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We develop an analytical method to prove congruences of the 
type

(pr−1)/d∑
k=0

Akz
k ≡ ω(z)

(pr−1−1)/d∑
k=0

Akz
pk (mod pmrZp[[z]])

for r = 1, 2, . . . ,

for primes p > 2 and fixed integers m, d � 1, where f(z) =∑∞
k=0 Akzk is an ‘arithmetic’ hypergeometric series. Such 

congruences for m = d = 1 were introduced by Dwork in 
1969 as a tool for p-adic analytical continuation of f(z). 
Our proofs of several Dwork-type congruences corresponding 
to m � 2 (in other words, supercongruences) are based on 
constructing and proving their suitable q-analogues, which in 
turn have their own right for existence and potential for a 
q-deformation of modular forms and of cohomology groups 
of algebraic varieties. Our method follows the principles 
of creative microscoping introduced by us to tackle r = 1
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instances of such congruences; it is the first method capable of 
establishing the supercongruences of this type for general r.
© 2020 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Extending his work on the rationality of the zeta function of an algebraic variety de-
fined over a finite field, Dwork [2] considered a question of continuing analytical solutions 
f(z) =

∑∞
k=0 Akz

k of linear differential equations p-adically. A general strategy was to 
verify that the truncated sums fr(z) =

∑pr−1
k=0 Akz

k, where r = 0, 1, 2, . . . , satisfy the 
so-called Dwork congruences [33]

fr+1(z)
fr(zp)

≡ fr(z)
fr−1(zp)

(mod prZp[[z]]) for r = 1, 2, . . . (1.1)

(see [2, Theorem 3] for a precise statement). Formally, one needs the condition f1(zp) =∑p−1
k=0 Akz

pk �≡ 0 (mod pZp[[z]]) to make sense of (1.1). Then the congruences imply the 
existence of a p-adic analytical function (‘unit root’) ω(z) such that

ω(z) = lim
r→∞

fr(z)
fr−1(zp)

;

in other words,

ω(z) ≡ fr(z)
fr−1(zp)

(mod prZp[[z]]) for r = 1, 2, . . . .

Notice that the argument extends to the cases when f1(zp) ≡ 0 (mod pZp[[z]]) but 
f1(zp) �≡ 0 (mod pmZp[[z]]) for some m � 2, provided the congruences (1.1) hold modulo 
a higher power of p, for example,

fr+1(z)
fr(zp)

≡ fr(z)
fr−1(zp)

(mod pmrZp[[z]]) for r = 1, 2, . . . . (1.2)

It is this type of congruences that we refer to as Dwork-type supercongruences; other 
truncations of the initial power series are possible as well, usually of the type fr(z) =∑(pr−1)/d

k=0 Akz
k for some fixed positive integer d. Whether the congruences (1.2) are 

‘super’ (m � 2) or not (m = 1), we conclude from them that

fr(z) ≡ ω(z)fr−1(zp) (mod pmrZp[[z]]) for r = 1, 2, . . . . (1.3)

This gives an equivalent— somewhat more transparent— way to state Dwork-type (su-
per)congruences in the case of known unit root ω(z).

http://creativecommons.org/licenses/by/4.0/
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Our illustrative examples include

(pr−1)/2∑
k=0

(8k + 1)
(4k
2k
)(2k

k

)2
28k32k ≡ p

(
−3
p

) (pr−1−1)/2∑
k=0

(8k + 1)
(4k
2k
)(2k

k

)2
28k32k (mod p3r), (1.4)

pr−1∑
k=0

(8k + 1)
(4k
2k
)(2k

k

)2
28k32k ≡ p

(
−3
p

) pr−1−1∑
k=0

(8k + 1)
(4k
2k
)(2k

k

)2
28k32k (mod p3r), (1.5)

where 
(−3

·
)

denotes the Kronecker symbol, valid for any prime p > 3 and integer r � 1
and corresponding to the truncation of the power series

∞∑
k=0

(8k + 1)
(

4k
2k

)(
2k
k

)2
zk

28k32k

at z = 1. We point out that not so many supercongruences of this type are recorded 
in the literature; the principal sources are the conjectures from Swisher’s paper [44], 
in turn built on Van Hamme’s list [47], and a geometric heuristics for hypergeometric 
series f(z) outlined by Roberts and Rodriguez-Villegas in [36]. The only proven cases 
known (namely, weaker forms of Conjectures (C.3) and (J.3) from [44] together with 
their companions) for arbitrary r � 1 are due to the first author [17].

The principal goal of this paper is to extend the approach of [17] and establish general 
techniques for proving Dwork-type supercongruences using the method of creative micro-
scoping, which we initiated in [23] for proving r = 1 instances of such supercongruences. 
Observe that such r = 1 cases of (1.4), (1.5) (known as Ramanujan-type supercon-
gruences [50]) served as principal illustrations of how the creative microscope machinery 
works. It should be therefore not surprising that we place them again as principal targets. 
Here we prove Dwork-type supercongruences (1.4), (1.5) by establishing the following 
q-analogues of them.

Theorem 1.1. Let n > 1 be an integer coprime with 6 and let r � 1. Then, modulo 
[nr] 

∏r
j=1 Φnj (q)2,

(nr−1)/2∑
k=0

[8k + 1] (q; q2)2k(q; q2)2k
(q6; q6)2k(q2; q2)2k

q2k2

≡ q(1−n)/2[n]
(
−3
n

) (nr−1−1)/2∑
k=0

[8k + 1]qn
(qn; q2n)2k(qn; q2n)2k

(q6n; q6n)2k(q2n; q2n)2k
q2nk2

, (1.6)

nr−1∑
k=0

[8k + 1] (q; q2)2k(q; q2)2k
(q6; q6)2k(q2; q2)2k

q2k2

≡ q(1−n)/2[n]
(
−3
n

) nr−1−1∑
k=0

[8k + 1]qn
(qn; q2n)2k(qn; q2n)2k

(q6n; q6n)2k(q2n; q2n)2k
q2nk2

. (1.7)
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Here and throughout the paper we adopt the standard q-notation: (a; q)n = (1 −
a)(1 − aq) · · · (1 − aqn−1) is the q-shifted factorial (q-Pochhammer symbol), [n] = [n]q =
(1 − qn)/(1 − q) is the q-integer, and

Φn(q) =
∏

1�k�n
gcd(n,k)=1

(q − ζkn),

is the n-th cyclotomic polynomial, where ζn = e2πi/n is an n-th primitive root of unity. 
Also recall the ordinary shifted factorial (a)n = Γ(a + n)/Γ(a) = a(a + 1) · · · (a + n − 1)
for n = 0, 1, 2, . . . . In what follows, the congruence A1(q)/A2(q) ≡ 0 (modP (q)) for 
polynomials A1(q), A2(q), P (q) ∈ Z[q] is understood as P (q) divides A1(q) and is coprime 
with A2(q); more generally, A(q) ≡ B(q) (modP (q)) for rational functions A(q), B(q) ∈
Z(q) means A(q) −B(q) ≡ 0 (modP (q)).

It is not hard to check (see [23,52] for related details of this computation) that, when 
n = p is a prime and q → 1, the q-supercongruences (1.6) and (1.7) reduce to (1.4) and 
(1.5), respectively.

Another family of Dwork-type supercongruences

(pr−1)/2∑
k=0

(1
2 )3k
k!3 (3k + 1)22k ≡ p

(pr−1−1)/2∑
k=0

(1
2 )3k
k!3 (3k + 1)22k (mod p3r), (1.8)

pr−1∑
k=0

(1
2 )3k
k!3 (3k + 1)22k ≡ p

pr−1−1∑
k=0

(1
2 )3k
k!3 (3k + 1)22k (mod p4r−δp,3), (1.9)

expectedly valid for any prime p > 2 and integer r � 1, originate from the divergent
hypergeometric series

∞∑
k=0

(1
2 )3k
k!3 (3k + 1)(22z)k

at z = 1. (Here δi,j is the usual Kronecker delta, δi,j = 1 if i = j and δi,j = 0 otherwise.) 
The congruences (1.8) and (1.9) modulo p3 merge into the single entry

(p−1)/2∑
k=0

(1
2 )3k
k!3 (3k + 1)22k ≡ p (mod p3) for p > 2, (1.10)

when r = 1, because (1
2 )k ≡ 0 (mod p) for (p − 1)/2 < k � p − 1; these ‘divergent’ 

Ramanujan-type supercongruences were proved by Guillera and the second author [5]
(while independently observed numerically by Sun [42, Conjecture 5.1 (ii)]). The first 
author [12] gave a q-analogue of (1.10) and recorded (1.8), (1.9) as conjectures. In this 
paper we prove the supercongruences (1.8), (1.9) modulo p3r by establishing the following 
q-counterparts.
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Theorem 1.2. Let n > 1 be odd and r � 1. Then, modulo [nr] 
∏r

j=1 Φnj (q)2,

(nr−1)/2∑
k=0

[3k + 1](q; q
2)3kq−(k+1

2 )

(q; q)2k(q2; q2)k
≡ q(1−n)/2[n]

(nr−1−1)/2∑
k=0

[3k + 1]qn
(qn; q2n)3kq−n(k+1

2 )

(qn; qn)2k(q2n; q2n)k
,

(1.11)

nr−1∑
k=0

[3k + 1](q; q
2)3kq−(k+1

2 )

(q; q)2k(q2; q2)k
≡ q(1−n)/2[n]

nr−1−1∑
k=0

[3k + 1]qn
(qn; q2n)3kq−n(k+1

2 )

(qn; qn)2k(q2n; q2n)k
.

(1.12)

Although q-supercongruences serve here as a principal tool for proving their non-q-
counterparts, they have established themselves as an independent topic. For some recent 
developments on q-supercongruences we refer the reader to the papers [4,6,7,10,12–15,
18–21,23,24,27,35,39,45,51].

Both hypergeometric identities and congruences for their truncations originate from 
their q-hypergeometric versions in a very natural way, through the asymptotics as q → 1
for the former and as q approaches other roots of unity for the latter; it is this asymp-
totic analysis at roots of unity, which we refer to as ‘q-microscopic’. Notice that proving a 
congruence A(q) ≡ B(q) (mod ΦN (q)) is equivalent to verifying that A(ζ) = B(ζ) for all 
primitive N -th roots of unity ζ. Furthermore, proofs of the congruences require ‘creative’ 
introduction of extra (generic) parameter a (and, possibly, some other); those parameters 
are often (but not always!) suggested by general forms of the underlying q-hypergeometric 
identities. The intermediate parametric supercongruences of the form A(q, a) ≡ B(q, a)
are verified to be true modulo polynomials a −qN and 1 −aqN (for particular choices of in-
tegers N) by showing that A(q, qN ) = B(q, qN ) and A(q, q−N ) = B(q, q−N ); afterwards, 
the dependence on the parameter is eliminated via a careful analysis of degeneration 
as a → 1. A plain overview of the method can be found in [52]. Quite remarkably, the 
strategy of creative q-microscoping makes it possible to prove many congruences that 
are not accessible to other techniques.

The exposition below is organized as follows. In Section 2 we provide detailed proofs 
of Theorems 1.1 and 1.2. The methodology set up in that section is further used in Sec-
tion 3 to prove several other q-supercongruences whose limiting q → 1 cases correspond to 
Dwork-type supercongruences, occasionally conjectured in the existing literature. Most 
of the results in Section 3 are supplied with sketches of their proofs. Finally, in Section 4
we leave several open problems about q-congruences behind Dwork-type (super)congru-
ences (1.3) and discuss possible future of the q-setup.

In our proofs below we make use of transformation formulas of basic hypergeometric 
series [3]

s+1φs

[
a0, a1, . . . , as
b1, b2, . . . , bs

; q, z
]

=
∞∑
k=0

(a0, a1, . . . , as; q)k zk

(q, b1, . . . , bs; q)k
,
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where the symbol (a0, a1, . . . , as; q)k is a shortcut for 
∏s

�=0(a�; q)k.

2. Proof of the principal theorems

2.1. Proof of Theorem 1.1

We shall make use of the following q-congruences, which are special cases of [23, 
Theorem 1.4].

Lemma 2.1. Let n be a positive integer coprime with 6. Then

(n−1)/2∑
k=0

[8k + 1] (aq, q/a; q2)k(q; q2)2k
(aq6, q6/a; q6)k(q2; q2)2k

q2k2 ≡ 0 (mod[n]),

n−1∑
k=0

[8k + 1] (aq, q/a; q2)k(q; q2)2k
(aq6, q6/a; q6)k(q2; q2)2k

q2k2 ≡ 0 (mod[n]).

We need the following q-series identity (see [23, Lemma 3.1]), which plays an important 
role in our proof of r = 1 instances of (1.4) and (1.5).

Lemma 2.2. Let n be a positive odd integer. Then

(n−1)/2∑
k=0

[8k + 1] (q1−n, q1+n; q2)k(q; q2)2k
(q6−n, q6+n; q6)k(q2; q2)2k

q2k2
= q(1−n)/2[n]

(
−3
n

)
. (2.1)

In order to prove Theorem 1.1, we need to establish the following parametric gener-
alization.

Theorem 2.3. Let n > 1 be an integer coprime with 6 and let r � 1. Then, modulo

[nr]
(nr−1−1)/d∏

j=0
(1 − aq(2j+1)n)(a− q(2j+1)n),

we have

(nr−1)/d∑
k=0

[8k + 1] (aq, q/a; q2)k(q; q2)2k
(aq6, q6/a; q6)k(q2; q2)2k

q2k2

≡ q(1−n)/2[n]
(
−3
n

) (nr−1−1)/d∑
k=0

[8k + 1]qn
(aqn, qn/a; q2n)k(qn; q2n)2k

(aq6n, q6n/a; q6n)k(q2n; q2n)2k
q2nk2

,

(2.2)

where d = 1, 2.
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Proof. By Lemma 2.1 with n replaced by nr, we see that the left-hand side of (2.2) is 
congruent to 0 modulo [nr]. On the other hand, replacing n by nr−1 and q by qn in 
Lemma 2.1, we conclude that the summation on the right-hand side of (2.2) is congruent 
to 0 modulo [nr−1]qn . Furthermore, since n is odd, it is easily seen that the q-integer [n]
is relatively prime to 1 + qk for any positive integer k, and so it is also relatively prime 
to the denominators of the sum on the right-hand side of (2.2) because

(qn; q2n)2k
(q2n; q2n)2k

=
[
4k
2k

]
qn

1
(−qn; qn)22k

,

where 
[2k
k

]
qn

= (qn; qn)2k/(qn; qn)2k denotes the central q-binomial coefficient. This 
proves that the right-hand side of (2.2) is congruent to 0 modulo [n][nr−1]qn = [nr]; 
hence the q-congruence (2.2) is true modulo [nr].

To show it also holds modulo

(nr−1−1)/d∏
j=0

(1 − aq(2j+1)n)(a− q(2j+1)n), (2.3)

we only need to prove that both sides of (2.2) are identical when we take a = q−(2j+1)n

or a = q(2j+1)n for any j with 0 � j � (nr−1 − 1)/d, that is,

(nr−1)/d∑
k=0

[8k + 1] (q1−(2j+1)n, q1+(2j+1)n; q2)k(q; q2)2k
(q6−(2j+1)n, q6+(2j+1)n; q6)k(q2; q2)2k

q2k2

= q(1−n)/2[n]
(
−3
n

) (nr−1−1)/d∑
k=0

[8k + 1]qn
(q−2jn, q(2j+2)n; q2n)k(qn; q2n)2k

(q(5−2j)n, q(2j+7)n; q6n)k(q2n; q2n)2k
q2nk2

.

(2.4)

It is easy to see that (nr − 1)/d � ((2j + 1)n − 1)/2 for 0 � j � (nr−1 − 1)/d, and 
(q1−(2j+1)n; q2)k = 0 for k > ((2j +1)n − 1)/2. By Lemma 2.2 the left-hand side of (2.4)
is equal to

q(1−(2j+1)n)/2[(2j + 1)n]
(

−3
(2j + 1)n

)
.

Likewise, the right-hand side of (2.4) is equal to

q(1−n)/2[n]
(
−3
n

)
· q−jn[2j + 1]qn

(
−3

2j + 1

)
= q(1−(2j+1)n)/2[(2j + 1)n]

(
−3

(2j + 1)n

)
.

This proves (2.4). Namely, the q-congruence (2.2) holds modulo (2.3). Since [nr] and 
(2.3) are relatively prime polynomials, the proof of (2.2) is complete. �



8 V.J.W. Guo, W. Zudilin / Journal of Combinatorial Theory, Series A 178 (2021) 105362

Proof of Theorem 1.1. It is not hard to see that the limit of (2.3) as a → 1 has the factor

⎧⎨
⎩
∏r

j=1 Φnj (q)2nr−j if d = 1,
∏r

j=1 Φnj (q)nr−j+1 if d = 2.

Note that the denominator of the left-hand side of (2.2) is a multiple of that of the 
right-hand side of (2.2). Since gcd(n, 6) = 1, the factor related to a of the former is

(aq6; q6)(nr−1)/d(q6/a; q6)(nr−1)/d,

whose limit as a → 1 only has the factor
⎧⎨
⎩
∏r

j=1 Φnj (q)2nr−j−2 if d = 1,
∏r

j=1 Φnj (q)nr−j−1 if d = 2,

related to Φn(q), Φn2(q), . . . , Φnr(q). Hence, letting a → 1 in (2.2) we conclude that (1.6)
is true modulo 

∏r
j=1 Φnj (q)3, where one product 

∏r
j=1 Φnj (q) comes from [nr].

Finally, by [23, Theorem 1.1] we obtain

(n−1)/d∑
k=0

[8k + 1] (q; q2)2k(q; q2)2k
(q2; q2)2k(q6; q6)2k

q2k2 ≡ 0 (mod[n]) for d = 1, 2.

Replacing n by nr in the above congruences, we deduce that the left-hand sides of (1.6)
and (1.7) are congruent to 0 modulo [nr], while letting q �→ qn and n �→ nr−1 in the 
above congruences, we see that the right-hand sides of them are congruent to 0 modulo 
[n][nr−1]qn = [nr] as well. This means that the q-congruences (1.6) and (1.7) hold modulo 
[nr]. The proof then immediately follows from the fact that the least common multiple 
of 

∏r
j=1 Φnj (q)3 and [nr] is just [nr] 

∏r
j=1 Φnj (q)2. �

2.2. Proof of Theorem 1.2

Similarly to what we did above, we need the following q-congruence and q-identity; 
they follow from the b → 0 case of [23, Theorem 4.8].

Lemma 2.4. Let n be a positive odd integer, and d = 1 or 2. Then

(n−1)/d∑
k=0

[3k + 1](aq, q/a; q
2)k(q; q2)k

(aq, q/a; q)k(q2; q2)k
q−(k+1

2 ) ≡ 0 (mod[n]), (2.5)

(n−1)/2∑
k=0

[3k + 1](q
1−n, q1+n; q2)k(q; q2)k

(q1−n, q1+n; q)k(q2; q2)k
q−(k+1

2 ) = q(1−n)/2[n]. (2.6)
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For a real number x, we use the standard notation �x� and 	x
 for the floor (integer 
part) and ceiling functions; these integers satisfy �x� � x � 	x
. We have the following 
parametric generalization of Theorem 1.2.

Theorem 2.5. Let n > 1 be an odd integer and r � 1. Then, modulo

[nr]
(nr−1−1)/d∏

j=�(nr−1−1)/(2d)�
(1 − aq(2j+1)n)(a− q(2j+1)n),

we have

(nr−1)/d∑
k=0

[3k + 1](aq, q/a; q
2)k(q; q2)k

(aq, q/a; q)k(q2; q2)k
q−(k+1

2 )

≡ q(1−n)/2[n]
(nr−1−1)/d∑

k=0

[3k + 1]qn
(aqn, qn/a; q2n)k(qn; q2n)k
(aqn, qn/a; qn)k(q2n; q2n)k

q−nk(k+1
2 ), (2.7)

where d = 1, 2.

Proof. Replacing n by nr in (2.5), we see that the left-hand side of (2.7) is congruent to 
0 modulo [nr]. Moreover, replacing n by nr−1 and q by qn in (2.5) means that the right-
hand side of (2.7) is congruent to 0 modulo [n][nr−1]qn = [nr]. That is, the q-congruence 
(2.7) holds modulo [nr].

To prove it is also true modulo

(nr−1−1)/d∏
j=�(nr−1−1)/(2d)�

(1 − aq(2j+1)n)(a− q(2j+1)n), (2.8)

it suffices to show that both sides of (2.7) are equal for all a = q−(2j+1)n and a = q(2j+1)n

with (nr−1 − 1)/(2d) � j � (nr−1 − 1)/d, i.e.,

(nr−1)/d∑
k=0

[3k + 1](q
1−(2j+1)n, q1+(2j+1)n; q2)k(q; q2)k

(q1−(2j+1)n, q1+(2j+1)n; q)k(q2; q2)k
q−(k+1

2 )

= q(1−n)/2[n]
(nr−1−1)/d∑

k=0

[3k + 1]qn
(q−2jn, q(2j+2)n; q2n)k(qn; q2n)k
(q−2jn, q(2j+2)n; qn)k(q2n; q2n)k

q−n(k+1
2 ).

(2.9)

It is easy to see that (nr − 1)/d � ((2j + 1)n − 1)/2 and (2j + 1)n > (nr − 1)/d for 
	(nr−1 − 1)/2d
 � j � (nr−1 − 1)/d. Hence, the left-hand side of (2.9) is well-defined 
(the denominator is non-zero) and is equal to
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((2j+1)n−1)/2∑
k=0

[3k + 1](q
1−(2j+1)n, q1+(2j+1)n; q2)k(q; q2)k

(q1−(2j+1)n, q1+(2j+1)n; q)k(q2; q2)k
q−(k+1

2 )

= q(1−(2j+1)n)/2[(2j + 1)n]

by (2.6). Similarly, the right-hand side of (2.9) is equal to

q(1−n)/2[n] · q−jn[2j + 1]qn = q(1−(2j+1)n)/2[(2j + 1)n],

and so the identity (2.9) holds. Namely, the q-congruence (2.7) is true modulo (2.8). This 
completes the proof of (2.7). �
Proof of Theorem 1.2. This time the limit of (2.8) as a → 1 has the factor

⎧⎨
⎩
∏r

j=1 Φnj (q)nr−j+1 if d = 1,
∏r

j=1 Φnj (q)nr−j+1−2�(nr−j+1)/4� if d = 2,

where in the d = 2 case we use the fact the set {(2j + 1)n : j = 0, . . . , �(nr−1 − 3)/4�}
contains exactly �(nr−j + 1)/4� multiples of nj for j = 1, . . . , r.

On the other hand, the denominator of (the reduced form of) the left-hand side of 
(2.7) is a multiple of that of the right-hand side of (2.7). The factor related to a of the 
denominator is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(aq, q/a; q)nr−1

(aq, q/a; q2)(nr−1)/2
= (aq2, q2/a; q2)(nr−1)/2 if d = 1,

(aq, q/a; q)(nr−1)/2

(aq, q/a; q2)�(nr−1)/4�
= (aq2, q2/a; q2)�(nr−1)/4� if d = 2.

Its limit as a → 1 only has the following factor
⎧⎨
⎩
∏r

j=1 Φnj (q)nr−j−1 if d = 1,
∏r

j=1 Φnj (q)2�(nr−j−1)/4� if d = 2,

related to Φn(q), Φn2(q), . . . , Φnr (q). Therefore, setting a → 1 in (2.7), we conclude that 
(1.12) holds modulo 

∏r
j=1 Φnj (q)3, where one product 

∏r
j=1 Φnj (q) is from [nr].

Finally, along the lines of proof of Theorem 1.1, using the following q-congruences 
from [12]:

(n−1)/d∑
k=0

[3k + 1](q; q
2)3kq−(k+1

2 )

(q; q)2k(q2; q2)k
≡ 0 (mod[n]) for d = 1, 2,

we can prove that the q-congruences (1.11) and (1.12) hold modulo [nr], thus completing 
the proof of the theorem. �
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3. More Dwork-type q-congruences

Throughout this section, p always denotes an odd prime. Below we give q-analogues 
of some known or conjectural Dwork-type congruences. In particular, we completely 
confirm the supercongruence conjectures (B.3), (L.3) of Swisher [44] and also confirm 
the first cases of her conjectures (E.3) and (F.3).

3.1. Another q-analogue of (1.8) and (1.9)

From [10,25] we see that supercongruences may have different q-analogues. Here we 
show that the supercongruences (1.8) and (1.9) fall into this category and possess q-
analogues different from those presented in Theorem 1.2.

Theorem 3.1. Let n > 1 be odd and let r � 1. Then, modulo [nr] 
∏r

j=1 Φnj (q)2,

(nr−1)/d∑
k=0

[3k + 1](q; q
2)3k(−1; q)kqk

(q; q)3k(−q2; q)2k

≡ 1 + q

1 + qn
[n]

(nr−1−1)/2∑
k=0

[3k + 1]q
(qn; q2n)3k(−1; qn)kqnk

(qn; qn)3k(−q2n; qn)2k
, (3.1)

where d = 1, 2.

Sketch of proof. Letting b = −1 in [23, Theorem 4.8], we get the following q-congruence: 
modulo [n](1 − aqn)(a − qn),

(n−1)/d∑
k=0

[3k + 1] (aq, q/a, q; q2)k(−1; q)k
(aq, q/a, q; q)k(−q2; q)2k

qk ≡ 1 + q

1 + qn
[n], (3.2)

where d = 1, 2. This means that the left-hand side of (3.2) is congruent to 0 modulo [n], 
and also (when a = qn) that

(n−1)/2∑
k=0

[3k + 1] (q1−n, q1+n, q; q2)k(−1; q)k
(q1−n, q1+n, q; q)k(−q2; q)2k

qk = 1 + q

1 + qn
[n].

Thus, like in the proof of Theorem 1.2, we can establish the following parametric gener-
alization of (3.1): modulo

[nr]
(nr−1−1)/d∏

j=�(nr−1−1)/(2d)�
(1 − aq(2j+1)n)(a− q(2j+1)n),

we have
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(nr−1)/d∑
k=0

[3k + 1] (aq, q/a, q; q2)k(−1; q)k
(aq, q/a, q; q)k(−q2; q)2k

qk

≡ 1 + q

1 + qn
[n]

(nr−1−1)/d∑
k=0

[3k + 1]qn
(aqn, qn/a, qn; q2n)k(−1; qn)k

(aqn, qn/a, qn; qn)k(−q2n; qn)2k
qnk, (3.3)

where d = 1, 2.
Letting a → 1 in (3.3), we conclude that the q-congruence (3.1) is true modulo ∏r
j=1 Φnj (q)3. Note that the proof of [20, Theorem 6.1] also implies that (3.2) mod-

ulo [n] holds for a = 1. Applying this q-congruence on both sides of (3.1), we deduce 
that (3.1) are also true modulo [nr]. �
3.2. Another ‘divergent’ Dwork-type supercongruence

Guillera and the second author [5] proved the following ‘divergent’ Ramanujan-type 
supercongruence:

(p−1)/2∑
k=0

(1
2 )3k
k!3 (3k + 1)(−1)k23k ≡ p

(
−1
p

)
(mod p3) (3.4)

(see also [42, Conjecture 5.1(ii)]). The first author [12] gave a q-analogue of (3.4) and 
proposed the following conjecture on Dwork-type supercongruences:

(pr−1)/2∑
k=0

(1
2 )3k
k!3 (3k + 1)(−1)k23k

≡ p

(
−1
p

) (pr−1−1)/2∑
k=0

(1
2 )3k
k!3 (3k + 1)(−1)k23k (mod p3r+δp,3), (3.5)

pr−1∑
k=0

(1
2 )3k
k!3 (3k + 1)(−1)k23k ≡ p

(
−1
p

) pr−1−1∑
k=0

(1
2 )3k
k!3 (3k + 1)(−1)k23k (mod p3r). (3.6)

In the spirit of Theorems 1.1 and 1.2, we have the following q-generalization of the 
above two supercongruences modulo p3r.

Theorem 3.2. Let n > 1 be odd and let r � 1. Then, modulo [nr] 
∏r

j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(−1)k[3k + 1] (q; q2)3k(−q; q)k
(q; q)3k(−q2; q2)k

q−(k+1
2 )

≡ q(1−n)/2[n]
(
−1
n

) (nr−1−1)/d∑
k=0

(−1)k[3k + 1]qn
(qn; q2n)3k(−qn; qn)k
(qn; qn)3k(−q2n; q2n)k

q−n(k+1
2 ),

(3.7)
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where d = 1, 2.

Sketch of proof. Letting b = −1 and c → 0 in [20, Theorem 6.1] (see also [23, Conjecture 
4.6]), we get the following q-congruence: modulo [n](1 − aqn)(a − qn),

(n−1)/d∑
k=0

(−1)k[3k + 1] (aq, q/a, q; q2)k(−q; q)k
(aq, q/a, q; q)k(−q2; q2)k

q−(k+1
2 ) ≡ q(1−n)/2[n]

(
−1
n

)
, (3.8)

where d = 1, 2. Namely, the left-hand side of (3.7) is congruent to 0 modulo [n], and

(n−1)/2∑
k=0

(−1)k[3k + 1] (q1−n, q1+n, q; q2)k(−q; q)k
(q1−n, q1+n, q; q)k(−q2; q2)k

q−(k+1
2 ) = q(1−n)/2[n]

(
−1
n

)
.

Thus, we may establish a parametric generalization of (3.7): modulo

[nr]
(nr−1−1)/d∏

j=�(nr−1−1)/(2d)�
(1 − aq(2j+1)n)(a− q(2j+1)n),

we have

(nr−1)/d∑
k=0

(−1)k[3k + 1] (aq, q/a, q; q2)k(−q; q)k
(aq, q/a, q; q)k(−q2; q2)k

q−(k+1
2 )

≡ q(1−n)/2[n]
(
−1
n

) (nr−1−1)/d∑
k=0

(−1)k[3k + 1]qn

× (aqn, qn/a, qn; q2n)k(−qn; qn)k
(aqn, qn/a, qn; qn)k(−q2n; q2n)k

q−n(k+1
2 ), (3.9)

where d = 1, 2.
Letting a → 1 in (3.9), we know that (3.7) holds modulo 

∏r
j=1 Φnj (q)3. Applying the 

q-congruence (3.8) modulo [n] with a = 1 on both sides of (3.7), we conclude that (3.7)
is also true modulo [nr]. �
3.3. Two supercongruences of Swisher

Swisher’s conjectural supercongruence (B.3) from [44] can be stated as follows:

(pr−1)/2∑
k=0

(−1)k(4k + 1)
(1
2 )3k
k!3
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≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p

(
−1
p

) (pr−1−1)/2∑
k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 (mod p3r) if p ≡ 1 (mod 4),

p2
(pr−2−1)/2∑

k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 (mod p3r−2) if p ≡ 3 (mod 4), r � 2.

In fact we find out that, more generally, for any prime p > 2,

(pr−1)/2∑
k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 ≡ p

(
−1
p

) (pr−1−1)/2∑
k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 (mod p3r). (3.10)

Observe that Swisher’s supercongruence (B.3) for p ≡ 3 (mod 4) follows from using (3.10)
twice. It is natural to conjecture that the following companion supercongruence of (3.10)
is also true:

pr−1∑
k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 ≡ p

(
−1
p

) pr−1−1∑
k=0

(−1)k(4k + 1)
(1
2 )3k
k!3 (mod p3r). (3.11)

Here we prove the Dwork-type supercongruences (3.10) and (3.11) by establishing the 
following q-analogues.

Theorem 3.3. Let n > 1 be odd and let r � 1. Then, modulo [nr] 
∏r

j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(−1)k[4k + 1] (q; q2)2k(q2; q4)k
(q2; q2)2k(q4; q4)k

≡ q(1−n)/2[n]
(
−1
n

) (nr−1−1)/d∑
k=0

(−1)k[4k + 1]qn
(qn; q2n)2k(q2n; q4n)k
(q2n; q2n)2k(q4n; q4n)k

, (3.12)

where d = 1, 2.

Sketch of proof. Letting c = −1 in [23, Theorem 4.2], we obtain the following q-cong-
ruence for odd n: modulo [n](1 − aqn)(a − qn),

(n−1)/d∑
k=0

(−1)k[4k + 1] (aq, q/a; q2)k(q2; q4)k
(aq2, q2/a; q2)k(q4; q4)k

≡ q(1−n)/2[n]
(
−1
n

)
, (3.13)

where d = 1, 2. That is to say, the left-hand side of (3.13) is congruent to 0 modulo [n], 
and

(n−1)/2∑
k=0

(−1)k[4k + 1](q
1−n, q1+n; q2)k(q2; q4)k

(q2−n, q2+n; q2)k(q4; q4)k
= q(1−n)/2[n]

(
−1
n

)
.
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Along the lines of our proof of Theorem 1.1, we can prove the following parametric 
version of (3.12): modulo

[nr]
(nr−1−1)/d∏

j=0
(1 − aq(2j+1)n)(a− q(2j+1)n),

we have

(nr−1)/d∑
k=0

(−1)k[4k + 1] (aq, q/a; q2)k(q2; q4)k
(aq2, q2/a; q2)k(q4; q4)k

≡ q(1−n)/2[n]
(
−1
n

) (nr−1−1)/d∑
k=0

(−1)k[4k + 1]qn
(aqn, qn/a; q2n)k(q2n; q4n)k

(aq2n, q2n/a; q2n)k(q4n; q4n)k
,

(3.14)

where d = 1, 2.
Letting a → 1 in (3.14), we see that (3.12) is true modulo 

∏r
j=1 Φnj (q)3. Note that 

the proof of [23, Theorem 4.2] also indicates that the q-congruence (3.13) modulo [n]
hold for a = 1. Applying this q-congruence on both sides of (3.12), we conclude that 
(3.12) is also true modulo [nr]. �

Swisher [44, Conjecture (L.3)] conjectured that, for r � 1,

(pr−1)/2∑
k=0

(−1)k(6k + 1)
(1
2)3k

k!38k ≡ p

(
−2
p

) (pr−1−1)/2∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k (mod p3r).

(3.15)

Recently, the first author [6, Conjecture 4.5] made the following similar conjecture:

pr−1∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k ≡ p

(
−2
p

) pr−1−1∑
k=0

(−1)k(6k + 1)
(1
2 )3k

k!38k (mod p3r). (3.16)

We confirm the supercongruences (3.15) and (3.16) by establishing the following Dwork-
type q-supercongruence.

Theorem 3.4. Let n > 1 be odd and let r � 1. Then, modulo [nr] 
∏r

j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(−1)k[6k + 1](q; q
2)3k(−q2; q4)k

(q4; q4)3k(−q; q2)k
qk

2

≡ q(1−n)/2[n]
(
−2
n

) (nr−1−1)/d∑
k=0

(−1)k[6k + 1]qn
(qn; q2n)3k(−q2n; q4n)k
(q4n; q4n)3k(−qn; q2n)k

qnk
2
,

(3.17)



16 V.J.W. Guo, W. Zudilin / Journal of Combinatorial Theory, Series A 178 (2021) 105362

where d = 1, 2.

Sketch of proof. Setting b = −q2 in [23, Theorem 4.5], we are led to the following q-
congruence: modulo [n](1 − aqn)(a − qn),

(nr−1)/d∑
k=0

(−1)k[6k + 1] (aq, q/a, q; q2)k(−q2; q4)k
(aq4, q4/a, q4; q4)k(−q; q2)k

qk
2 ≡ q(1−n)/2[n]

(
−2
n

)
. (3.18)

Thus, we can prove the following parametric version of (3.12): modulo

[nr]
(nr−1−1)/d∏

j=0
(1 − aq(2j+1)n)(a− q(2j+1)n),

we have

(nr−1)/d∑
k=0

(−1)k[6k + 1] (aq, q/a, q; q2)k(−q2; q4)k
(aq4, q4/a, q4; q4)k(−q; q2)k

qk
2

≡ q(1−n)/2[n]
(
−2
n

) (nr−1−1)/d∑
k=0

(−1)k[6k + 1]qn
(aqn, qn/a, qn; q2n)k(−q2n; q4n)k

(aq4n, q4n/a, q4n; q4n)k(−qn; q2n)k
qnk

2
,

(3.19)

where d = 1, 2. The proof of (3.17) modulo 
∏r

j=1 Φnj (q)3 then follows by taking the limit 
as a → 1 in (3.19), and the proof of (3.17) modulo [nr] follows from the q-congruence 
(3.18) modulo [n] with a = 1. �
3.4. Another two supercongruences from Swisher’s list

In [44, Conjectures (E.3), (F.3)] Swisher proposed the following conjectures:

(pr−1)/3∑
k=0

(6k + 1)(1
3 )3k

k!3(−1)k ≡ p

(pr−1−1)/3∑
k=0

(6k + 1)(1
3 )3k

k!3(−1)k (mod p3r) for p ≡ 1 (mod 3), (3.20)

(pr−1)/4∑
k=0

(8k + 1)(1
4 )3k

k!3(−1)k ≡ p

(
−2
p

) (pr−1−1)/4∑
k=0

(8k + 1)(1
4 )3k

k!3(−1)k (mod p3r) for p ≡ 1 (mod 4).

(3.21)

Here we confirm (3.20) and (3.21) by showing the following q-analogues.

Theorem 3.5. Let n > 1 be an integer with n ≡ 1 (mod 6) and let r � 1. Then, modulo 
[nr]q2

∏r
j=1 Φnj (q2)2,
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(nr−1)/d∑
k=0

(−1)k[6k + 1]q2
(q2; q6)3k(−q3; q6)k
(q6; q6)3k(−q5; q6)k

qk

≡ q1−n[n]q2

(nr−1−1)/d∑
k=0

(−1)k[6k + 1]q2n
(q2n; q6n)3k(−q3n; q6n)k
(q6n; q6n)3k(−q5n; q6n)k

qnk, (3.22)

where d = 1, 3.

Sketch of proof. It is easy to see that [23, Theorem 4.2] can be generalized as follows. 
Modulo [n](1 − aqn)(a − qn),

(n−1)/d∑
k=0

[2mk + 1] (aq, q/a, q/c, q; qm)k
(aqm, qm/a, cqm, qm; qm)k

ckq(m−2)k

≡
(c/q)(n−1)/m(q2/c; qm)(n−1)/m

(cqm; qm)(n−1)/m
[n] for n ≡ 1 (modm), (3.23)

where d = 1 or m. Here we emphasize that, in order to prove (3.23) holds modulo [n], 
we need to show that

n−1∑
k=0

[2mk + 1] (aq, q/a, q/c, q; qm)k
(aqm, qm/a, cqm, qm; qm)k

ckq(m−2)k ≡ 0 (mod Φn(q))

is true for all integers n > 1 with gcd(n, m) = 1. Then we use the same arguments as 
[23, Theorems 1.2 and 1.3] to deal with the modulus [n] case.

We now put m = 3, q �→ q2 and c = −q−1 in (3.23) to get

(n−1)/d∑
k=0

(−1)k[6k + 1]q2
(aq2, q2/a, q2,−q3; q6)k
(aq6, q6/a, q6,−q5; q6)k

qk

≡ q1−n[n]q2(−1)n−1 (mod Φn(q2)(1 − aq2n)(a− q2n)) for n ≡ 1 (mod 6),

where d = 1, 3. Using this q-congruence, we can produce a generalization of (3.22) with 
an extra parameter a: modulo

[nr]q2

(nr−1−1)/d∏
j=0

(1 − aq(6j+2)n)(a− q(6j+2)n),

we have

(nr−1)/d∑
k=0

(−1)k[6k + 1]q2
(aq2, q2/a, q2,−q3; q6)k
(aq6, q6/a, q6,−q5; q6)k

qk
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≡ q1−n[n]q2

(nr−1−1)/d∑
k=0

(−1)k[6k + 1]q2n
(aq2n, q2n/a, q2n,−q3n; q6n)k
(aq6n, q6n/a, q6n,−q5n; q6n)k

qnk,

where d = 1, 3. �
It is easy to see that, when n = p and q → 1, the q-supercongruence (3.22) for d = 3

reduces to (3.20), and it for d = 1 confirms the first supercongruence in [8, Conjecture 
5.3]. Moreover, letting n = p and q → −1 in (3.22), we obtain the following new Dwork-
type supercongruence: for p ≡ 1 (mod 3),

(pr−1)/d∑
k=0

(6k + 1)
(1
3 )3k(1

2 )k
k!3(5

6 )k
≡ p

(pr−1−1)/d∑
k=0

(6k + 1)
(1
3 )3k(1

2 )k
k!3(5

6 )k
(mod p3r),

where d = 1, 3.
When r is even and p > 3, we always have p2 ≡ 1 (mod 24). Thus, letting n = p2, 

r �→ r/2 and q → 1 in (3.22) we arrive at

(pr−1)/3∑
k=0

(6k + 1)(1
3 )3k

k!3(−1)k ≡ p2
(pr−2−1)/3∑

k=0

(6k + 1)(1
3 )3k

k!3(−1)k (mod p2r) for r � 2 even.

(3.24)

This partially confirm the second case of [44, Conjecture (E.3)], which asserts that (3.24)
holds modulo p3r−2 for p ≡ 2 (mod 3).

Theorem 3.6. Let n > 1 be an integer with n ≡ 1 (mod 4) and let r � 1. Then, modulo 
[nr] 

∏r
j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(−1)k[8k + 1] (q; q4)3k(−q2; q4)k
(q4; q4)3k(−q3; q4)k

qk

≡ q(1−n)/2[n]
(
−2
n

) (nr−1−1)/d∑
k=0

(−1)k[8k + 1]qn
(qn; q4n)3k(−q2n; q4n)k
(q4n; q4n)3k(−q3n; q2n)k

qnk, (3.25)

where d = 1, 4.

Sketch of proof. This time we take m = 4 and c = −q−1 in (3.23) to get

(n−1)/d∑
k=0

(−1)k[8k + 1] (aq, q/a, q,−q2; q4)k
(aq4, q4/a, q4,−q3; q4)k

qk

≡ q(1−n)/2[n]
(
−2
n

)
(mod Φn(q)(1 − aqn)(a− qn)) for n ≡ 1 (mod 4),
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where d = 1, 4, and we use (−1)(n−1)/4 =
(−2

n

)
for n ≡ 1 (mod 4). Applying this 

q-congruence, we can produce a generalization of (3.25) with an extra parameter a: 
modulo

[nr]
(nr−1−1)/d∏

j=0
(1 − aq(4j+1)n)(a− q(4j+1)n),

we have

(nr−1)/d∑
k=0

(−1)k[8k + 1] (aq, q/a, q,−q2; q4)k
(aq4, q4/a, q4,−q3; q4)k

qk

≡ q(1−n)/2[n]
(
−2
n

) (nr−1−1)/d∑
k=0

(−1)k[8k + 1]qn
(aqn, qn/a, qn,−q2n; q4n)k

(aq4n, q4n/a, q4n,−q3n; q2n)k
qnk,

where d = 1, 4. �
It is easy to see that, when n = p and q → 1, the q-supercongruence (3.25) reduces to 

(3.21) when d = 4, and confirms the third supercongruence in [8, Conjecture 5.3] when 
d = 1. Besides, letting n = p2, r �→ r/2, and q → 1 in (3.25) we obtain

(pr−1)/4∑
k=0

(8k + 1)(1
4 )3k

k!3(−1)k ≡ p2
(pr−2−1)/4∑

k=0

(8k + 1)(1
4 )3k

k!3(−1)k (mod p2r)

for r � 2 even. This confirms in part the second case of [44, Conjecture (F.3)], where 
the supercongruence is predicted to hold modulo p3r−2 for p ≡ 3 (mod 4).

Finally, we should mention the recent work [48], which saw the light after a prelim-
inary version of this work had appeared; there Wang and Yue gave generalizations of 
Theorems 3.3, 3.5 and 3.6.

3.5. Generalizations of Swisher-type supercongruences

The m = 3 case of [10, Conjecture 6.1] asserts that

(pr−1)/d∑
k=0

(−1)k(4k + 1)3
(1
2 )3k
k!3 ≡ p

(
−1
p

) (pr−1−1)/d∑
k=0

(−1)k(4k + 1)3
(1
2 )3k
k!3 (mod p3r−2),

(3.26)

where d = 1, 2. Here we confirm this supercongruence by establishing its q-analogue. 
Although there is a q-analogue of (3.26) modulo p3 for r = 1 in [10], we need a different 
one to accomplish the proof of (3.26).
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Lemma 3.7. Let n > 1 be an odd integer and a an indeterminate. Then, modulo 
Φn(q2)(1 − aq2n)(a − q2n),

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (aq2, q2/a; q4)k(q4; q8)k
(aq4, q4/a; q4)k(q8; q8)k

q−4k

≡ q1−n[n]q2

(
−1
n

)(
1 − (1 + q2)(1 − aq2)(1 − q2/a)

(1 + q4)(1 − q)2

)
. (3.27)

Proof. For a = q−2n or a = q2n, the left-hand side of (3.27) is equal to

(n−1)/2∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2−2n, q2+2n; q4)k(q4; q8)k
(q4−2n, q4+2n; q4)k(q8; q8)k

q−4k

= 8φ7

[
q2, q5, −q5, q5, q5, −q2, q2+2n, q2−2n

q, −q, q, q, −q4, q4−2n, q4+2n ; q4, −q−4
]
, (3.28)

where the basic hypergeometric series s+1φs is defined in the introduction. By Watson’s 
8φ7 transformation formula [3, Appendix (III.18)] with q �→ q4, a = q2, b = c = q5, 
d = −q2, e = q2+2n and n �→ (n − 1)/2, we can write the right-hand side of (3.28) as

(q6,−q2−2n; q4)(n−1)/2

(−q4, q4−2n; q4)(n−1)/2
4φ3

[
q−4, −q2, q2+2n, q2−2n

q, q, −q4 ; q4, q4
]

= q1−n[n]q2

(
−1
n

)(
1 − (1 + q2)(1 − q2−2n)(1 − q2+2n)

(1 + q4)(1 − q)2

)
, (3.29)

which is just the a = q−2n or a = q2n case of the right-hand side of (3.27). This proves 
that the congruence (3.27) holds modulo 1 − aq2n or a − q2n.

Moreover, by [20, Lemma 3.1] it is easy to verify that, for 0 � k � (n − 1)/2, the 
k-th and ((n − 1)/2 − k)-th terms on the left-hand side of (3.27) modulo Φn(q2) cancel 
each other. Therefore, the left-hand side of (3.27) is congruent to 0 modulo Φn(q2), and 
(3.27) is also true modulo Φn(q2). �

We are now able to give a complicated q-analogue of (3.26).

Theorem 3.8. Let n > 1 be an odd integer and r � 2. Then, modulo

⎧⎨
⎩

[nr]q2Φn(−q)2
∏r

j=2 Φnj (q2)2 if n > 3,

[nr]q2Φn(q2)Φn2(q2)Φn(−q)Φn2(−q)
∏r

j=3 Φnj (q2)2 if n = 3,

we have
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(nr−1)/d∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)2k(q4; q8)k
(q4; q4)2k(q8; q8)k

q−4k

≡ q2−2n[n]q2

(
−1
n

)
(1 + q + q2)(1 + q4n)
(1 + q4)(1 + qn + q2n)

×
(nr−1−1)/d∑

k=0

(−1)k[4k + 1]q2n [4k + 1]2qn
(q2n; q4n)2k(q4n; q8n)k
(q4n; q4n)2k(q8n; q8n)k

q−4nk, (3.30)

where d = 1, 2.

Sketch of proof. Applying (3.27), we can prove the following parametric version of (3.30): 
modulo

[nr]q2

(nr−1−1)/d∏
j=0

(1 − aq(4j+2)n)(a− q(4j+2)n), (3.31)

we have

(nr−1)/d∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (aq2, q2/a; q4)k(q4; q8)k
(aq4, q4/a; q4)k(q8; q8)k

q−4k

≡ q1−n[n]q2

(
−1
n

)(
1 − (1 + q2)(1 − aq2)(1 − q2/a)

(1 + q4)(1 − q)2

)

×
(

1 − (1 + q2n)(1 − aq2n)(1 − q2n/a)
(1 + q4n)(1 − qn)2

)−1

×
(nr−1−1)/d∑

k=0

(−1)k[4k + 1]q2n [4k + 1]2qn
(aq2n, q2n/a; q4n)k(q4n; q8n)k
(aq4n, q4n/a; q4n)k(q8n; q8n)k

q−4nk,

(3.32)

where d = 1, 2.
Similarly as before, the limit of (3.31) as a → 1 has the factor

⎧⎨
⎩
∏r

j=1 Φnj (q2)2nr−j+1 if d = 1,
∏r

j=1 Φnj (q2)nr−j+2 if d = 2,
(3.33)

where one product 
∏r

j=1 Φnj (q2) comes from [nr]q2 . However, this time we should be 
careful of the factor related to a in the common denominator of the two sides of (3.32). 
But it is at most

(
(1 + q4n)(1 − qn)2 − (1 + q2n)(1 − aq2n)(1 − q2n/a)

)
×(aq4; q4)(nr−1)/d(q4/a; q4)(nr−1)/d,
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of which the limit as a → 1 only contains the factor
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Φn(q)2
∏r

j=1 Φnj (q2)2nr−j−2 if d = 1 and n > 3,

Φn(q)2
∏r

j=1 Φnj (q2)nr−j−1 if d = 2 and n > 3,

Φn(q)2Φn2(q)
∏r

j=1 Φnj (q2)2nr−j−2 if d = 1 and n = 3,

Φn(q)2Φn2(q)
∏r

j=1 Φnj (q2)nr−j−1 if d = 2 and n = 3,

related to Φn(q2), Φn2(q2), . . . , Φnr (q2). Here we used the identity

(1 + q4n)(1 − qn)2 − (1 + q2n)(1 − q2n)2 = −2qn(1 + qn + q2n)(1 − qn)2. (3.34)

Thus, letting a → 1 in (3.32), we see that the q-congruence (3.30) holds modulo
⎧⎨
⎩

Φn(q2)Φn(−q)2
∏r

j=2 Φnj (q2)3 if n > 3,

Φn(q2)Φn2(q2)2Φn(−q)2Φn2(−q)
∏r

j=3 Φnj (q2)3 if n = 3.

On the other hand, letting a → 1 in (3.27), we can easily deduce that the left-hand 
side of (3.30) is congruent to

−2q2−n[n]q2

(
−1
n

)
1 + q + q2

1 + q4 (mod Φn(q2)3),

which indicates that it is congruent to 0 modulo Φn(q)2 when n = 3. Namely, the q-
congruence (3.30) holds modulo Φn(q)2 when n = 3. Combining this with the previous 
argument, we conclude that the q-congruence (3.30) is true modulo

⎧⎨
⎩

Φn(q2)Φn(−q)2
∏r

j=2 Φnj (q2)3 if n > 3,

Φn(q2)2Φn2(q2)2Φn(−q)Φn2(−q)
∏r

j=3 Φnj (q2)3 if n = 3.

Furthermore, based on (3.27), along the lines of the proof of [23, Theorem 1.2] we can 
show that

(n−1)/d∑
k=0

(−1)k[4k + 1]q2 [4k + 1]2 (q2; q4)2k(q4; q8)k
(q4; q4)2k(q8; q8)k

q−4k ≡ 0 (mod[n]q2) (3.35)

for d = 1, 2. Utilizing this q-congruence, we can prove that both sides of (3.30) are 
congruent to 0 modulo [nr]q2 . �

It is not hard to see that, when n = p and q → 1, the q-supercongruence (3.30) reduces 
to (3.26) for r � 2 (the case r = 1 of (3.26) is obviously true by [10] or (3.35)). Moreover, 
letting n = p and q → −1 in (3.30), we are led to (3.10) again.
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Similarly, we can partially confirm another conjecture in [10]. Recall that the m = 3
case of [10, Conjecture 6.2] may be stated as follows:

(pr−1)/d∑
k=0

(4k + 1)3
(1
2 )4k
k!4 ≡ p

(pr−1−1)/d∑
k=0

(4k + 1)3
(1
2)4k
k!4 (mod p4r−3), (3.36)

where d = 1, 2. Here we prove that (3.36) is true modulo p3r−2 using the following 
q-supercongruences.

Theorem 3.9. Let n > 1 be an odd integer and r � 2. Then, modulo

[nr]q2Φn(−q)2
r∏

j=2
Φnj (q2)2,

we have

(nr−1)/d∑
k=0

[4k + 1]q2 [4k + 1]2 (q2; q4)4k
(q4; q4)4k

q−4k

≡ q2−2n[n]q2
1 + q2n

1 + q2

(nr−1−1)/d∑
k=0

[4k + 1]q2n [4k + 1]2qn
(q2n; q4n)4k
(q4n; q4n)4k

q−4nk, (3.37)

where d = 1, 2.

Sketch of proof. By [10, Theorem 4.1], we have

(n−1)/2∑
k=0

[4k + 1]q2 [4k + 1]2 (aq2, q2/a; q4)k(q2; q4)2k
(aq4, q4/a; q4)k(q4; q4)2k

q−4k

≡ q1−n[n]q2

(
1 − (1 − aq2)(1 − q2/a)

(1 + q2)(1 − q)2

)
(mod Φn(q2)(1 − aq2n)(a− q2n)).

Using this q-congruence, we can establish the following parametric generalization of 
(3.37): modulo

[nr]q2

(nr−1−1)/d∏
j=0

(1 − aq(4j+2)n)(a− q(4j+2)n), (3.38)

we have

(nr−1)/d∑
k=0

[4k + 1]q2 [4k + 1]2 (aq2, q2/a; q4)k(q2; q4)2k
(aq4, q4/a; q4)k(q4; q4)2k

q−4k
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≡ q1−n[n]q2

(
1 − (1 − aq2)(1 − q2/a)

(1 + q2)(1 − q)2

)(
1 − (1 − aq2n)(1 − q2n/a)

(1 + q2n)(1 − qn)2

)−1

×
(nr−1−1)/d∑

k=0

[4k + 1]q2n [4k + 1]2qn
(aq2n, q2n/a; q4n)k(q2n; q4n)2k
(aq4n, q4n/a; q4n)k(q4n; q4n)2k

q−4nk. (3.39)

Like before, the limit of (3.38) as a → 1 has the factor (3.33). While the factor related 
to a in the common denominator of the two sides of (3.39) is at most

(
(1 + q2n)(1 − qn)2 − (1 − aq2n)(1 − q2n/a)

)
(aq4; q4)(nr−1)/d(q4/a; q4)(nr−1)/d,

whose limit as a → 1 only incorporates the factor
⎧⎨
⎩

Φn(q)2
∏r

j=1 Φnj (q2)2nr−j−2 if d = 1,

Φn(q)2
∏r

j=1 Φnj (q2)nr−j−1 if d = 2,

related to Φn(q2), Φn2(q2), . . . , Φnr (q2). Here we utilized the relation

(1 + q2n)(1 − qn)2 − (1 − q2n)2 = −2qn(1 − qn)2.

Thus, taking the limit of (3.39) as a → 1, we see that the q-congruence (3.37) holds 
modulo Φn(q2)Φn(−q)2

∏r
j=2 Φnj (q2)3. Finally, to show that both sides of (3.37) are 

also congruent to 0 modulo [nr]q2 , we only need to use the modulus [n]q2 case of [10, 
Theorem 1.4]. �

It is clear that, when n = p and q → 1, the q-supercongruence (3.37) becomes the 
modulus p3r−2 case of (3.36). Meanwhile, taking n = p and q → −1 in (3.37), we obtain 
the modulus p3r case of (C.3) from [44]:

(pr−1)/2∑
k=0

(4k + 1)
(1
2 )4k
k!4 ≡ p

(pr−1−1)/2∑
k=0

(4k + 1)
(1
2 )4k
k!4 (mod p3r)

and its companion, already proved by the first author in [17].

3.6. Dwork-type supercongruences involving (4k − 1) and (4k − 1)3

The first author [10, Corollary 5.2] proved that, for r � 1,

(pr+1)/2∑
k=0

(4k − 1)3
(−1

2 )3k
k!3 ≡ 3pr

(
−1
pr

)
(mod pr+2),

pr−1∑
k=0

(4k − 1)3
(−1

2 )3k
k!3 ≡ 3pr

(
−1
pr

)
(mod pr+2).
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We observe that these two supercongruences also possess the following Dwork-type gen-
eralizations:

(pr+1)/2∑
k=0

(4k − 1)3
(−1

2 )3k
k!3 ≡ p

(
−1
p

) (pr−1+1)/2∑
k=0

(4k − 1)3
(−1

2 )3k
k!3 (mod p3r−2), (3.40)

pr−1∑
k=0

(4k − 1)3
(−1

2 )3k
k!3 ≡ p

(
−1
p

) pr−1−1∑
k=0

(4k − 1)3
(−1

2 )3k
k!3 (mod p3r−2). (3.41)

In fact, these two supercongruences can be further generalized to the q-setting. We first 
give the following result similar to Lemma 3.7.

Lemma 3.10. Let n > 1 be an odd integer and a an indeterminate. Then, modulo 
Φn(q2)(1 − aq2n)(a − q2n),

(n+1)/2∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (aq−2, q−2/a; q4)k(q−4; q8)k
(aq4, q4/a; q4)k(q8; q8)k

q4k

≡ −2q−n−3[n]q2(1 + q4)
(1 + aq2)(1 + q2/a)

(
−1
n

)(
1 − (1 + q2)(1 − aq−2)(1 − q−2/a)

(1 + q4)(1 − q)2 q4
)
. (3.42)

Sketch of proof. For a = q−2n or a = q2n, the left-hand side of (3.42) can be written as

−q−4
8φ7

[
q−2, q3, −q3, q3, q3, −q−2, q−2+2n, q−2−2n

q−1, −q−1, q−1, q−1, −q4, q4−2n, q4+2n ; q4, −q4
]

By Watson’s 8φ7 transformation formula [3, Appendix (III.18)] with q �→ q4, a = q−2, 
b = c = q3, d = −q−2, e = q−2+2n, and n �→ (n + 1)/2, the above expression is equal to

− q−4 (q2,−q6−2n; q4)(n+1)/2

(−q4, q4−2n; q4)(n+1)/2
4φ3

[
q−4, −q−2, q−2+2n, q−2−2n

q−1, q−1, −q−4 ; q4, q4
]

=
−2qn−5[n]q2(1 + q4)

(1 + q2n−2)(1 + q2n+2)

(
−1
n

)(
1 − (1 + q2)(1 − q−2+2n)(1 − q−2−2n)

(1 + q4)(1 − q)2 q4
)
,

which is just the a = q−2n or a = q2n case of (3.42). This means that (3.42) is true 
modulo (1 −aq2n)(a −q2n). Moreover, in view of [10, eq. (5.3)] with q �→ q2, we can show 
that (3.42) is also true modulo Φn(q2). �

We are now able to give q-analogues of (3.40) and (3.41) as follows.

Theorem 3.11. Let n > 1 be an odd integer and let r � 2. Then, modulo
⎧⎨
⎩

[nr]q2
∏r

j=2 Φnj (q2)2 if n > 3,

[nr]q2Φn(q)Φn2(q2)Φn2(−q)
∏r

j=3 Φnj (q2)2 if n = 3,
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we have

M1∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (q−2; q4)2k(q−4; q8)k
(q4; q4)2k(q8; q8)k

q4k

≡ q2n−2[n]q2

(
−1
n

)
(1 + q + q2)(1 + q2n)2

(1 + q2)2(1 + qn + q2n)

×
M2∑
k=0

(−1)k[4k − 1]q2n [4k − 1]2qn
(q−2n; q4n)2k(q−4n; q8n)k
(q4n; q4n)2k(q8n; q8n)k

q4nk, (3.43)

where (M1, M2) = ((nr + 1)/2, (nr−1 + 1)/2) or (M1, M2) = (nr − 1, nr−1 − 1).

Sketch of proof. We first consider the case (M1, M2) = ((nr + 1)/2, (nr−1 + 1)/2). Uti-
lizing (3.42), we can prove the following parametric version of (3.43): modulo

[nr]q2

(nr−1−1)/2∏
j=0

(1 − aq(4j+2)n)(a− q(4j+2)n), (3.44)

we have

(nr+1)/2∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (aq−2, q−2/a; q4)k(q−4; q8)k
(aq4, q4/a; q4)k(q8; q8)k

q4k

≡ q3n−3[n]q2(1 + q4)
(1 + aq2)(1 + q2/a)

(
−1
n

)(
1 − (1 + q2)(1 − aq−2)(1 − q−2/a)

(1 + q4)(1 − q)2 q4
)

× (1 + aq2n)(1 + q2n/a)
1 + q4n

(
1 − (1 + q2n)(1 − aq−2n)(1 − q−2n/a)

(1 + q4n)(1 − qn)2 q4n
)−1

×
(nr−1+1)/2∑

k=0

(−1)k[4k − 1]q2n [4k − 1]2qn
(aq−2n, q−2n/a; q4n)k(q−4n; q8n)k

(aq4n, q4n/a; q4n)k(q8n; q8n)k
q4nk.

(3.45)

As in the previous considerations, the limit of (3.44) as a → 1 has the factor ∏r
j=1 Φnj (q2)nr−j+2. This time the factor related to a in the common denominator of 

the two sides of (3.45) is at most

(
(1 + q4n)(1 − qn)2 − (1 + q2n)(1 − aq−2n)(1 − q−2n/a)q4n)
× (aq4; q4)(nr+1)/2(1 − aq2n(nr−1+1))(q4/a; q4)(nr+1)/2(1 − q2n(nr−1+1)/a),

whose limit as a → 1 only contains the factor
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⎧⎨
⎩

Φn(q)2Φn(q2)2
∏r

j=1 Φnj (q2)nr−j−1 if n > 3,

Φn(q)2Φn2(q)Φn(q2)2
∏r

j=1 Φnj (q2)nr−j−1 if n = 3,

related to Φn(q2), Φn2(q2), . . . , Φnr(q2). Here we used the identity (3.34) again. Thus, 
letting a → 1 in (3.45) we find out that the q-congruence (3.43) holds modulo

⎧⎨
⎩

Φn(−q)
∏r

j=2 Φnj (q2)3 if n > 3,

Φn2(q2)2Φn(−q)Φn2(−q)
∏r

j=3 Φnj (q2)3 if n = 3.

On the other hand, letting a → 1 in (3.42) we can easily deduce that the left-hand 
side of (3.43) is congruent to

4q−n−2[n]q2

(
−1
n

)
1 + q + q2

(1 + q2)2 (mod Φn(q2)3),

which indicates that it is congruent to 0 modulo Φn(q)2 when n = 3, and so (3.43) is true 
modulo Φn(q)2 when n = 3. From this we immediately deduce that the q-congruence 
(3.43) is true modulo

⎧⎨
⎩

Φn(q2)
∏r

j=2 Φnj (q2)3 if n > 3,

Φn(q)2Φn2(q2)2Φn(−q)Φn2(−q)
∏r

j=3 Φnj (q2)3 if n = 3.

Furthermore, based on (3.42), along the lines of the proof of [23, Theorem 1.2] we can 
show that

(n+1)/2∑
k=0

(−1)k[4k − 1]q2 [4k − 1]2 (q−2; q4)2k(q−4; q8)k
(q4; q4)2k(q8; q8)k

q4k ≡ 0 (mod[n]q2).

With the help of this q-congruence, we deduce that both sides of (3.43) are congruent to 
0 modulo [nr]q2 . This proves (3.43) for (M1, M2) = ((nr + 1)/2, (nr−1 + 1)/2).

For (M1, M2) = (nr − 1, nr−1 − 1), the proof follows from the same argument. In this 
case the corresponding parametric generalization holds modulo

[nr]q2

nr−1−2∏
j=0

(1 − aq(4j+2)n)(a− q(4j+2)n).

At the same time, the factor related to a in the common denominator of the two sides 
is at most

(
(1 + q4n)(1 − qn)2 − (1 + q2n)(1 − aq−2n)(1 − q−2n/a)q4n)
× (aq4; q4)nr−1(q4/a; q4)nr−1.
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Therefore, we are led to the same modulus when we take the limit as a → 1. �
It is not hard to see that (3.40) and (3.41) follow from (3.43) by taking n = p and 

q → 1. In addition, we obtain the following supercongruences by setting n = p and 
q → −1 in (3.43):

(pr+1)/2∑
k=0

(4k − 1)
(−1

2 )3k
k!3 ≡ p

(
−1
p

) (pr−1+1)/2∑
k=0

(4k − 1)
(−1

2 )3k
k!3 (mod p3r−2),

pr−1∑
k=0

(4k − 1)
(−1

2 )3k
k!3 ≡ p

(
−1
p

) pr−1−1∑
k=0

(4k − 1)
(−1

2 )3k
k!3 (mod p3r−2),

which are related to the supercongruences in [10, Corollary 5.3].

3.7. Generalizations of Rodriguez-Villegas’ supercongruences

Mortenson [31,32] proved the following four supercongruences conjectured by Rodrig-
uez-Villegas [37, eq. (36)]:

p−1∑
k=0

1
16k

(
2k
k

)2

≡
(
−1
p

)
(mod p2) for p > 2, (3.46)

p−1∑
k=0

1
27k

(
3k
2k

)(
2k
k

)
≡

(
−3
p

)
(mod p2) for p > 3, (3.47)

p−1∑
k=0

1
64k

(
4k
2k

)(
2k
k

)
≡

(
−2
p

)
(mod p2) for p > 2, (3.48)

p−1∑
k=0

1
432k

(
6k
3k

)(
3k
k

)
≡

(
−1
p

)
(mod p2) for p > 3. (3.49)

For an elementary proof of (3.46)–(3.49), we refer the reader to [41]; for a recent general-
ization of them, see [28]. Some q-analogues of (3.46)–(3.49) can be found in [11,18,22,35]. 
In particular, the first author [11, Corollary 1.4] proved that, for positive integers m, n
and s with gcd(m, n) = 1, we have

n−1∑
k=0

2(qs, qm−s; qm)kqmk

(qm; qm)2k(1 + qmk) ≡ (−1)〈−s/m〉n (mod Φn(q)2), (3.50)

where 〈x〉n denotes the least nonnegative residue of x modulo n.
Here we give a Dwork-type generalization of (3.50) for m = 2 and s = 1.
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Theorem 3.12. Let n > 1 be an odd integer and let r � 1. Then, modulo 
∏r

j=1 Φnj (q)2,

(nr−1)/d∑
k=0

2(q; q2)2kq2k

(q2; q2)2k(1 + q2k) ≡
(
−1
n

) (nr−1−1)/d∑
k=0

2(qn; q2n)2kq2nk

(q2n; q2n)2k(1 + q2nk) , (3.51)

where d = 1, 2.

Sketch of proof. By [11, Corollary 1.4], we have

(n−1)/2∑
k=0

2(aq, q/a; q2)kq2k

(q2; q2)2k(1 + q2k) ≡
(
−1
n

)
(mod(1 − aqn)(a− qn)).

This enables us to establish the following parametric generalization of (3.50): modulo

(nr−1−1)/d∏
j=0

(1 − aq(2j+1)n)(a− q(2j+1)n),

we have

(nr−1)/d∑
k=0

2(aq, q/a; q2)kq2k

(q2; q2)2k(1 + q2k) ≡
(
−1
n

) (nr−1−1)/d∑
k=0

2(aqn, qn/a; q2n)kq2nk

(q2n; q2n)2k(1 + q2nk) . �

Letting n = p and q → 1 in (3.51) we obtain the following Dwork-type supercongru-
ence:

(pr−1)/d∑
k=0

1
16k

(
2k
k

)2

≡
(
−1
p

) (pr−1−1)/d∑
k=0

1
16k

(
2k
k

)2

(mod p2r), (3.52)

where d = 1, 2. This confirms, for the first time, predictions of Roberts and Rodriguez-
Villegas from [36].

Numerical calculation suggests that (3.47)–(3.49) have similar generalizations modulo 
p2r. It seems that these supercongruences even have neat q-analogues as follows.

Conjecture 3.13. Let m and s be positive integers with s < m. Let n > 1 be an odd 
integer with n ≡ ±1 (modm). Then, for r � 2, modulo 

∏r
j=1 Φnj (q)2,

nr−1∑
k=0

2(qs, qm−s; qm)kqmk

(qm; qm)2k(1 + qmk) ≡ (−1)〈−s/m〉n
nr−1−1∑
k=0

2(qsn, qmn−sn; qmn)kqmnk

(qmn; qmn)2k(1 + qmnk) . (3.53)

Note that (3.51) with d = 1 is just the (m, s) = (2, 1) case of (3.53). Although there 
is a parametric generalization of (3.53) for r = 1 (see [11, Corollary 1.4]), we are not 
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aware of a parametric extension for r � 2. After appearance of preliminary version of 
this paper, Ni [34] managed to prove the n ≡ 1 (modm) case of Conjecture 3.13 using 
the method of creative microscoping. However, we believe that the remaining n ≡ −1 
(modm) case should still be very difficult.

4. Open problems and concluding remarks

4.1. Open problems

First we give some related open problems for further study. Recall that Swisher’s 
conjectural supercongruence (A.3) for p ≡ 1 (mod 4) can be stated as follows:

(pr−1)/2∑
k=0

(−1)k(4k + 1)
(1
2 )5k
k!5 ≡ −pΓp(1/4)4

(pr−1−1)/2∑
k=0

(−1)k(4k + 1)
(1
2 )5k
k!5 (mod p5r),

(4.1)

where Γp(x) denotes the p-adic gamma function and p > 5. Swisher [44] proves herself 
(4.1) for r = 1. We find the following partial q-analogue of (4.1).

Conjecture 4.1. Let n > 1 be an integer with n ≡ 1 (mod 4) and let r � 1. Then, modulo 
[nr] 

∏r
j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(−1)k[4k + 1] (q; q2)4k(q2; q4)k
(q2; q2)4k(q4; q4)k

qk

≡
(q2; q4)2(nr−1)/4(q4n; q4n)2(nr−1−1)/4

(q4; q4)2(nr−1)/4(q2n; q4n)2(nr−1−1)/4
[n]

×
(nr−1−1)/d∑

k=0

(−1)k[4k + 1]qn
(qn; q2n)4k(q2n; q4n)k
(q2n; q2n)4k(q4n; q4n)k

qnk. (4.2)

Note that the case r = 1 of (4.2) has been proved by the first author [16]. Therefore, 
the left-hand side of (4.1) is congruent to 0 modulo pr (including p = 5). To see (4.2) is 
indeed a q-analogue of (4.1) modulo p3r, one needs to check that

(1
2 )2(pr−1)/4(1)2(pr−1−1)/4

(1)2(pr−1)/4(
1
2 )2(pr−1−1)/4

≡ −Γp(1/4)4 (mod p2r)

for any prime p ≡ 1 (mod 4). This is similar to the case r = 1 treated by Van Hamme in 
[46, Theorem 3].

We also have the following complete q-analogues of (3.10) and (3.11).
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Conjecture 4.2. Let n > 1 be an odd integer and let r � 1. Then, modulo [nr]×∏r
j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(−1)k[4k + 1](q
2; q4)3k

(q4; q4)3k
qk

≡
[n]q2(−q3; q4)(nr−1)/2(−q5n; q4n)(nr−1−1)/2

(−q5; q4)(nr−1)/2(−q3n; q4n)(nr−1−1)/2
(−q)(1−n)/2

×
(nr−1−1)/d∑

k=0

(−1)k[4k + 1]qn
(q2n; q4n)3k
(q4n; q4n)3k

qnk, (4.3)

where d = 1, 2.

Note that the case r = 1 of (4.3) was proved by the authors in [25]. However, using 
the creative microscoping method in a usual manner, we cannot prove Conjectures 4.1
and 4.2 for r > 1 in general.

Based on [25, Theorem 1.1] we formulate a partial q-analogue of Swisher’s (H.3) 
supercongruence [44].

Conjecture 4.3. Let n > 1 be an integer with n ≡ 1 (mod 4) and let r � 1. Then, modulo ∏r
j=1 Φnj (q)2,

(nr−1)/d∑
k=0

(1 + q4k+1) (q2; q4)3k
(1 + q) (q4; q4)3k

qk ≡
[n]q2(q3; q4)(nr−1)/2(q5n; q4n)(nr−1−1)/2

(q5; q4)(nr−1)/2(q3n; q4n)(nr−1−1)/2
q(1−n)/2

×
(nr−1−1)/d∑

k=0

(1 + q(4k+1)n) (q2n; q4n)3k
(1 + qn) (q4n; q4n)3k

qnk,

where d = 1, 2.

We also have the following partial q-analogues of (3.5) and (3.6).

Conjecture 4.4. Let n > 1 be an odd integer and let r � 1. Then, modulo [nr]Φnr (q)×∏r
j=1 Φnj (q),

(nr−1)/d∑
k=0

(−1)k[3k + 1](q; q
2)3k

(q; q)3k

≡ q((nr−1)2−n(nr−1−1)2)/4[n]
(
−1
n

) (nr−1−1)/d∑
k=0

(−1)k[3k + 1]qn
(qn; q2n)3k
(qn; qn)3k

, (4.4)

where d = 1, 2.
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We point out that the case r = d = 1 of (4.4) was established by the first author in 
[12], while the case r = 1, d = 2 of (4.4) was confirmed by the authors in [23].

Similarly, we have the following partial q-analogues of (3.10) and (3.11). The proof of 
the case r = 1 can be found in [7,23].

Conjecture 4.5. Let n > 1 be an odd integer and let r � 1. Then, modulo [nr]Φnr(q)×∏r
j=1 Φnj (q),

(nr−1)/d∑
k=0

(−1)k[4k + 1] (q; q2)3k
(q2; q2)3k

qk
2

≡ q((nr−1)2−n(nr−1−1)2)/4[n]
(
−1
n

) (nr−1−1)/d∑
k=0

(−1)k[4k + 1]qn
(qn; q2n)3k
(q2n; q2n)3k

qnk
2
,

where d = 1, 2.

We also have a q-analogue of (3.52) modulo pr+1, which seems difficult to prove; for 
the case r = 1, see [22].

Conjecture 4.6. Let n > 1 be an odd integer and let r � 1. Then, modulo Φnr(q)×∏r
j=1 Φnj (q),

(nr−1)/d∑
k=0

(q; q2)2k
(q2; q2)2k

≡ q(1−n)(1+n2r−1)/4
(
−1
n

) (nr−1−1)/d∑
k=0

(qn; q2n)2k
(q2n; q2n)2k

,

where d = 1, 2.

The authors [23, Theorem 4.14] utilized Andrews’ q-analogue of Gauss’ 2F1(−1) sum 
(see [3, Appendix (II.11)]) to prove that, for n ≡ 3 (mod 4),

(n−1)/2∑
k=0

(q; q2)2k
(q2; q2)k(q4; q4)k

q2k ≡ 0 (mod Φn(q)2).

Using the same method, we can show that, for n ≡ 1 (mod 4),

(n−1)/2∑
k=0

(q; q2)2k
(q2; q2)k(q4; q4)k

q2k ≡
(
−2
n

)
q(n−1)(n+3)/8 (q2; q4)(n−1)/4

(q4; q4)(n−1)/4
(mod Φn(q)2).

We have the following Dwork-type generalizations of the above q-congruence.
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Conjecture 4.7. Let n > 1 be an integer with n ≡ 1 (mod 4) and let r � 1. Then, modulo 
Φnr(q) 

∏r
j=1 Φnj (q),

(nr−1)/d∑
k=0

(q; q2)2k
(q2; q2)k(q4; q4)k

q2k

≡
(
−2
n

)
q((nr−1)(nr+3)−n(nr−1−1)(nr−1+3))/8 (q2; q4)(nr−1)/4(q4n; q4n)(nr−1−1)/4

(q4; q4)(nr−1)/4(q2n; q4n)(nr−1−1)/4

×
(nr−1−1)/d∑

k=0

(qn; q2n)2k
(q2n; q2n)k(q4n; q4n)k

q2nk,

where d = 1, 2.

For the case where n is a prime and q tends to 1, the following stronger Dwork-type 
supercongruences seem to be true: for any prime p ≡ 1 (mod 4) and d = 1, 2,

(pr−1)/d∑
k=0

1
32k

(
2k
k

)2

≡
(
−2
p

) (1
2 )(pr−1)/4(1)(pr−1−1)/4

(1)(pr−1)/4(1
2 )(pr−1−1)/4

(pr−1−1)/d∑
k=0

1
32k

(
2k
k

)2

(mod p2r).

Note that the r = 1 case was first proved by Sun [40].
Recently, the first author [9] proved the q-congruence

n−1∑
k=0

qk

(−q; q)k

[
2k
k

]
q

≡
(
−1
n

)
q(n2−1)/4 (mod Φn(q)2), (4.5)

conjectured earlier by Tauraso [45] for n an odd prime. The first author also conjectured 
that

n−1∑
k=0

qk
[
2k
k

]
≡

(
−3
n

)
q(n2−1)/3 (mod Φn(q)2),

which was confirmed by Liu and Petrov [29]. We indicate the following Dwork-type 
q-generalizations of them.

Conjecture 4.8. Let n > 1 be an odd integer and let r � 1. Then, modulo Φnr(q)2−d ×∏r
j=1 Φnj (q),

(nr−1)/d∑
k=0

qk

(−q; q)k

[
2k
k

]
q

≡ q(n−1)(1+n2r−1)/4
(
−1
n

) (nr−1−1)/d∑
k=0

qnk

(−qn; qn)k

[
2k
k

]
qn
,

(nr−1)/d∑
k=0

qk
[
2k
k

]
q

≡ q(n−1)(1+n2r−1)/3
(
−3
n

) (nr−1−1)/d∑
k=0

qnk
[
2k
k

]
qn
,
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where d = 1, 2. When d = 1, the second q-congruence still holds for even integers n.

Sun [43, Conjecture 3 (ii),(iii)] conjectured that

pr−1∑
k=0

1
2k

(
2k
k

)
≡

(
−1
p

) pr−1−1∑
k=0

1
2k

(
2k
k

)
(mod p2r) for p > 2, (4.6)

pr−1∑
k=0

(
2k
k

)
≡

(
−3
p

) pr−1−1∑
k=0

(
2k
k

)
(mod p2r), (4.7)

and these expectations were recently confirmed by Zhang and Pan in [49]. The super-
congruences (4.6) and (4.7) are somewhat different from the other ones discussed in this 
paper, because already for r = 1 they are valid for the truncations at p − 1 but not at 
(p − 1)/2. Apart from what is stated in Conjecture 4.8, we could not succeed in finding 
complete q-analogues for the pair of supercongruences.

Although the method of creative microscoping— in particular, its version developed in 
this paper — is an adequate tool in dealing with the congruences conjectured above, the 
difficulty of finding appropriate parametric q-congruences and q-hypergeometric sums 
seems to be a principal obstacle. The underlying identities require a human touch, and 
this fact makes it impossible to predict when resolutions of (some of these) conjectures 
take place.

4.2. Dwork-type q-congruences

Dwork-type (super)congruences (1.3) we address in this paper all correspond to the 
choice z = 1 and a specific shape of the unit root ω(z), namely, associated with a 
Dirichlet quadratic character. Nevertheless, there is experimental evidence for existence 
of q-congruences of the type

(nr−1)/d∑
k=0

Ak(q) ≡ ω(q)
(nr−1−1)/d∑

k=0

Ak(qn) (4.8)

modulo 
∏r

j=1 Φnj (q), say, for a suitable choice of q-hypergeometric term Ak(q), in which 
the ‘q-unit root’ ω(q) has a more sophisticated structure than just qN

(−D
n

)
. One such 

example for truncations of the q-series

∞∑
k=0

(q; q2)4k
(q2; q2)4k

q2k

is suggested by Conjectures 4.1–4.3 in [17], though an explicit form of ω(q) remains 
unclear. A significance of this particular example is due to the connection of its q → 1
limit with the Dwork-type supercongruence
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pr−1∑
k=0

(1
2 )4k
k!4 ≡ ωp

pr−1−1∑
k=0

(1
2 )4k
k!4 (mod p3r) for p > 2, r = 1, 2, . . . ,

conjectured in [36], with r = 1 instance established earlier by Kilbourn [26] (see also [30]). 
Here the unit root ωp is the p-adic zero, not divisible by p, of quadratic polynomial 
T 2 − a(p)T + p3, where the traces of Frobenius a(p) originate from the modular form ∑∞

m=1 a(m)qm = q (q2; q2)4∞(q4; q4)4∞. The congruence is remarkably related to a mod-
ular Calabi–Yau threefold [1], and we expect that its q-analogue will shed light on a 
q-deformation of the modular form and of the cohomology groups of the threefold [38].

It is certain that q-congruences of the type (4.8) not only provide us with an efficient 
method for proving their q → 1 specializations but also have their own right to exist.

Acknowledgments

We thank the two anonymous referees for their valuable and enthusiastic feedback. 
The first author also thanks Zhi-Wei Sun for helpful comments on (4.6) and (4.7).

References

[1] S. Ahlgren, K. Ono, Modularity of a certain Calabi–Yau threefold, Monatshefte Math. 129 (3) (2000) 
177–190.

[2] B. Dwork, p-adic cycles, Publ. Math. Inst. Hautes Études Sci. 37 (1969) 27–115.
[3] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd edition, Encyclopedia of Mathematics 

and Its Applications, vol. 96, Cambridge University Press, Cambridge, 2004.
[4] O. Gorodetsky, q-Congruences, with applications to supercongruences and the cyclic sieving phe-

nomenon, Int. J. Number Theory 15 (2019) 1919–1968.
[5] J. Guillera, W. Zudilin, “Divergent” Ramanujan-type supercongruences, Proc. Am. Math. Soc. 140 

(2012) 765–777.
[6] V.J.W. Guo, A q-analogue of the (L.2) supercongruence of Van Hamme, J. Math. Anal. Appl. 466 

(2018) 749–761.
[7] V.J.W. Guo, A q-analogue of a Ramanujan-type supercongruence involving central binomial coef-

ficients, J. Math. Anal. Appl. 458 (2018) 590–600.
[8] V.J.W. Guo, q-Analogues of the (E.2) and (F.2) supercongruences of Van Hamme, Ramanujan J. 

49 (2019) 531–544.
[9] V.J.W. Guo, Proof of a q-congruence conjectured by Tauraso, Int. J. Number Theory 15 (2019) 

37–41.
[10] V.J.W. Guo, Common q-analogues of some different supercongruences, Results Math. 74 (2019) 

131.
[11] V.J.W. Guo, Some q-congruences with parameters, Acta Arith. 190 (2019) 381–393.
[12] V.J.W. Guo, q-Analogues of two “divergent” Ramanujan-type supercongruences, Ramanujan J. 52 

(2020) 605–624.
[13] V.J.W. Guo, Proof of a generalization of the (B.2) supercongruence of Van Hamme through a 

q-microscope, Adv. Appl. Math. 116 (2020) 102016.
[14] V.J.W. Guo, q-Supercongruences modulo the fourth power of a cyclotomic polynomial via creative 

microscoping, Adv. Appl. Math. 120 (2020) 102078.
[15] V.J.W. Guo, Proof of some q-supercongruences modulo the fourth power of a cyclotomic polynomial, 

Results Math. 75 (2020) 77.
[16] V.J.W. Guo, A q-analogue of the (A.2) supercongruence of Van Hamme for primes p ≡ 1(mod 4), 

Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020) 123.
[17] V.J.W. Guo, q-Analogues of Dwork-type supercongruences, J. Math. Anal. Appl. 487 (2020) 124022.
[18] V.J.W. Guo, H. Pan, Y. Zhang, The Rodriguez-Villegas type congruences for truncated q-

hypergeometric functions, J. Number Theory 174 (2017) 358–368.

http://refhub.elsevier.com/S0097-3165(20)30154-0/bib43DC4653BD643338C56B1E505AAEBB0Cs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib43DC4653BD643338C56B1E505AAEBB0Cs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB57056E6CA260E29904515DBEE86764Bs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibE469524F92EE318153AC22BB42E56DBFs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibE469524F92EE318153AC22BB42E56DBFs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib784794EC8A48CB873CF01FC6E96D05E9s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib784794EC8A48CB873CF01FC6E96D05E9s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB88B9A0A12BCC0A0922233CCB44215A1s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB88B9A0A12BCC0A0922233CCB44215A1s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB870E15B416441F15F317F36743164A6s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB870E15B416441F15F317F36743164A6s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib006FA83AD78F7D8D072D554BE8523C2Cs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib006FA83AD78F7D8D072D554BE8523C2Cs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibEC1950DC34737230697536E4B0624B39s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibEC1950DC34737230697536E4B0624B39s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib7CA000BF7DACA709C36F26B4D5245378s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib7CA000BF7DACA709C36F26B4D5245378s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib5E404B6D74949196A48FB90BFC4F8029s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib5E404B6D74949196A48FB90BFC4F8029s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib2F804F991EC2018336F3864E0D24D2D5s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibC0BC131E6FDD09AC8D83BC07C0F4793Es1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibC0BC131E6FDD09AC8D83BC07C0F4793Es1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib0030DE6D35C2D640494616D431D95E50s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib0030DE6D35C2D640494616D431D95E50s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib70632D5883B15C1A08E4A55E9A4E1FBBs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib70632D5883B15C1A08E4A55E9A4E1FBBs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib90DEA21F49FA35937B250E46FE8BAEC3s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib90DEA21F49FA35937B250E46FE8BAEC3s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib1484EDF7A4079EAEAF4ECA225D96EA7As1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib1484EDF7A4079EAEAF4ECA225D96EA7As1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibAE5808916AFAE230734816B92700A332s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib084945B562A08656E8462FF405BF2775s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib084945B562A08656E8462FF405BF2775s1


36 V.J.W. Guo, W. Zudilin / Journal of Combinatorial Theory, Series A 178 (2021) 105362

[19] V.J.W. Guo, M.J. Schlosser, A new family of q-supercongruences modulo the fourth power of a 
cyclotomic polynomial, Results Math. 75 (2020) 155.

[20] V.J.W. Guo, M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hy-
pergeometric series, Constr. Approx. (2020), https://doi .org /10 .1007 /s00365 -020 -09524 -z, in press.

[21] V.J.W. Guo, M.J. Schlosser, A family of q-hypergeometric congruences modulo the fourth power of 
a cyclotomic polynomial, Isr. J. Math. (2020), https://doi .org /10 .1007 /s11856 -020 -2081 -1, in press.

[22] V.J.W. Guo, J. Zeng, Some q-analogues of supercongruences of Rodriguez-Villegas, J. Number 
Theory 145 (2014) 301–316.

[23] V.J.W. Guo, W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019) 329–358.
[24] V.J.W. Guo, W. Zudilin, On a q-deformation of modular forms, J. Math. Anal. Appl. 475 (2019) 

1636–1646.
[25] V.J.W. Guo, W. Zudilin, A common q-analogue of two supercongruences, Results Math. 75 (2020) 

46.
[26] T. Kilbourn, An extension of the Apéry number supercongruence, Acta Arith. 123 (4) (2006) 

335–348.
[27] L. Li, S.-D. Wang, Proof of a q-supercongruence conjectured by Guo and Schlosser, Rev. R. Acad. 

Cienc. Exactas Fís. Nat., Ser. A Mat. 114 (2020) 190.
[28] J.-C. Liu, Congruences for truncated hypergeometric series 2F1, Bull. Aust. Math. Soc. 96 (2017) 

14–23.
[29] J.-C. Liu, F. Petrov, Congruences on sums of q-binomial coefficients, Adv. Appl. Math. 116 (2020) 

102003.
[30] L. Long, F.-T. Tu, N. Yui, W. Zudilin, Supercongruences for rigid hypergeometric Calabi–Yau 

threefolds, preprint, arXiv :1705 .01663 [math .NT], 2017.
[31] E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hyper-

geometric function, J. Number Theory 99 (2003) 139–147.
[32] E. Mortenson, Supercongruences between truncated 2F1 hypergeometric functions and their Gaus-

sian analogs, Trans. Am. Math. Soc. 355 (2003) 987–1007.
[33] A. Mellit, M. Vlasenko, Dwork’s congruences for the constant terms of powers of a Laurent poly-

nomial, Int. J. Number Theory 12 (2016) 313–321.
[34] H.-X. Ni, A q-Dwork-type generalization of Rodriguez-Villegas’ supercongruences, preprint, arXiv :

2008 .02541 [math .NT], 2020.
[35] H.-X. Ni, H. Pan, On a conjectured q-congruence of Guo and Zeng, Int. J. Number Theory 14 (2018) 

1699–1707.
[36] D.P. Roberts, F. Rodriguez-Villegas, Hypergeometric supercongruences, in: 2017 MATRIX Annals, 

in: MATRIX Book Ser., vol. 2, Springer, Cham, 2019, pp. 435–439.
[37] F. Rodriguez-Villegas, Hypergeometric families of Calabi–Yau manifolds, in: Calabi–Yau Varieties 

and Mirror Symmetry, Toronto, ON, 2001, in: Fields Inst. Commun., vol. 38, Amer. Math. Soc., 
Providence, RI, 2003, pp. 223–231.

[38] P. Scholze, Canonical q-deformations in arithmetic geometry, Ann. Fac. Sci. Toulouse Math. (6) 
26 (5) (2017) 1163–1192.

[39] A. Straub, Supercongruences for polynomial analogs of the Apéry numbers, Proc. Am. Math. Soc. 
147 (2019) 1023–1036.

[40] Z.-H. Sun, Congruences concerning Legendre polynomials, Proc. Am. Math. Soc. 139 (2011) 
1915–1929.

[41] Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory 143 
(2014) 293–319.

[42] Z.-W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011) 2509–2535.
[43] Z.-W. Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36 (1) (2019) 

1–99.
[44] H. Swisher, On the supercongruence conjectures of van Hamme, Res. Math. Sci. 2 (2015) 18.
[45] R. Tauraso, Some q-analogs of congruences for central binomial sums, Colloq. Math. 133 (2013) 

133–143.
[46] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, in: Proceedings of the Confer-

ence on p-Adic Analysis, Houthalen, 1987, Vrije Univ. Brussel, Brussels, 1986, pp. 189–195.
[47] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: 

p-Adic Functional Analysis, Nijmegen, 1996, in: Lecture Notes in Pure and Appl. Math., vol. 192, 
Dekker, New York, 1997, pp. 223–236.

[48] X. Wang, M. Yue, A q-analogue of a Dwork-type supercongruence, Bull. Aust. Math. Soc. (2020), 
https://doi .org /10 .1017 /S0004972720000635, in press.

http://refhub.elsevier.com/S0097-3165(20)30154-0/bib558C565473EF7C011206558E66A2DC29s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib558C565473EF7C011206558E66A2DC29s1
https://doi.org/10.1007/s00365-020-09524-z
https://doi.org/10.1007/s11856-020-2081-1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib55437B571CE5F64E3238C3D3C648F465s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib55437B571CE5F64E3238C3D3C648F465s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib9930B75342A8ED8986161AD87CCCE581s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib2E6C8332FEAAC960C234B22377A8DC71s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib2E6C8332FEAAC960C234B22377A8DC71s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib47D5F6C56BF788BFED5E526C67F278E7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib47D5F6C56BF788BFED5E526C67F278E7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib96E026FD133AB6D16F0DEB0968F9F3C8s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib96E026FD133AB6D16F0DEB0968F9F3C8s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibC556331DE98FF0977430DADE00C6C714s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibC556331DE98FF0977430DADE00C6C714s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB760F4129A46E6B638F2832A095E49F7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB760F4129A46E6B638F2832A095E49F7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib8D93D041F2A2AFBA760974EDE2363945s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib8D93D041F2A2AFBA760974EDE2363945s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib79ED05C2A666347E963D1E8A53CBB31Fs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib79ED05C2A666347E963D1E8A53CBB31Fs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibDA12C794E884A3ECD9890D69AFD286D7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibDA12C794E884A3ECD9890D69AFD286D7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib95293DCE54F3621B6375A1152264976Ds1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib95293DCE54F3621B6375A1152264976Ds1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib6434479181896281B7B448C290275193s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib6434479181896281B7B448C290275193s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib135881080E1BC38C6BB20B4FE5571420s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib135881080E1BC38C6BB20B4FE5571420s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib6991A0FBC07524729A0825B98A11AB51s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib6991A0FBC07524729A0825B98A11AB51s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibD7DF4F3C1606F9A56769030A59B6A10Ds1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibD7DF4F3C1606F9A56769030A59B6A10Ds1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib1EC43A030A6E89A3DF5E2E5281471461s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib1EC43A030A6E89A3DF5E2E5281471461s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib1EC43A030A6E89A3DF5E2E5281471461s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib493A3904E4DAF9212F52BF696361B035s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib493A3904E4DAF9212F52BF696361B035s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibEC695460E7D5ABADA15DD5AF3B5A6D06s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibEC695460E7D5ABADA15DD5AF3B5A6D06s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibEBA7B966E61A7257EDFAA822E73F70ECs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibEBA7B966E61A7257EDFAA822E73F70ECs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibA5246F929D3F05B2FFE8A98D92D9B5F8s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibA5246F929D3F05B2FFE8A98D92D9B5F8s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib5F9E9D7DA896D0A9E4A6A469F5C7D898s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB1BC15D8636A431E54B74382795C7F36s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB1BC15D8636A431E54B74382795C7F36s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib5121AAAB963AB7010332851F67357AF6s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibDCE1FDE40ABC0CEC3681A764A1F3D5D8s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibDCE1FDE40ABC0CEC3681A764A1F3D5D8s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibA0C6AF5A8E04294625A3787AC7278305s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibA0C6AF5A8E04294625A3787AC7278305s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB16B2FC3AE2974C08064E1ECCDA82D31s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB16B2FC3AE2974C08064E1ECCDA82D31s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibB16B2FC3AE2974C08064E1ECCDA82D31s1
https://doi.org/10.1017/S0004972720000635


V.J.W. Guo, W. Zudilin / Journal of Combinatorial Theory, Series A 178 (2021) 105362 37

[49] Y. Zhang, H. Pan, On the Atkin and Swinnerton-Dyer type congruences for some truncated hyper-
geometric 1F0 series, Acta Arith. (2020), in press, arXiv :1810 .09370 [math .NT].

[50] W. Zudilin, Ramanujan-type supercongruences, J. Number Theory 129 (2009) 1848–1857.
[51] W. Zudilin, Congruences for q-binomial coefficients, Ann. Comb. 23 (2019) 1123–1135.
[52] W. Zudilin, The method of creative microscoping, in: RIMS Kôkyûroku, vol. 2162, Kyoto Univ., 

July 2020, pp. 227–234, arXiv :1912 .06829 [math .NT].

http://refhub.elsevier.com/S0097-3165(20)30154-0/bibC607E116C0E73A4CCFCCC70149B8B5F7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibC607E116C0E73A4CCFCCC70149B8B5F7s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib41FCEF85368E8A7487A55A060CB975A0s1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bib0F162738D017E58D038F5E4A95DDDFCCs1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibF48DC9CF2142B80D226E36C56BD91A2As1
http://refhub.elsevier.com/S0097-3165(20)30154-0/bibF48DC9CF2142B80D226E36C56BD91A2As1

	Dwork-type supercongruences through a creative q-microscope
	1 Introduction
	2 Proof of the principal theorems
	2.1 Proof of Theorem 1.1
	2.2 Proof of Theorem 1.2

	3 More Dwork-type q-congruences
	3.1 Another q-analogue of (1.8) and (1.9)
	3.2 Another ‘divergent’ Dwork-type supercongruence
	3.3 Two supercongruences of Swisher
	3.4 Another two supercongruences from Swisher’s list
	3.5 Generalizations of Swisher-type supercongruences
	3.6 Dwork-type supercongruences involving (4k−1) and (4k−1)3
	3.7 Generalizations of Rodriguez-Villegas’ supercongruences

	4 Open problems and concluding remarks
	4.1 Open problems
	4.2 Dwork-type q-congruences

	Acknowledgments
	References


