The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/22774

Please be advised that this information was generated on 2018-12-24 and may be subject to change.
Angioplasty and Restenosis: Clinical

Wednesday, March 27, 1996, 4:00 p.m.–5:00 p.m.
Orange County Convention Center, Room 209

804-1 Yttrium-90, a New Beta Emitter for Prevention of Post Angioplasty Restenosis: Tissue Dosimetry and Importance of Intraarterial Centering
Vitali Verin, Yoeri Popowski, Philip Urban, Phillip Ncuet, Michel Rouzaud, Michael Schwager, John M. Kurtz, Wilhelm Rutishauser. University Hospital, Geneva, Switzerland

Intraarterial irradiation reduces restenosis following experimental balloon angioplasty. Beta irradiation has the advantages of a markedly steeper dose decrease in tissue and less radioprotection problems, allowing its use in an ordinary catheterization laboratory. We developed a dedicated 90-Yttrium (90Y) pure beta-emitting source, in the form of a flexible coil (diameter 0.014", length 22 mm) attached to the distal end of a 0.014" thrust wire. A segmented balloon consisting of four interconnected compartments (Schneider-Europe, AG) was developed to allow for intraarterial centering of the 90Y source. The tissue depth curve and dose-variability on the surface of 1) conventional angioplasty balloons and 2) the centering balloon were studied using small thermoluminescent dosimeters. The tissue-depth dose curve for standard 2.5, 3, 3.5, and 4 mm balloons filled with contrast medium (Omnipaque 240) normalized to a surface dose of 10 Gy is presented in the figure. The standard deviations (per cent from the mean) for the surface doses of 2.5, 3, 3.5, and 4 mm conventional PTCAs were 1.4 (13%), 5.5 (59%), 5.8 (73%), and 6.5 (110%) Gy, respectively. The mean, minimum and maximum doses on the surface of the 3.5 mm centering balloon were 8.4, 7.3, and 9.5 Gy (standard deviation 0.66 Gy, or 8% of the mean).

Conclusions: 1) The tissue dose distribution of 90Y is well suited to the purpose of selective irradiation of the coronary arterial wall (thickness 0.3–0.8 mm) for prevention of restenosis; 2) Homogenous intramural dose delivery can be acheived with the help of a specially designed centering balloon.

804-2 Imaging of Human Atherosclerotic Lesions With In-111 Z2D3 Antibody Specific for Proliferating Smooth Muscle Cells in Human Atheroma
Pier Luigi Pieri, Ignacii Carro, Jagat Narula, Giovanni Moscatelli, Lourdes Prat, Luciano Pedrini, Vicenca Riembau, Chris Pak, Francis Chen, Ban-An Khaw, Budalini Hospital, Cesena, Italy; Hospital de Sant Pau, Barcelona, Spain; Scipiot, Menlo Park, CA; Northeastern University, Boston, MA

Radiolabeled mouse/human chimeric antibody Z2D3 specific for an antigen on proliferating smooth muscle cells in human atheroma has been used to noninvasively visualize experimental atherosclerotic lesions in rabbits. Furthermore, negative-charge polymer-modification of Z2D3 allowed enhanced target visualization with very high specific radioactivity and reduced background activity. To evaluate its usefulness, negative charge-modified Z2D3 F(ab')2 was administered to 11 patients undergoing carotid endarterectomy. Each patient received 250 µg of Z2D3 labeled with 5 mCi of In-111 i.v. Serial gamma images, blood and urine samples were obtained for 72 H after following injection. Carotid endarterectomy was performed within 48 H after the last imaging session. The sites of stenosis seen arteriographically were compared to location of the most intense antibody uptake. Endarterectomy specimens were imaged ex-vivo and have characterized immunohistochemically. The concentration of the antibody was seen in all patients in the region of the carotid plaques. Uptake was local and was best seen at 4 H. Intensity of uptake decreased over time. Whole body scans demonstrated localization in the kidneys, liver, and bone marrow which remained essentially unchanged.

No adverse reaction to the antibody were observed. Immunohistochernistry of endarterectomy specimens demonstrated specific localization of Z2D3 in the region of proliferating smooth muscle cells in the intima of the lesion. The present study demonstrated the feasibility of noninvasive visualization of human atherosclerotic lesions. Further studies will be needed to optimize the imaging technique for potential clinical applications.

804-3 What Causes Focal Restenosis at the Margins of Palmaz-Schatz Stents? A Serial Intravascular Ultrasound Study
Rainer Hoffman, Gary S. Mintz, Jeffrey J. Pogona, Augusto D. Pichard, Lowell F. Satter, Kenneth M. Kent, Jennifer Griffin, Theresa Bucher, Rolf Fues, Mary K. Kehoe, Donna Hurn, Debora Deforty, Martin B. Leon. Washington Hospital Center, Washington, DC

To understand the mechanism of restenosis at the margins of Palmaz-Schatz stents, we compared serial intravascular ultrasound (IVUS) studies post stent implantation and follow-up (5.4 ± 3.8 months) in 88 lesions and analyzed reference (RF: arterial, lumen, and plaque areas (in mm2); plaque burden (plaque/arterial area); remodeling (Δ arterial area); tissue growth (Δ plaque area); and dissections) and stent margin (Δ stent and intimal hyperplasia (IH) areas). 29 lesions had focal restenosis involving one or both margins.

Stent margin dissections were uncommon (4/88). There was no significant tissue growth (Δ plaque area) at the RF sites or recall (Δ stent area) of the stent margins. We conclude: Restenosis at the stent margin is common (33%) and is associated with implanting the edge of the stent within smaller, more diseased RF vessels (smaller arterial, lumen, and stent areas; greater plaque burden). Superimposed RF segment remodeling and nonneointernal tissue accumulation within smaller stent margins results in restenosis. These findings underline the importance of anchoring edges of Palmaz-Schatz stents into healthy vessels with large lumens; this may require more extensive stenting to cover more proximal or distal stenoses.

804-4 An Open Multicenter Registry to Evaluate Local Heparin Delivery Following Balloon Angioplasty for the Prevention of Restenosis: Preliminary Results
Eduardo Camenzind, Victor Legrand, Mathias Vrolix, Claude Hanet, William Wijns, Christophe Bauters, Wim Aengevaeren, Peter den Heijer, Tony Gerakhel, Eline Montauban van Swijndregt, Peter van der Meer, Rein Melkert, Patrick Serreus, on behalf of the DISPATCH Investigators. Thoraxcenter, Erasmus University, Rotterdam, The Netherlands

Although heparin has been shown effective to prevent restenosis in animal studies, previous clinical studies have failed to show any efficacy after systemic administration.

Local, intracoronary heparin delivery (Dispatch™ Scimed; 1783 ± 185 IU during 30 ± 3 min) was successfully performed in 117 patients (79 men, 82 ± 10 years) following balloon angioplasty. No acute cardiac event were observed during hospital stay. Meanwhile 43 patients (52 men, 65 ± 9 years) have been reviewed clinically and angiographically for 6 month follow-up: 10 patients were symptomatic (3 unstable and 7 stable angina). Angiography showed in 10/43 (23%) restenosis (diameter stenosis > 50%). No aneurysmal dilatation at the site of heparin delivery was observed. MLD measured by quantitative analysis system (CAAS II) in matched projections changed from 1.15 ± 0.21 mm (pre) through 2.03 ± 0.44 mm (post) to 1.75 ± 0.62 mm (at 6 month follow-up).

There was no significant difference between the treated and untreated segments.

Local heparin

Matched group

p-value

Acute gain (mm)
0.00 ± 0.46
0.90 ± 0.46
NS

Late loss (mm)
0.28 ± 0.58
0.45 ± 0.58
<0.05

*matched for vessel size, acute gain and lesion location

Nine patients (21%) required a re-PTCA and 1 patient required surgery (2%) of the treated segment. No myocardial infarction and no death were observed.

Conclusion: Local heparin delivery following balloon angioplasty by means of the coil-balloon may reduce on longterm the incidence of restenosis and decrease the need for re-vascularization.