Diagnosing COVID-19-associated pulmonary aspergillosis

There is increasing concern that patients with coronavirus disease 2019 (COVID-19) might be at risk of developing invasive pulmonary aspergillosis co-infection. In a cohort of 221 patients with COVID-19 in China, fungal infections were diagnosed in seven individuals, all of whom were admitted to the intensive care unit (ICU). However, causative fungal pathogens were not identified. Given that in China, galactomannan testing is rarely available, the real burden of invasive pulmonary aspergillosis in patients with COVID-19 requiring ICU admission is probably underestimated. Indeed, nine patients with COVID-19 and invasive pulmonary aspergillosis were recently described in France (33% of 27 admitted to the ICU with COVID-19), and five in Germany (26% of 19 admitted); rates similar to those observed in association with influenza. Although serum galactomannan is a sensitive diagnostic marker in patients with neutropenia in intensive care, galactomannan sensitivity was only 25% in patients with COVID-19, requiring ICU admission is probably underestimated. Indeed, nine patients with COVID-19 and invasive pulmonary aspergillosis were recently described in France (33% of 27 admitted to the ICU with COVID-19), and five in Germany (26% of 19 admitted); rates similar to those observed in association with influenza. Although serum galactomannan was positive in 65% of patients with influenza-associated pulmonary aspergillosis, only three (21%) of 14 patients with COVID-19-associated pulmonary aspergillosis were serum galactomannan positive. Reasons for the lower sensitivity in patients with COVID-19 versus those with influenza are unknown, although treatment with chloroquine might have a negative effect on serum galactomannan performance, because the drug exhibits in-vitro activity against Aspergillus fumigatus. Exposure to antifungals is a well known factor that decreases the sensitivity of serum galactomannan testing.

Negative serum galactomannan might indicate that Aspergillus spp hyphae are unable to cause angioinvasive growth and release galactomannan into the blood. Most patients with COVID-19-associated pulmonary aspergillosis did not have European Organization for the Research and Treatment of Cancer/Mycoses Study Group Education and Research Consortium (EORTC/MSGERC) host factors, because only two (15%) of 13 had haematological malignancy as underlying disease. Absence of host factors was also apparent in influenza-associated disease, in which 57% of patients could not be classified according to the EORTC/MSGERC consensus definition or the AspICU algorithm for patients in ICUs. A retrospective multicentre cohort study showed that influenza infection was an independent risk factor for invasive pulmonary aspergillosis. In addition to local erosion of the epithelial barrier of the respiratory tract, influenza virus can exhibit a direct immunomodulatory effect through suppression of the NADPH oxidase complex. Suppression of the NADPH oxidase complex might cause a temporary disease status resembling chronic granulomatous disease, which itself is associated with invasive pulmonary aspergillosis development. Severe COVID-19 is associated with immune dysregulation, affecting both T-helper cell 2 (Th2) and Th1 responses, although this has not been extensively studied and a direct immunomodulatory effect on the known antifungal host defence has not been demonstrated. During the first severe acute respiratory syndrome coronavirus (SARS-CoV) outbreak in 2003, only four cases of proven invasive pulmonary aspergillosis were reported among 8422 probable SARS cases. Because all four invasive pulmonary aspergillosis cases were associated with concomitant corticosteroid therapy, coronavirus infection itself might not increase the risk for invasive pulmonary aspergillosis, but other risk factors might have.

Bronchoalveolar lavage galactomannan testing is important to diagnose invasive pulmonary aspergillosis in the ICU and high galactomannan levels (galactomannan index >2.5) were observed in patients with presumed COVID-19-associated pulmonary aspergillosis. However, only a restricted role for bronchoscopy has been recommended in COVID-19, because it is an aerosol-generating procedure that poses risks to patients and personnel. Collection of upper respiratory samples is the preferred method for diagnosis, and tracheal aspirates and non-bronchoscopic alveolar lavage in intubated patients.

Although Aspergillus spp can be detected in sputum and tracheal aspirates in patients with COVID-19-associated pulmonary aspergillosis, its presence might reflect oral pharyngeal colonisation because Aspergillus spp is considered a core component of the basal oral mycobiome. Furthermore, galactomannan testing is not validated for upper respiratory tract specimens. Bronchoscopy is recommended in COVID-19 only when the intervention is considered lifesaving, which...
the nine patients with COVID-19-associated pulmonary disease and require antifungal therapy. Indeed, eight of these patients were not treated with antifungal drugs, and the three deaths were considered not to be related to aspergillosis, but clinically attributed to bacterial septic shock. Autopsies were not performed to confirm the clinical diagnosis.

It is therefore crucial to gain insight into the interaction between Aspergillus spp and the SARS-CoV-2-infected lung (panel). Only histopathology can prove invasive pulmonary aspergillosis through autopsy of deceased patients with COVID-19-associated pulmonary aspergillosis. If autopsy is precluded because of the risk of aerosol formation, post-mortem lung biopsy might be considered as an alternative to obtaining tissue. Until histopathological evidence of COVID-19-associated pulmonary aspergillosis is obtained, we believe that patients with COVID-19 who are critically ill with evidence for Aspergillus spp in bronchoalveolar lavage or serum should receive antifungal therapy according to national and international guidelines.

includes secondary infectious causes. Radiological and clinical signs of invasive pulmonary aspergillosis in non-neutropenic patients are mostly unspecific and bronchoscopy is thus indicated in critically ill patients with COVID-19 who are suspected of secondary infection, including fungal diagnostic work-up. Even if evidence for Aspergillus spp is recovered, uncertainty remains about whether patients truly develop invasive disease and require antifungal therapy. Indeed, eight of the nine patients with COVID-19-associated pulmonary aspergillosis from France were not treated with antifungal drugs, and the three deaths were considered not to be related to aspergillosis, but clinically attributed to bacterial septic shock. Autopsies were not performed to confirm the clinical diagnosis.

It is therefore crucial to gain insight into the interaction between Aspergillus spp and the SARS-CoV-2-infected lung (panel). Only histopathology can prove invasive pulmonary aspergillosis through autopsy of deceased patients with COVID-19-associated pulmonary aspergillosis. If autopsy is precluded because of the risk of aerosol formation, post-mortem lung biopsy might be considered as an alternative to obtaining tissue. Until histopathological evidence of COVID-19-associated pulmonary aspergillosis is obtained, we believe that patients with COVID-19 who are critically ill with evidence for Aspergillus spp in bronchoalveolar lavage or serum should receive antifungal therapy according to national and international guidelines.

PEV reports grants from Gilead Sciences, Merck Sharp & Dohme (MSD), Pfizer, ThermoFisher, and F2G, and non-financial support from OLM Diagnostics and IMMY, outside the submitted work. J-PG reports grants and personal fees from Pfizer and MSD outside the submitted work. MJR reports grants and personal fees from Pfizer, MSD, Gilead, Angelini, Basilea, Astellas, Sidara, and Shionogi; personal fees from Biomineus, Viitor, Paratek, Nabirva, Achaogen, Menarini, Bayer, Tetraphase, Venatoris, and Viitor; and grants from Melinta, outside the submitted work. RJMB served as consultant for Astellas Pharma, F2G, Amplyx, Gilead Sciences, MSD, and Pfizer; and has received unrestricted and research grants from Astellas Pharma, Gilead Sciences, MSD, and Pfizer; all contracts were through Radboudumc, and all payments were invoiced by Radboudumc. OAC is supported by the German Federal Ministry of Research and Education; is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy (CCEAD, EXC 2030 - 390661388); has received research grants from Actelion, Amplex, Astellas, Basilea, Cidara, Da Volterra, F2G, Gilead, Janssen Pharmaceutica, Medicines Company, Medpace, Melinta Therapeutics, MSD, Pfizer, and Sycnaxis; is a consultant to Actelion, Allegra Therapeutics, Amplex, Astellas, Basilea, Bionyx UK, Cidara, Da Volterra, Entasias, F2G, Gilead, Matinas, Medpace, Menarini Ricerca, Roche Diagnostics, MSD, Nabirva Therapeutics, Octapharma, Paratek Pharmaceuticals, Pfizer, PSI, Rempex, Sycnaxis, Seres Therapeutics, Tetraphase, and Vical; and received lecture honoraria from Astellas, Basilea, Gilead, Group Biotoscana, MSD, and Pfizer. PK has received non-financial scientific grants from Miltenyi Biotec, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany, and is an advisor to, or received lecture honoraria from Akademie Fur Infektionsmedizin, Astellas Pharma, Gilead Sciences, GPR Academy Ruesselsheim, MSD, Noxxon Pharma, and University Hospital, Ludwig Maximilians-Universitat Munich, outside the submitted work. CL-F serves as an invited speaker for Gilead Sciences. AC declares no competing interests. *Paul E Verweij, Jean-Pierre Gangneux, Matteo Bassetti, Roger J M Brüggemann, Oliver A Cornely, Philipp Koehler, Cornelia Lass-Flörl, Frank L van de Veerdonk,
Comment

Arunaloke Chakrabarti, Martin Hoenigl, on behalf of the European Confederation of Medical Mycology, the International Society for Human and Animal Mycology, the European Society for Clinical Microbiology and Infectious Diseases Fungal Infection Study Group, and the ESCMID Study Group for Infections in Critically Ill Patients


Alario A, Dellière S, Fodil S, Bretagne S, Bruno Mégarbane B. High prevalence of putative invasive pulmonary aspergillosis in critically ill COVID-19 patients. SSRN 2020; published online April 15. 3575581 (abstr).


