The following full text is a publisher's version.

For additional information about this publication click this link.
http://hdl.handle.net/2066/22774

Please be advised that this information was generated on 2019-11-15 and may be subject to change.
ABSTRACTS - Oral 321A

4:00

804-1 Yttrium-90, a New Beta Emitter for Prevention of Post Angioplasty Restenosis: Tissue Dosimetry and Importance of Intraprocedural Centering

Vitali Verin, Youri Popowski, Philip Urban, Phillip Ncuet, Michel Rouzaud, Michael Schwager, John M. Kurtz, Wilhelm Rutishauser. University Hospital, Geneva, Switzerland

Intraarterial irradiation reduces restenosis following experimental balloon angioplasty. Beta irradiation has the advantages of a markedly steeper dose decrease in tissue and less radioprotection problems, allowing its use in an ordinary catheterization laboratory. We developed a dedicated 90-Yttrium (90Y) pure beta-emitting source, in the form of a flexible coil (diameter 0.014", length 22 mm) attached to the distal end of a 0.014" thrust wire. A segmented balloon consisting of four interconnected compartments (Schneider-Europe, AG) was developed to allow for intraprocedural centering of the 90Y source. The tissue depth curve and dose variation on the surface of 1) conventional angioplasty balloons and 2) the centering balloon were studied using small thermoluminescent dosimeters. The tissue-depth dose curve for standard 2.5, 3, 3.5 and 4 mm balloons filled with contrast medium (Omnipaque 240) normalized to a surface dose of 10 Gy is presented in the figure. The standard deviations (percent of the mean) for the surface doses of 2.5, 3, 3.5, and 4 mm conventional PTA balloons were 1.9 (13%), 5.5 (59%), 5.8 (73%), and 6.5 (110%) Gy, respectively. The mean, minimum and maximum doses on the surface of the 3.5 mm centering balloon were 8.4, 7.3, and 9.5 Gy (standard deviation 0.66 Gy, or 8% of the mean).

Conclusions: 1) The tissue dose distribution of 90Y is well suited to the purpose of selective irradiation of the coronary arterial wall (thickness 0.3–0.8 mm) for prevention of restenosis; 2) Homogeneous intramural dose delivery can be achieved with the help of a specially designed centering balloon.

804-2 Imaging of Human Atherosclerotic Lesions With In-111 ZD3 Antibody Specific for Proliferating Smooth Muscle Cells in Human Atheroma

Pierluigi Pieri, Ignasi Carró, Jagati Narula, Giovannni Moscatelli, Lourdes Prat, Luciana Pedrini, Vicenca Riemb, Chris Pah, Francis Chen, Brian An Khaw. Budalini Hospital, Cesena, Italy; Hospital de Sant Pau, Barcelona, Spain; Scotgan, Menlo Park, CA; Northeastern University, Boston, MA

Radiolabeled mouse/human chimeric antibody ZD3 specific for an antigen on proliferating smooth muscle cells in human atheroma has been used to noninvasively visualize experimental atherosclerotic lesions in rabbits. Furthermore, negative-charge polymer-modification of ZD3 allowed enhanced target visualization with very high specific radioactivity and reduced background activity.

To evaluate its usefulness, negative charge-modified ZD3 F(ab')2 was administered to 11 patients undergoing carotid endarterectomy. Each patient received 250 μg of ZD3 labeled with 5 mCi of In-111 I.v. Serial gamma images, blood and urine samples were obtained for 72 H following injection. Carotid endarterectomy was performed within 48 H after the last imaging session. The sites of stenosis seen arteriographically were 8.4, 7.3, and 9.5 Gy (standard deviation 0.66 Gy, or 8% of the mean).

Conclusions: 1) The tissue dose distribution of 90Y is well suited to the purpose of selective irradiation of the coronary arterial wall (thickness 0.3–0.8 mm) for prevention of restenosis; 2) Homogeneous intramural dose delivery can be achieved with the help of a specially designed centering balloon.

804-3 What Causes Focal Restenosis at the Margins of Palmaz-Schatz Stents? A Serial Intravascular Ultrasound Study

To understand the mechanism of restenosis at the margins of Palmaz-Schatz stents, we compared serial intravascular ultrasound (IVUS) studies post stent implantation and follow-up (5.4 ± 3.8 months) in 88 lesions and analyzed reference (Ref: arterial, lumen, and plaque areas (in mm²); plaque burden (plaque/arterial area); remodeling (Δ arteria area); tissue growth (Δ plaque area); and dissections) and stent margin (stent and intimal hyperplasia (IH) area) (10 sites) 29 lesions had focal restenosis involving one or both margins.

Restenosis vs No Restenosis

<table>
<thead>
<tr>
<th></th>
<th>Restenosis</th>
<th>No Restenosis</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-stent Ref arterial area</td>
<td>15.8 ± 5.8</td>
<td>18.6 ± 6.5</td>
<td>0.107</td>
</tr>
<tr>
<td>lumen area</td>
<td>6.8 ± 3.4</td>
<td>10.6 ± 6.3</td>
<td>0.086</td>
</tr>
<tr>
<td>plaque burden</td>
<td>46.4 ± 13</td>
<td>43.7 ± 12</td>
<td>0.088</td>
</tr>
<tr>
<td>Ref remodeling</td>
<td>2.2 ± 1.8</td>
<td>1.2 ± 2.4</td>
<td>0.007</td>
</tr>
<tr>
<td>Stent area</td>
<td>3.7 ± 5.6</td>
<td>10.4 ± 4.4</td>
<td></td>
</tr>
<tr>
<td>IH area within stent</td>
<td>5.0 ± 2.7</td>
<td>2.1 ± 1.8</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Stent margin dissections were uncommon (4/88). There was no significant tissue growth (Δ plaque area) at the Ref sites or recoil (Δ stent area) of the stent margins. We conclude: Restenosis at the stent margin is common (33%) and is associated with implanting the edge of the stent within smaller, more diseased Ref vessels (smaller arterial, lumen, and stent areas; greater plaque burden). Superimposed Ref segment remodeling and neointimal tissue accumulation within smaller stent margins results in restenosis.

804-4 An Open Multicenter Registry to Evaluate Local Heparin Delivery Following Balloon Angioplasty for the Prevention of Restenosis: Preliminary Results

Eduardo Camenzind, Victor Legrand, Mathias Vrolix, Claude Hanet, William Wijns, Christophe Bauters, Wim Aensgevaeren, Peter den Heijer, Tony Gerthlick, Elise Montauban van Swijndregt, Peter van der Meer, Rein Mekert, Patrick Serruys, on behalf of the DISPATCH investigators. Thoraxcenter, Erasmus University, Rotterdam, The Netherlands

Although heparin has been shown effective to prevent restenosis in animal studies, previous clinical studies have failed to show any efficacy after systemic administration.

Local, intracoronary heparin delivery (Dispatch™ Salmed; 1783 ± 185 IU during 30 ± 3 min) was successfully performed in 117 patients (79 men, 82 ± 10 years) following balloon angioplasty. No acute cardiac event were observed during hospital stay. Meanwhile 43 patients (52 men, 58 ± 9 years) have been reviewed clinically and angiographically for 6 month follow-up. 10 patients were symptomatic (3 unstable and 7 stable angina). Angiography showed in 10/43 (23%) restenosis (diameter stenosis > 50%). No aneurysmal dilatation at the site of heparin delivery was observed. MLD measured by quantitative analysis system (CAAS II) in matched projections changed from 1.15 ± 0.36 mm (pre) through 2.03 ± 0.44 mm (post) to 1.75 ± 0.62 mm (at 6 month follow-up).

Conclusions: Local heparin delivery following balloon angioplasty by means of the coil-balloon may reduce on longterm the incidence of restenosis and decrease the need for re-vascularization.