its added value compared to more classic analyses
in health psychology is evaluated by learning a Bayesian network for the case
study and comparing its results to those of previous analyses on the same data.

Analysis of missing data in the case study dataset demonstrates that the
magnitude of this problem causes methods to handle missing data based on
deletion to be inappropriate, since this would result in a significant loss of infor-
mation for this type of data. Two suitable methods, i.e., mean imputation and
the structural EM algorithm, have been compared and we show that applying
the structural EM algorithm leads to the best results in terms of fitting the
data when learning a Bayesian network model for intervention data. The model
learnt for the case study data applying this algorithm to handle missing values,
suggests that the intervention does influence physical activity behaviour, that
some concepts do not play a direct role influencing this behaviour or are not
directly influenced significantly by the intervention and, most importantly, that
there is some structure of how determinants explain this behaviour. Further-
more, there is some room for improvement with respect to increase confidence
in some relationships in the model. Focusing on significant edges in a submodel,
some differences regarding significant direct correlations are found compared to
previous analyses. In brief, it can be concluded that applying Bayesian networks
to e-health intervention study data provides more insight in the complexity of
how interventions cause behavioural change (physical activity) and therewith are
a useful technique to better understand dependence mechanisms of determinants
of behaviour change.

In future work, analyses in this article could be extended for example by
evaluating other imputation methods to be implemented in the structural EM
algorithm, such as a distribution over values instead of imputing the value with
highest probability (soft EM ). From a technical perspective, we will also con-
sider exploring constraint-based structure learning algorithms, other score-based
algorithms, alternative parameter learning algorithms or alternative model se-
lection criteria. From the application perspective, future research could further
elaborate on the structure, in which determinants are related to each other and
physical activity, and on the differences found in the Bayesian network model
compared to previous (regression) analyses. Also, it would be interesting to per-
form analyses in more detail by using item variables in order to clarify the cor-
relations between concepts found in the learnt network model presented in this
paper. Finally, a combined model could be designed for an integrated dataset
including measurements from several different e-health intervention studies, on
different sub-populations, in order to examine if the general model yields dif-
ferent or additional results compared to the submodels for a smaller amount of
data from single studies. However, even with data from a single study, this paper
shows that exploring the differences between results from previous analyses and
from the Bayesian network model, the network provides a more complete and
in-depth insight in dependency structures. More specifically, the network reveals



relations between variables where a variable influences another via a third one.
In previous analyses, only some of the hypothetical mediator effects are explored
by regression analyses. Hence, our results provide new opportunities to analyse
and confirm our findings using traditional statistical methods.
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