Culture of chondrocytes in alginate and collagen carrier gels

Job L C van Susante¹, Pieter Buma¹, Gerjo J V M van Osch¹,², Diny Versleyen¹, Peter M van der Kraan², Wim B van der Berg² and George N Homminga¹

In this in vitro study, we compared the potential of collagen and alginate gels as carriers for chondrocyte transplantation and we studied the influence of demineralized bone matrix (DBM) on chondrocytes in the gels. Chondrocytes were assessed for cell viability, phenotype (histology), proliferation rate and sulfate incorporation.

Collagen gels showed a significant increase in cell numbers, but the chondrocytes dedifferentiated into fibroblast-like cells from day 6 onwards. In alginate gels, initial cell loss was found, but the cells maintained their typical chondrocyte phenotype. Although the total quantity of proteoglycans initially synthesized per cell in collagen gel was significantly higher, expressed per cell, the quantity in alginate gel eventually surpassed collagen. No effects of culturing chondrocytes in combination with DBM could be demonstrated on cell proliferation and sulfate incorporation.

The collagen and alginate gels have different advantages as carriers for chondrocyte transplantation. The high proliferation rate of chondrocytes in collagen gel may be an advantage, but the preservation of the chondrocyte phenotype and the gradually increasing proteoglycan synthesis in alginate gel is a promising method for creating a hyaline cartilage implant in vitro.

Departments of ¹Orthopedics and ²Rheumatology, University Hospital Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Tel +31 24-3614932. Fax -3540230. Correspondence: Dr. P Buma.

Submitted 95-05-28. Accepted 95-09-13

The classical procedure for repairing defects in hyaline articular cartilage is Pridie drilling; the subchondral bone is perforated to allow undifferentiated cells from the medullary cavity to enter the defect. However, the fibrous or fibrocartilaginous tissues formed are often of poor mechanical quality (Czitrom et al. 1986, Mankin 1986, Kim et al. 1991, Katoh and Urist 1993).

Demineralized bone matrix (DBM) has demonstrated substantial osteoinductive activity, particularly in small laboratory animals (Urist et al. 1975, 1979, Glowacki et al. 1981a, b, Reddi 1981, Sakano et al. 1993). This capacity is probably based on growth factors (e.g., bone morphogenetic proteins; BMPs) which are present in DBM (Iwata et al. 1993, Jortikka et al. 1993, Katoh and Urist 1993, Nathanson 1994). The osteo- and chondrogenic potential of DBM in a synovial environment has been confirmed in animal experiments by placing DBM in cartilage defects (Billings et al. 1991, Dahlberg and Krueckers 1991). Although the defects were not completely filled with repair tissue and not all the tissues were hyaline cartilage, a good fixation of DBM to the subchondral bone was observed. Thus, theoretically, culturing chondrocytes on top of DBM has two potential advantages; the growth factors deriving from the DBM may stimulate chondrocyte proliferation and maintenance of the typical chondrocyte phenotype and, secondly, DBM may enhance the consolidation of the implant to the subchondral trabecular bone.

In this in vitro study, we focused on the potential of collagen type I and alginate gels as carriers of chondrocytes in future transplantation studies and we tested the effects of DBM on chondrocyte behavior in the two culture systems. Alginate, a linear polysaccha-
ride isolated from brown algae, is a linear co-polymer of
two uronic acids, L-guluronic and D-mannuronic
acid linked by β1,4 and α1,4 glucoside bonds. In the
presence of divalent cations such as Ca++, the poly-
mer undergoes instant ionotropic gelation (Guo et
al. 1989).

Material and methods

Preparation of DBM

DBM was prepared from rabbit long bones, accord-
ing to the method described by Urist (Urist et al.
1975, 1979). Rabbits were used because the quantity
of DBM for each culture could easily be standard-
ized. Both tibias and femurs from each animal were
dissected under sterile conditions and, after removal
of the epiphyses, periosteum and bone marrow, the
specimens were cut into pieces of 1.5 cm. The bones
were demineralized with 0.5N HCl for 24h at 4 °C
and continuous stirring. Samples were rinsed repeti-
tively with deionized water at 4 °C until the pH of the
wash matched that of water. They were then defatted
with a 1:1 mixture of chloroform and methanol at
4 °C for 1 h and then rinsed again. Finally, the prepa-
trations were lyophilized and stored on silica gel
under sterile conditions.

Chondrocyte isolation

Cartilage was harvested under sterile conditions from
bovine metacarpophalangeal joints. Two joints from
different animals were used for each experiment in
order to reduce inter-experimental variation. Cells
were isolated by incubation for an initial 2 h period in
RPMI DM culture medium (Flow Laboratories,
Irvine, UK; supplemented with 1 mM pyruvate and
1.2% gentamycin) with 0.2% pronase E (Sigma, St.
Louis, MO, U.S.A.), followed by overnight incuba-
tion in a medium with 0.1% collagenase B (0.94
I.U./mg, Boehringer Mannheim, Germany), at 37 °C,
with 95% air and 5% CO₂. After incubation, the sli-
ces of cartilage had almost completely been digested.
Undigested fragments were removed by passing the
solution through a nylon mesh. Isolated cells were
washed 3 times by centrifugation and resuspended in
30 mL RPMI DM. Cell number and viability were
assessed in a hemocytometer after staining with try-
pan blue. To obtain the appropriate cell number for
culturing, a calculated volume of solution was separ-
ated and centrifuged.

Cultures in alginate gel

Collagen type I was isolated from rat tail tendon
(Schor 1980, Schuman et al. 1995). Cells were dis-
persed in 7 volumes of cooled collagen solution (8
mg/mL in 0.05% acetic acid, ultraviolet light steril-
tized), two volumes of 3x concentrated DMEM medi-
um and one volume of 0.2 M Heps (Boehringer
Mannheim, Germany) to a concentration of 2 × 10⁶
cells/mL. 24 Wells plates were precoated with 0.3 mL
collagen gel. 3 pieces of DBM (4 mm diameter and
about 0.5 mm thick) were punched out and placed on
the bottom half of the culture discs: 0.5 mL samples
containing chondrocytes were put on top and allowed
to gel at 37 °C. Gels were overlaid with 2.0 mL RPMI
DM containing 10% fetal calf serum (FCS). The
medium was changed every other day.

Cultures in collagen gel

Cells were recovered from the collagen gels
by incubation with 1.0 mL 0.1% collagenase B in
RPMI DM for 120 min at 37 °C. Alginate was dis-
olved by the addition of 1.0 mL 55 mM sodium cit-
rate in 0.15 M NaCl. The recovered cells were count-
ed in a hemocytometer and their viability was esti-
mated with the trypan blue exclusion test.

Matrix production

To quantify proteoglycan synthesis as a measure of
matrix production, cultures were overlaid with fresh
medium containing [³⁵S]sulfate (Du Pont de Nemours,
's-Hertogenbosch, the Netherlands) at a
final concentration of 5 μCi/mL. After an incubation
period of 3h, gels were separated from the medium and stored at -70 °C until required. After thawing, gels were dissolved, using either collagenase B or sodium citrate, as described previously. Cetylpyridinium chloride (CPC, Sigma; 0.1%) was added to the disintegrated gels and incubated overnight at 37 °C. The precipitate was washed with 0.05% CPC until the supernatant showed less than 100 cpm of radioactivity. The pellets of precipitated and washed proteoglycans were solubilized with Lumasolve (Perstorp Analytical, Oud-Beijerland, The Netherlands) for 3 h at 60 °C and analyzed, using liquid scintillation counting. From the total amount of proteoglycans synthesized, as determined with 35S incorporation in combination with the cell number per gel, we could also calculate the matrix production per cell.

Histology

For light microscopy, gels were fixed in a 0.1 M phosphate-buffered (pH 7.4) solution of 1% paraformaldehyde and 1.25% glutaraldehyde, dehydrated in alcohol and embedded in polymethylmethacrylate. Sections (7 μm) were stained with hematoxylin eosin (HE) and alcian blue. For electron microscopy, pellets were fixed in a mixture of 0.2% alcian blue, 0.2% ruthenium red, 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2). After 4 hrs, the gels were rinsed in the same buffer and postfixed in the same mixture, but without glutaraldehyde. After a second rinse in the buffer, the gels were postfixed in 1% OsO4, 0.2% alcian blue, 0.2% ruthenium red and 0.05 M cacodylate buffer for 4 hrs. Subsequently the gels were rinsed again in buffer, dehydrated with alcohol and embedded in Epon 812. To prevent the alginate beads from dissolving, 5 mM CaCl2 was added to all solutions. Semi-thin sections (2 μm) were counterstained with toluidine blue. Adjacent ultra-thin sections were mounted on oval 2 mm one-hole grids, stained with uranyl acetate and lead citrate and examined with a Philips 301 electron microscope.

Statistical analysis of the results was performed using the rank sum t-test.

Results

Cell number and viability

The viability of chondrocytes in collagen gel was in excess of 95% directly after isolation. The gels showed an increase (p < 0.01) in the number of cells with time (Figure 1). In alginate gels, the viability was initially 80–90% on day 2, but the number stayed stationary thereafter (Figure 1). Culturing on top of DBM had no effects on the growth rate or viability of the chondrocytes (Figure 1).

Incorporation study

Larger quantities (p < 0.01) of proteoglycans were synthesized from chondrocytes cultured in collagen than in alginate gels (Figure 3). In collagen gels 35S incorporation increased with time for 12 days and gradually reached a stationary phase. A similar trend was found in alginate, but it started at a lower value. The addition of DBM caused no increase in matrix production in both types of gel (Figure 2).

Initially, more proteoglycans, expressed per chondrocyte, were synthesized from chondrocytes in collagen gel than in alginate gel (Figure 3). However, in collagen gel, matrix production decreased from day 6, whereas in alginate gel on day 6 it was still increasing. Subsequently, proteoglycan synthesis in alginate gel, expressed per chondrocyte, surpassed that in collagen gel on day 6. Again DBM showed no improvement in culturing conditions.

Morphology

Daily assessment with an inverted microscope and histology showed that the isolated chondrocytes were homogeneously distributed throughout the gels after suspension. Initially, chondrocytes had the same typ-
Figure 2. Typical example of the quantity of proteoglycans synthesized against time determined with 35S incorporation, for collagen with (●) and without (□) DBM and alginate with (■) and without (□) DBM. At least 3 samples were examined at each time interval.

Figure 3. Proteoglycan synthesis per cell plotted against culture time for collagen with (●) and without (○) DBM and alginate with (■) and without (□) DBM. Results calculated from the data obtained from Figures 1 and 2.

Discussion

Although collagen type II, instead of type I, is mainly present in hyaline cartilage, type II collagen gels do not give better results as a delivery substance (Malemud et al. 1994). We are not sure whether dedifferentiation will have a negative influence on implant behavior after transplantation. However, it is known that a loss of chondrocyte morphology results in compromised matrix production (inferior quantity and biomechanical quality; Aulthouse et al. 1989). On the other hand, the chondrocyte proliferation rate in collagen gel is high and as it has been found that dedifferentiated cells can retain their original phenotype if placed in the correct environment (Coon 1966, Buschmann et al. 1992, Wakitani et al. 1994), dedifferentiation with a high proliferation rate in collagen could ultimately have favorable effects. Thus, the rapidly increasing viable cell number in collagen gel, together with proven biocompatibility (Wakitani et
The decrease in

the culture period showed a gradual decrease in

the production of matrix. The gel, however, had a higher.

Figure 4. Histology of cultures in collagen gel (C, E, F) and in agarose gel (G, H, I) directly after isolation (a), z, 2, (f).

Carmichael et al. (1992) are important advances of collagen type 1 in

the production of matrix. Around the gel in

the culture period, there was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

In accordance with previous work (Carmichael et al. 1992) are important advances of collagen type 1 in

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

In accordance with previous work (Carmichael et al. 1992) are important advances of collagen type 1 in

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

In accordance with previous work (Carmichael et al. 1992) are important advances of collagen type 1 in

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

In accordance with previous work (Carmichael et al. 1992) are important advances of collagen type 1 in

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

In accordance with previous work (Carmichael et al. 1992) are important advances of collagen type 1 in

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.

In accordance with previous work (Carmichael et al. 1992) are important advances of collagen type 1 in

the production of matrix around the gel in

the culture period. There was a gradual decrease in

the production of matrix. However, the matrix production continued in

the gel in the absence of gel. (B) and (C). 1997. Wulfkin et al.
trations during gelation, especially as it occurred mainly during the first few days of culture. However, the diffusion rate of nutrients into the relatively dense porous structure of alginate gel could also be a limiting factor. The maintenance of typical chondrocyte morphology and the steady increase in matrix production indicate that alginate provides a good environment for chondrocyte cultures, but further in vitro studies are needed to investigate the biocompatibility of such an implant. Although not tested in this study, we believe that greater pericellular matrix formation will increase the mechanical strength of the implant, as has been observed in agarose cultures (Buschmann et al., 1992).

Chondrocytes could easily be cultured in combination with DBM, but no effect on matrix production was observed in either the collagen or alginate gels. We expect that positive effects of DBM will be found in vivo, because remodeling of the DBM fragments will result in the actual release of chondrogenic growth factors present. In vitro experiments (preliminary unpublished data) showed that the matrix production of chondrocytes in alginate can be stimulated by insulin-like growth factor and transforming growth factor-β. The tendency for DBM to remodel in an articular cartilage defect and to become incorporated into the subchondral bone has already been demonstrated by Billings et al. (1991). Future animal
experiments may be able to establish whether a com-
posite transplant of chondrocytes with DBM results in
better fixation of the graft and in repair tissue which more closely resembles hyaline cartilage.

References

Aston J E, Bentley G. Repair of articular surfaces by allog-
grafts of articular and growth-plate cartilage. J Bone Joint

Atala A, Cima L, Kim W, Paige K T, Vacanti J P, Retik
A B, Vacanti C A. Injectable alginate seeded with chon-
drocytes as a potential treatment for vesicoureteral reflux.

Atulohse A L, Beck M, Griffey E, Sanford J, Arden K,

Bentley G, Greer R B. Homotransplantation of isolated articular and epiphyseal chondrocytes into the joint sur-

Billings E, von Schroeder H P, Mait M T, Aratow J, Amiel

Burgess L P A, Goode R L. Injectable collagen. Facial Plast

Buschmann M D, Gluzband Y A, Grodzinsky AJ, Kimura
T, Yasui N, Ono S, Sato T, Kawamura M. Bone mor-

Kato R, Urist M R. Surface adhesion and attachment fac-
tors in bone morphogenetic protein-induced chondrogen-

Kim H K W, Moran M E, Saltor R B. The potential for regener-

Malemad C J, Stevenson S, Mehrabian F, Papay R S, Perchou
A P, Goldberg V M. The proteoglycan synthesis reperto-
ire of rabbit chondrocytes maintained in type II collagen

Munkin H J. The response of articular cartilage to mechani-

Robinson D, Halperin N, Nevo Z. Regenerating hyaline carti-
lage in articular defects of old chickens using implants of embryonal chick chondrocytes embedded in a new nat-

Sakano S, Murata Y, Miura T, Iwata II, Sato K, Matsui N,
Soo H. Collagen and alkaline phosphatase gene expres-

Seo H. Collagen proliferation and migration on collagen sub-

Schulam L, Buma P, van der Kraan P M, van den Berg W B, Homminga G N. In vitro chondrocyte behav-
ior within different types of collagen gel. Biomaterials

